
Transaction Safe Nonblocking Data Structures ⋆

Virendra J. Marathe, Michael F. Spear, and Michael L. Scott

Department of Computer Science, University of Rochester
Rochester, NY 14627-0226 USA

{vmarathe, spear, scott}@cs.rochester.edu

This brief announcement focuses on interoperability of software transactions
with ad hoc nonblocking algorithms. Specifically, we modify arbitrary nonblock-
ing operations so that (1) they can be used both inside and outside transactions,
(2) external uses serialize with transactions, and (3) internal uses succeed if and
only if the surrounding transaction commits. Interoperability enables seemless
integration with legacy code, atomic composition of nonblocking operations, and
the equivalent of hand-optimized, closed nested transactions.

The key to transaction safety is to ensure that memory accesses of operations
called from inside a transaction occur (or appear to occur) if, only if, and when
the surrounding transaction commits. We do this by making writes manifestly
speculative, with their fate tied to that of the transaction, and by logging reads
for re-validation immediately before the transaction commits. (Because correct
nonblocking code is designed to tolerate races, additional, intermediate valida-
tion is not required.) When called from outside a transaction, operations behave
as they did in the original nonblocking code, except that they aggressively abort
any transaction that stands in their way. Operations inside a transaction simi-
larly abort transactional peers. They are unaware of nontransactional peers.

We provide nonblocking objects with “transaction aware” versions of ref-
erences and other basic primitive types such as integer, long, etc. These provide
Get, Set, and CAS operations, which the programmer uses instead of conventional
accesses. If called inside a transaction, Get logs the target location for later val-
idation; Set and CAS speculatively modify the target location. Changes become
permanent at transaction commit time. If called outside a transaction, all three
operations “clean up” any encountered speculative updates, aborting conflicting
transactions if necessary. Given correct nonblocking code, the changes required
to create a transaction-safe version are mechanical.

To make a type transaction-aware, we must be able to distinguish between
real and speculative values. For some types (e.g., pointers in C) we may be
able to claim an otherwise unused bit, or use features such as runtime type

identification in strongly typed languages such as Java. For others we may use
a sentinel value to trigger address-based lookup in a separate metadata table.
With support for transaction aware primitives, we expect that construction of
transaction safe versions of nonblocking algorithms would require little or no

⋆ This work was supported in part by NSF grants CNS-0411127 and CNS-0615139,
equipment support from Sun Microsystems Laboratories, and financial support from
Intel and Microsoft.

mls
DISC '07

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

O
p

e
ra

ti
o

n
s
/s

e
c
o

n
d

Threads

MS-Queue
0% txns

10% txns
20% txns
50% txns

100% txns
ASTM-Queue

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Threads

Harris-LL
0% txns

10% txns
20% txns
50% txns

100% txns
ASTM-LL

Fig. 1. Performance of transaction safe nonblocking objects with varying percentage of
transactional and nontransactional invocations (50% inserts and 50% deletes). Experi-
ments on a 16-processor 6800 SunFire cache coherent multiprocessor machine. Compar-
ison with original nonblocking algorithms, and a natural transactional implementation.

additional programming effort, particularly if these primitives are supported in
standard libraries.

Our preliminary implementation is in the context of the ASTM [3] system,
where we extended the AtomicReference Java library class with a transaction aware
version TxAtomicRef. We leveraged ASTM’s transactional metadata structure
(which consists of an indirection object called the locator that determines the
current consistent version of the data, and its current writer transaction) to
represent speculative values of TxAtomicRefs.

We implemented several nonblocking algorithms using TxAtomicRef including
Michael and Scott’s lock-free queue [4] and Harris’ lock-free linked list [1] (results
in Figure 1). In all cases we simply replaced the AtomicReferences in the original
algorithms with TxAtomicRefs in our constructions. Our results suggest that while
transaction safety makes nonblocking data structures somewhat slower, the re-
sulting constructs interoperate smoothly with transactions, and can significantly
outperform the natural “fully transactional” alternatives.

References

[1] T. L. Harris. A Pragmatic Implementation of Non-Blocking Linked-Lists. 15th

Intl. Symp. on Distributed Computing, Lisboa, Portugal, Oct. 2001.
[2] M. Herlihy and J. E. Moss. Transactional Memory: Architectural Support for Lock-

Free Data Structures. 20th Intl. Symp. on Computer Architecture, San Diego, CA,
May 1993.

[3] V. J. Marathe, W. N. Scherer III, and M. L. Scott. Adaptive Software Transactional
Memory. 19th Intl. Symp. on Distributed Computing, Cracow, Poland, Sept. 2005.

[4] M. M. Michael and M. L. Scott. Simple, Fast, and Practical Non-Blocking and
Blocking Concurrent Queue Algorithms. 15th ACM Symp. on Principles of Dis-

tributed Computing, Philadelphia, PA, May 1996.

