
Hardware Acceleration of Software Transactional Memory∗

Arrvindh Shriraman, Virendra Marathe, Sandhya Dwarkadas, Michael L. Scott
David Eisenstat, Christopher Heriot, William N. Scherer III, and Michael F. Spear

Technical Report #887

Department of Computer Science, University of Rochester

December 2005; revised March 2006

Abstract

Transactional memory (TM) systems seek to increase scalability, reduce programming complexity,
and overcome the various semantic problems associated with locks. Software TM proposals run on stock
processors and provide substantial flexibility in policy, but incur significant overhead for data versioning
and validation in the face of conflicting transactions. Hardware TM proposals have the advantage of
speed, but are typically highly ambitious, embed significant amounts of policy in silicon, and provide no
clear migration path for software that must also run on legacy machines.

We advocate an intermediate approach, in which hardware is used to accelerate a TM implementation
controlled fundamentally by software. We present a system, RTM, that embodies this approach. It
consists of a noveltransactional MESI(TMESI) protocol and accompanying TM software. TMESI
eliminates the key overheads of data copying, garbage collection, and validation without introducing
any global consensus algorithm in the cache coherence protocol, or any new bus transactions. The only
change to the snooping interface is a “threatened” signal analogous to the existing “shared” signal.

By leaving policy to software, RTM allows us to experiment with a wide variety of policies for
contention management, deadlock and livelock avoidance, data granularity, nesting, and virtualization.

1 Introduction and Background

Moore’s Law has hit the heat wall. Simultaneously, the ability to use growing on-chip real estate to extract
more instruction-level parallelism (ILP) is also reaching its limits. Major microprocessor vendors have
largely abandoned the search for more aggressively superscalar uniprocessors, and are instead designing
chips with large numbers of simpler, more power-efficient cores. The implications for software vendors
are profound: for 40 years only the most talented programmers have been able to write good thread-level
parallel code; now everyone must do it.

Parallel programs have traditionally relied on mutual exclusion locks, but these suffer from both seman-
tic and performance problems. From a semantic point of view, locks are vulnerable to deadlock, priority
inversion, and the inability to restore program invariants if a thread dies in a critical section. From a per-
formance point of view, they are vulnerable to convoying and to arbitrary delays if a thread is preempted or
suffers a page fault in a critical section. Most significantly, locks present the programmer with an unhappy
tradeoff between concurrency and comprehensibility: coarse-grain lock-based algorithms are relatively easy
to understand, (grab the One Big Lock, do what you need to do, and release it) but they preclude any sig-
nificant parallel speedup. Fine-grain lock-based algorithms allow non-interfering operations to proceed in
parallel, but they are notoriously difficult to design, debug, maintain, and understand.

∗This work was supported in part by NSF grants CCR-0204344, CNS-0411127, and CNS-0509270, by an IBM Faculty Part-
nership Award, and by financial and equipment support from Sun Microsystems Laboratories.

1

Ad hocnonblockingalgorithms [20, 21, 32, 33] solve the semantic problems of locks by ensuring that
forward progress is never precluded by the state of any thread or set of threads. If two concurrent operations
conflict and one is stalled (due, say, to preemption) the other can typically deduce the status of the first,
and either back it out of the way or push it through to completion. Ad hoc nonblocking algorithms solve
the semantic problems of locks, and provide performance comparable to fine-grain locking, but each such
algorithm tends to be a publishable result.

Clearly, what we want is something that combines the semantic advantages of ad hoc nonblocking al-
gorithms with the conceptual simplicity of coarse-grain locks. Transactional memory promises to do so.
Originally proposed by Herlihy and Moss [14], transactional memory (TM) borrows the notions of atomic-
ity, consistency, and isolation from database transactions. In a nutshell, the programmer or compiler labels
sections of code asatomicand relies on the underlying system to ensure that their execution islineariz-
able[12], consistent, and as highly concurrent as possible.

Once regarded as impractical, in part because of limits on the size and complexity of 1990s caches,
TM has in recent years enjoyed renewed attention. Unfortunately, it is not yet clear to us that full-scale
hardware TM will provide the most practical, cost-effective, or semantically acceptable implementation of
transactions. Specifically, hardware TM proposals suffer from three key limitations:

1. They are architecturally ambitious—enough so that commercial vendors will require very convincing
evidence before they are willing to make the investment.

2. They embed important policies in silicon—policies whose implications are not yet well understood,
and for which current evidence suggests that no one static approach may be acceptable.

3. They provide no obvious migration path from current machines and systems: programs written for a
hardware TM system may not run on legacy machines.

Moir [22] and Kumar et al. [15] have recently proposed solutions to the first and third of these prob-
lems. In both these systems, hardware makes a “best effort” attempt to complete transactions, falling back
to software when necessary. Unfortunately, they still embed significant policy in silicon. Both proposals, for
example, assume that conflicts are detected as early as possible (pessimistic concurrency control), disallow-
ing either read-write or write-write sharing. While we agree on the importance of backward compatibility
and the usefulness of hardware/software hybrids, we carry the emphasis on software further.

Previous published papers [16, 30] reveal performance differences across applications of 2×–10× in
each directionfor different approaches to contention management, metadata organization, and eagerness
of conflict detection (i.e., write-write sharing). It is clear that no one knows the “right” way to do these
things; it is likely there is no one right way. We propose, therefore, that hardware serve simply to optimize
the performance of transactions that are controlled fundamentally by software. This allows us, in almost
all cases, to cleanly separate policy and mechanism. The former is the province of software, allowing
flexible policy choice; the latter is supported by hardware in cases where we can identify an opportunity for
significant performance improvement.

We present a system, RTM, that embodies this software-centric hybrid strategy. RTM comprises a
Transactional MESI(TMESI) coherence protocol and a modified version of our RSTM software TM [17].
TMESI extends traditional snooping coherence with a “threatened” signal analogous to the existing “shared”
signal, and with several new instructions and cache states. One new set of states allows transactional data to
be hidden from the standard coherence protocol, until such time as software permits it to be seen. A second
set allows metadata to be tagged in such a way that invalidation forces an immediate abort.

In contrast to most software TM systems, RTM eliminates, in the common case, the key overheads of
data copying, garbage collection, and consistency validation. In contrast to most hardware proposals, it
requires no global consensus algorithm in the cache coherence protocol, no snapshotting of processor state,

2

and no bus messages beyond those already required for MESI. Nonspeculative loads and stores are per-
mitted in the middle of transactions—in fact they constitute the hook that allows us to implement policy
in software. Among other things, we rely on software to determine the structure of metadata, the granu-
larity of concurrency and sharing (e.g., word vs. object-based), and the degree to which conflicting trans-
actions are permitted to proceed speculatively in parallel. (We permit, but do not require, read-write and
write-write sharing, with delayed detection of conflicts.) Most important, we employ a softwarecontention
manager[29, 30] to arbitrate conflicts and determine the order of commits.

Because conflicts are handled in software, speculatively written data can be made visible at commit time
with only a few cycles of entirely local execution. Moreover, these data (and a small amount of nonspecula-
tive metadata) areall that must remain in the cache for fast-path execution: data that were speculativelyread
or nonspeculativelywritten can safely be evicted at any time. Like the other two hybrid proposals, RTM falls
back to a software-only implementation of transactions in the event of overflow (or at the discretion of the
contention manager), but in contrast not only to the hybrid proposals, but also to such hardware proposals as
TLR [26], LTM [1], VTM [27], and LogTM [23], it can accommodate “fast path” execution of dramatically
larger transactions with a given size of cache.

TMESI is intended for implementation either at the L1 level of a CMP with a shared L2 cache, or at the
L2 level of an SMP with write-through L1 caches. We believe that similar extensions could be devised for
directory-based coherence protocols. TMESI could also be used with a variety of other TM software. We
do not describe such extensions here.

Section 2 surveys the design space for TM systems. Section 3 then turns to an overview our RTM hy-
brid system, including its programming model, its software control, the costs it needs to address, and the
hardware it uses to do so. Section 4 describes that hardware (TMESI) in detail, including its instructions,
its protocol states and transitions, and the mechanism used to detect conflicts and abort remote transac-
tions. Section 5 provides additional detail on RTM software control, with an emphasis on how fast-path
transactions in hardware interact with unbounded transactions in software. We conclude in Section 6 with
a summary of contributions, a brief description of our simulation infrastructure (currently nearing comple-
tion), and a list of topics for future research.

2 The Transactional Memory Design Space

In the years following Herlihy and Moss’s original TM paper, several groups proposed software implemen-
tations of transactional memory, among them Shavit and Touitou, who coined the term “Software Trans-
actional Memory” (STM) [31]. Most of these implementations suffered from one or another fundamental
limitation, or had overheads too large to be considered practical. In recent years, however, several groups
have developed full-featured STM systems with overheads low enough to outperform coarse-grain locks for
highly contended structures. Examples include the word-based systems of Harris & Fraser [3] and Saha
et al. [28], and the object-based systems of Harris & Fraser, (OSTM [3]), Herlihy et al. (DSTM [11]), and
Marathe et al. (ASTM [16]). The latter is among the best performing, matching the better of DSTM and
OSTM on a wide variety of workloads. Unfortunately, when contention is low, locks still enjoy a significant
performance advantage.

The first of the modern hardware TM systems is Rajwar and Goodman’s Transactional Lock Removal
(TLR) [26], which extends their earlier Speculative Lock Elision (SLE) [25]. TLR speculatively elides
acquire and release operations in traditional lock-based code, allowing critical sections to execute in parallel
so long as their write sets fit in cache and do not overlap. In the event of conflict, all processors but one roll
back and acquire the lock conservatively. Timestamping is used to guarantee forward progress. Martı́nez
and Torrellas [18] describe a related mechanism for multithreaded processors that identifies, in advance, a
“safe thread” guaranteed to win all conflicts.

3

Ananian et al. [1] argue that a TM implementation must support transactions of arbitrary size and dura-
tion. They describe two implementations, one of which (LTM) is bounded by the size of physical memory
and the length of the scheduling quantum, the other of which (UTM) is bounded only by the size of vir-
tual memory. Rajwar et al. [27] describe a related mechanism (VTM) that uses hardware tovirtualize
transactions across both space and time. Moore et al. [23] attempt to optimize the common case by making
transactionally-modified overflow data visible to the coherence protocol immediately, while logging old val-
ues for roll-back on abort (LogTM). Hammond et al. [7] propose a particularly ambitious rethinking of the
relationship between the processor and the memory, in whicheverythingis a transaction (TCC). However,
they require heavy-weight global consensus at the time of a commit and add significant hardware complexity
to the processor core (i.e., duplicate register files and transactional buffers).

Taken together, the hardware and software TM systems of the last few years explore a very large design
space. Some of the dimensions of this space are illustrated in Table 1:1

• Most hardware (and hybrid) TM proposals perform updates at the granularity of cache lines. Some
STM proposals, notably the WSTM of Harris and Fraser [8] and the McRT system of Saha et al. [28],
use word-sized blocks and log updates for roll-back on abort. Absent compile-time data-flow analysis,
however, word-based STM systems require nontrivial overhead on every load or store. An attractive
alternative in object-oriented languages is to identify blocks with language-level objects, accessed
via pointers. Systems that adopt this approach include DSTM [11], OSTM [3], Transactional Mon-
itors [34], STM Haskell [9], SXM [4], and ASTM [16]. Object-based STMs avoid the overhead of
bookkeeping for every modified word, but may incur significant copying overhead if only a small
fraction of an object is modified. For programs with objects of modest size, we believe the tradeoff
tilts strongly in favor of object-based systems. For RTM, which avoids the overhead of copying in the
common case, the advantage is compelling.

• A lock-freealgorithm [13] guarantees that the system as a whole makes forward progress in a bounded
number of steps. Anobstruction-freealgorithm [10] guarantees progress only if threads do not ac-
tively interfere with one another; it requires an externalcontention managerto avoid the possibility
of livelock. A blocking algorithm has situations in which forward progress waits for some particular
thread to complete its operation.

• When transactions conflict, aggressive contention management means the thread that notices the con-
flict actively aborts its “enemy”. “Polite” means it waits or aborts itself. “Timestamp” means the
older transaction wins. Recursive helping allows OSTM to be lock-free: when a transaction discovers
a conflict, it performs whatever work is needed to push its enemy through to completion.

• The occurrence of an eager write (though not necessarily the value) becomes visible to other transac-
tions immediately; lazy writes are hidden until commit time.

• Broadcast writes use hardware support to ensure that subsequent conflicting loads or stores will fail.
In the absence of such hardware, an explicit list of readers for a given object allows a writer to abort
the readers, one by one. Alternatively, readers may check for potential conflicts at certain appropriate
times; depending on system details this may or may not be enough to prevent a doomed transaction
from using mutually inconsistent data. Errors resulting from the use of such data may in some systems
be caught by type checks or signal handlers.

1Characterizations in this table are based on a good faith reading of published papers, but may in some cases reflect a misinter-
pretation. We would be grateful for corrections from any reader with a more detailed understanding of the systems in question.

4

D
S

T
M

[1
1]

O
S

T
M

[3
]

S
X

M
[4

]
A

S
T

M
[1

6]
W

S
T

M
[8

]
S

H
[9

]
T

M
on

[3
4]

M
cR

T
[2

8]

H
yT

M
[2

2]
T

M
-H

yb
rid

[1
5]

R
T

M

T
LR

[2
6]

T
C

C
[7

]
LT

M
[1

]
U

T
M

[1
]

V
T

M
[2

7]
Lo

gT
M

[2
3]

Granularity of sharing
words × ×
cache lines × × × × × × × ×
objects × × × × × × × × ×

Liveness
lock-free × ×
obstruction-free × × × × × × × × × ×
blocking × × × × × × × × × × ×

Contention management ?
recursive helping ×
aggressive × × × × × × × ×
timestamp × × × × × × × × ×
polite × × × × × × × × × ×
extensible (your choice) × × × × ×

Conflict visibility
eager × × × × × × × × × × × ×
lazy × × × × × × ×

conflict detection/tolerance
broadcast × × × × ×
multicast (visible readers) × × × × ×
incremental validation × × × × × × ×
sandboxing × × ×
potential inconsistency × × × ×

Overflow handling
fall back to software — NA — × × ×
log old values, new, or both N B N O
serialize × ×

Nesting
yes (closed) × × ×
none (yet) or subsumption × × × × × × × × × × × × × ×

Table 1: Policies chosen by current TM systems. Software systems appear on the left; hardware on the right;
hybrid in the middle. “SH” is STM Haskell. “TMon” is Transactional Monitors (high contention variant).
Multiple entries for a given system indicate multiple, hybrid, or adaptive policies.

• When a TM system runs out of room in hardware tables, it can fall back to software, resort to serial-
ization, or virtualize its tables in main memory. In the latter case the tables may contain values to be
installed on commit (what Moore et al. calllazy version management[23]), values to be restored on
abort (eager version management), or both. Software systems effectively log both; a transaction com-
mits with a single compare-and-swap instruction, after which new values are immediately visible to
other transactions. Like UTM, software and hybrid systems qualify as “eager” in Moore’s taxonomy.

5

• Closed nesting of transactions [24] constitutes a potentially important performance optimization in
which an inner transaction can abort and retry without aborting its parent.

Perhaps the most important observation from Table 1 is that there is very little consensus on the right
way to implement transactions. Hardware proposals display less variation than software proposals, but this
stems in large part not from a clear understanding of tradeoffs, but rather from a tendency to embed more
straightforward policies in hardware. Work by Marathe et al. [16] suggests that TM systems should choose
between eager and lazy conflict detection based on the characteristics of the application, in order to obtain
the best performance. Likewise, work by Scherer et al. [29, 30] and Guerraoui et al. [5, 6] suggests that the
preferred contention management policy is also application-dependent, and may alter program run time by
as much as an order of magnitude. Not only is there no obvious set of policies to embed in hardware today,
it is unclear there will ever be an obvious choice, or that such a choice, if it does emerge, will be amenable
to hardware implementation. Given this state of affairs, it seems desirable to remain as flexible as possible,
and to leave policy to software when we can.

3 RTM Overview

As noted in Section 2, software TM systems display a wide variety of policy and implementation choices.
Our RSTM system [17] draws on experience with several of these in an attempt to eliminate as much soft-
ware overhead as possible, and to identify and characterize what remains. RTM is, in essence, a derivative
of RSTM that uses hardware support to reduce those remaining costs. A transaction that makes full use of
the hardware support is called ahardware transaction. A transaction that has abandoned that support (due
to overflow or policy decisions made by the contention manager) is called asoftware transaction.

3.1 Programming Model

Like most (though not all) STM systems, RTM isobject-based: updates are made, and conflicts arbitrated, at
the granularity of language-level objects.2 Only those objects explicitly identified asShared are protected
by the TM system. Other data (local variables, debugging and logging information, etc.) can be accessed
within transactions, but will not be rolled back on abort.

Before aShared object can be used within a transaction, it must beopenedfor read-only or read-write
access. RTM enforces this rule using C++ templates and inheritance, but a functionally equivalent interface
could be defined through convention in C. Theopen_RO method returns a pointer to the current version
of an object, and performs bookkeeping operations that allow the TM system to detect conflicts with future
writers. Theopen_RWmethod, when executed by a software transaction, creates a new copy, orcloneof
the object, and returns a pointer to that clone, allowing other transactions to continue to use the old copy.
As in software TM systems, a transaction commits with a single compare-and-swap (CAS) instruction,
after which any clones it has created are immediately visible to other transactions (like UTM and LogTM,
software and hybrid TM systems employ what Moore et al. refer to aseager version management[23]). If
a transaction aborts, its clones are discarded.

Figure 1 contains an example of C++ RTM code to insert an element in a singly-linked sorted list
of integers. The API is inherited from our RSTM system [17], which runs on legacy hardware. The
stm::Shared<T> template class provides an opaque wrapper around transactional objects. Several cru-
cial methods, includingoperator new , are provided bystm::Object<T> , from which T must be
derived. Within a transaction, bracketed byBEGIN_TRANSACTIONandEND_TRANSACTIONmacros,

2We do require that each object reside in it own cache line.

6

using namespace rtm;
void intset::insert(int val) {

BEGIN_TRANSACTION;
const node* previous = head->open_RO();

// points to sentinel node
const node* current = previous->next->open_RO();

// points to first real node
while (current != NULL) {

if (current->val >= val) break;
previous = current;
current = current->next->open_RO();

}
if (!current || current->val > val) {

node *n = new node(val, current->shared());
// uses Object<T>::operator new

previous->open_RW()->next = new Shared<node>(n);
}

END_TRANSACTION;
}

Figure 1: Insertion in a sorted linked list using RTM.

the open_RO() and open_RW() methods can be used to obtainconst T* and T* pointers respec-
tively. The shared() method performs the inverse operation, returning a pointer to theShared<T>
with which this is associated. Our code traverses the list from the head, opening objects in read-only
mode, until it finds the proper place to insert the element. It then re-opens the object whosenext pointer it
needs to modify in read-write mode. To make such upgrades convenient,Object<T>::open_RW returns
shared()->open_RW() .

3.2 Software Implementation

The two principal metadata structures in RTM are thetransaction descriptorand theobject header. The
descriptor contains an indication of whether the transaction isactive, committed, or aborted. The header
contains a pointer to the descriptor of the most recent transaction to modify the object, together with pointers
to old and new clones of the data. If the most recent writer committed in software, the new clone is valid;
otherwise the old clone is valid.

Before it can commit, a transactionT mustacquirethe headers of any objects it wishes to modify, by
making them point at its descriptor. By using a CAS instruction to change the status word in the descriptor
from active to committed, a transaction can then, in effect, make all its updates valid in one atomic step.
Prior to doing so, it must also verify that all the object clones it has been reading are still valid.

Acquisition is the hook that allows RTM to detect conflicts between transactions. If a writerR discovers
that a header it wishes to acquire is already “owned” by some other, still active, writerS, R consults a
softwarecontention managerto determine whether to abortS and steal the object, wait a bit in the hope
thatS will finish, or abortR and retry later. Similarly, if any object opened byR (for read or write) has
subsequently been modified by an already-committed transaction, thenR must abort.

RTM can perform acquisition as early asopen time, or as late as just before commit. The former
is know aseageracquire, the latter aslazy acquire. Most hardware TM systems, by contrast, perform
the equivalent of acquisition by requesting exclusive ownership of a cache line. Since this happens as
soon as the transaction attempts to modify the line, these systems are inherently restricted toeager conflict
management[23]. They are also restricted to contention management algorithms simple enough (and static
enough) to be implemented in hardware on a cache miss.

7

Threads
0 5 10 15 20 25 30

M
ic

ro
−

s
e

c
o

n
d

s
/T

x
n

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ASTM

RSTM

Coarse−grained Locks

Figure 2: Performance scaling of RSTM, ASTM, and coarse-grain locking on a hash table microbenchmark.

As noted at the end of Section 2 there are strong arguments for an adaptive approach to both conflict vis-
ibility and contention management. In both these dimensions, RTM provides significantly greater flexibility
than pure hardware TM proposals.

3.3 Dominant Costs

Figure 2 compares the performance of RSTM (the all-software system from which RTM is derived) to that
of coarse-grain locking on a hash-table microbenchmark as we vary the number of threads from 1 to 32
on a 16-processor 1.2GHz SunFire 6800. Also shown is the performance (in Java) of ASTM, previously
reported [16] to match the faster of Sun’s DSTM [11] and the Cambridge OSTM [3] across a variety of
benchmarks. Each thread in the microbenchmark repeatedly inserts, removes, or searches for (one third
probability of each) a random element in the table. There are 256 buckets, and all values are taken from the
range 0–255, leading to a steady-state average of 0.5 elements per bucket.

Unsurprisingly, coarse-grain locking does not scale. Increased contention and occasional preemption
cause the average time per transaction to climb with the number of threads. On a single processor, however,
locking is an order of magnitude faster than ASTM, and about 3× faster than RSTM. We need 3 active
threads in this program before software TM appears attractive from a performance point of view.

Instrumenting code for the single-processor case, we can apportion costs as shown in Figure 3, for five
different microbenchmarks. Four—the hash table of Figure 2, the sorted list whose insert operation appeared
in Figure 1, and two red-black trees—are implementations of the same abstract set. The fifth represents the
extreme case of a trivial critical section—in this case one that increments a single integer counter.

In all five microbenchmarks TM overhead dwarfs real execution time. Because they have significant
potential parallelism, however, both HashTable and RBTree outperform coarse-grain locks given sufficient
numbers of threads. Parallelism is nonexistent in Counter and limited in LinkedList: a transaction that
updates a node of the list aborts any active transactions farther down the list.

Memory management in Figure 3 includes the cost of allocating, initializing, and (eventually) garbage
collecting clones. The total size of objects written by all microbenchmarks other than RBTree-Large (which
uses 4 KByte nodes instead of the 40 byte nodes of RBTree-Small) is very small. As demonstrated by

8

Benchmark

LinkedList Hash RBTree−

Small

RBTree−

Large

Counter

E
x
e
c
u
ti
o
n
 T
im
e
 %

0

20

40

60

80

100

Validation

Memory Management

Metadata Management

Useful Work

Figure 3: Cost breakdown for RSTM on a single processor, for five different microbenchmarks.

RBTree-Large, transactions that access a very large object (especially if they update only a tiny portion of
it) will suffer enormous copying overhead.

In transactions that access many small objects,validation is the dominant cost. It reflects a subtlety of
conflict detection not mentioned in Section 3.2. Suppose transactionR opens objectsX andY in read-only
mode. In between, suppose transactionS acquires both objects, updates them, and commits. ThoughR
is doomed to abort (the version ofX has changed), it may temporarily access the old version ofX and
the new version ofY . It is not difficult to construct scenarios in which thismutual inconsistencymay
lead to arbitrary program errors, induced, for example, by stores or branches employing garbage pointers.
(Hardware TM systems are not vulnerable to this sort of inconsistency, because they roll transactions back
to the initial processor and memory snapshot the moment conflicting data becomes visible to the cache
coherence protocol.)

Without a synchronous hardware abort mechanism, RSTM (like DSTM and ASTM) requiresR to
double-check the validity of all previously opened objects whenever opening something new. For a transac-
tion that accesses a total ofn objects, thisincremental validationimposesO(n2) total overhead.

As an alternative to incremental validation, Herlihy’s SXM [4] and more recent versions of DSTM
allow readers to add themselves to avisible readerlist in the object header at acquire time. Writers must
abort all readers on the list before acquiring the object. Readers ensure consistency by checking the status
word in their transaction descriptor on everyopenoperation. Unfortunately, the constant overhead of reader
list manipulation is fairly high. In practice, incremental validation is cheaper for small transactions (as in
Counter); visible readers are cheaper for large transactions with heavy contention; neither clearly wins in
the common middle ground [30]. RSTM supports both options; the results in Figures 2 and 3 were collected
using incremental validation.

3.4 Hardware Support

RTM uses hardware support to address the memory management and validation overhead of software TM.
In so doing it eliminates the top two components of the overhead bars shown in Figure 3.

1. Our TMESI protocol allows transactional data, buffered in the local cache, to be hidden from the
normal coherence protocol. This buffering allows RTM, in the common case, to avoid allocating and

9

initializing a new copy of the object in software. Like most hardware TM proposals, RTM keeps only
the new version of speculatively modified data in the local cache. The old version is written through
to memory if necessary at the time of the first transactional store. The new version becomes visible
to the coherence protocol when and if the transaction commits. Unlike most hardware proposals (but
like TCC), RTM allows data to be speculatively read or even written when it is also being written
by another concurrent transaction. TCC ensures, in hardware, that only one of the transactions will
commit. RTM relies on software for this purpose.

2. TMESI also allows selected metadata, buffered in the local cache, to be tagged in such a way that
invalidation will cause an immediate abort of the current transaction. This mechanism allows the RTM
software to guarantee that a transaction never works with inconsistent data, without incurring the cost
of incremental validation or visible readers (as in software TM), without requiring global consensus
for hardware commit (as in TCC), and without precluding read-write and write-write speculation.

To facilitate atomic updates to multiword metadata (which would otherwise need to be dynamically
allocated, and accessed through a one-word pointer), RTM also provides a wide compare-and-swap, which
atomically inspects and updates several adjacent locations in memory.

A transaction could, in principle, use hardware support for certain objects and not for others. For the sake
of simplicity, RTM currently takes an all-or-nothing approach: a transaction initially attempts to leverage
TMESI support for write buffering and conflict detection of all of its accessed objects. If it aborts for
any reason, it retries as a software transaction. Aborts may be caused by conflict with other transactions
(detected through invalidation of tagged metadata), by the loss of buffered state to overflow or insufficient
associativity, or by executing theAbort instruction. (The kernel executesAbort on every context switch.)

In the terminology of Table 1, RTM is object-based and obstruction-free. It can use an arbitrary out-
of-band contention manager; by default we use the “Polka” policy of Scherer et al. [30]. Like ASTM,
RTM adapts dynamically between lazy and eager acquire. At acquire time it broadcast-invalidates hardware
readers by writing to metadata they haveALoaded. It invalidates software readers one-by-one; these must
have previously registered themselves in the object header.

4 TMESI Hardware Details

In this section, we discuss the details of hardware acceleration for common-case transactions, which have
bounded time and space requirements. In order, we consider ISA extensions, the TMESI protocol itself, and
support for conflict detection and immediate aborts. We conclude with an example.

4.1 ISA Extensions

RTM requires eight new hardware instructions, listed in Table 2.
The SetHandlerinstruction indicates the address to which control should branch in the event of an

immediate abort (to be discussed at greater length in Section 4.3). This instruction could be executed at the
beginning of every transaction, or, with OS kernel support, on every heavyweight context switch.

The TLoad and TStoreinstructions aretransactionalloads and stores. All accesses to transactional
data are transformed (via compiler support) to use these instructions. They move the target line to one of
five transactional statesin the local cache. Transactional states are special in two ways: (1) they are not
invalidated by read-exclusive requests from other processors; (2) if the line has been the subject of aTStore,
then they do not supply data in response to read or read-exclusive requests. More detail on state transitions
appears in Section 4.2.

10

Instruction Description
SetHandler (H) Indicate address of user-level abort handler
TLoad (A, R) Transactional Load from A into R
TStore (R, A) Transactional Store from R into A
ALoad (A, R) Load A into R; tag “abort on invalidate”
ARelease (A) UntagALoaded line
CAS-Commit (A, O, N) End Transaction
Abort Invoked by transaction to abort itself
Wide-CAS (A, O, N, K) Update K adjacent words atomically

Table 2: ISA Extensions for RTM.

The ALoad instruction supports immediate aborts of remote transactions. When itacquiresa to-be-
written object, RTM performs a nontransactional write to the object’s header. Any reader transaction whose
correctness depends on the consistency of that object will previously have performed anALoadon the header
(at the time of theopen). The read-exclusive message caused by the nontransactional write then serves as a
broadcast notice that immediately aborts all such readers. A similar convention for transaction descriptors
allows hardware transactions to immediately abort software transactions even if those software transactions
don’t have room for all their object headers in the cache (more on this in Section 4.3). In contrast to most
hardware TM proposals, which eagerly abort readers whenever another transaction performs a conflicting
transactional store, TMESI allows RTM to delay acquires when speculative read-write or write-write sharing
is desirable [16].

TheAReleaseinstruction erases the abort-on-invalidate tag of the specified cache line. It can be used for
early release, a software optimization that dramatically improves the performance of certain transactions,
notably those that search large portions of a data structure prior to making a local update [11, 16]. It is also
used by software transactions to release an object header after copying the object’s data.

TheCAS-Commitinstruction performs the usual function of compare-and-swap. In addition, if the CAS
succeeds, transactional lines revert to their corresponding MESI states and begin to respond as usual to
coherence messages. If the CAS fails, then speculatively read lines revert to their corresponding states, but
speculatively written lines are invalidated, and control transfers to the location registered bySetHandler.
In either case, abort-on-invalidate lines are all untagged. The motivation behindCAS-Commitis simple:
software TM systems invariably use a CAS to commit the current transaction; we overload this instruction
to make buffered transactional state once again visible to the coherence protocol.

The Abort instruction clears the transactional state in the cache in the same manner as a failedCAS-
Commit. Its principal use is to implement condition synchronization by allowing a transaction to abort itself
when it discovers that its precondition does not hold. Such a transaction will typically then jump to its abort
handler.Abort is also executed by the scheduler on every context switch.

TheWide-CASinstruction allows a compare-and-swap across multiple contiguous words of a cache line.
If the specified number of memory words at locationA match their “old” values (loaded into contiguous
registers), they are replaced with the “new” values (also loaded into contiguous registers).Wide-CASis
intended for fast update of object headers.

4.2 TMESI Protocol

A central goal of our design has been to maximize software flexibility while minimizing hardware com-
plexity. Like most hardware TM proposals (but unlike TCC or Herlihy & Moss’s original proposal), we use
the processor’s cache to buffer a single copy of each transactional line, and rely on shared lower levels of

11

the memory hierarchy to hold the old values of lines that have been modified but not yet committed. Like
TCC—but unlike most other hardware systems—we permit mutually inconsistent versions of a line to re-
side in different caches. Where TCC requires an expensive global arbiter to resolve these inconsistencies at
commit time, we rely on software to resolve them at acquire time. The validation portion of aCAS-Commit
is a purely local operation that exposes modified lines to subsequent coherence traffic. By contrast, TCC
must broadcast all written lines.

Our protocol requires no bus messages other than those already required for MESI. We add two new
processor messages, PrTRd and PrTWr, to reflectTLoadandTStoreinstructions, respectively, but these are
visible only to the local cache. We also add a “threatened” bus signal (T) analogous to the existing “shared”
signal (S). The T signal serves to warn a reader transaction of the existence of a potentially conflicting
writer. Because the writer’s commit will be a local operation, the reader will have no way to know when or
if it actually occurs. It must therefore make a conservative assumption when it reaches the end of its own
transaction (Until then the line is protected by the software TM protocol).

4.2.1 State transitions

Figure 4 contains a transition diagram for the TMESI protocol. The four states on the left comprise the
traditional MESI protocol. The five states on the right, together with the bridging transitions, comprise the
TMESI additions. Cache lines move from a MESI state to a TMESI state on a transactional read or write.
Once a cache line enters a TMESI state, it stays in the transactional part of the state space until the current
transaction commits or aborts, at which time it reverts to the appropriate MESI state, indicated by the second
(commit) or third (abort) letters of the transactional state name.

TheTSS, TEE, andTMM states behave much like their MESI counterparts. In particular, lines in these
states continue to supply data in response to bus messages. The two key differences are (1) on a PrTWr
we transition toTMI; (2) on a BusRdX (bus read exclusive) we transition toTII . These two states have
special behavior that serves to support speculative read-write and write-write sharing. Specifically,TMI
indicates that a speculative write has occurred on the local processor;TII indicates that a speculative write
has occurred on a remote processor, but not on the local processor.

A TII line must be dropped on either commit or abort, because a remote processor has made speculative
changes which, if committed, would render the local copy stale. No writeback or flush is required, since the
line is not dirty. ATMI line is the complementary side of the scenario. On abort it must be dropped, because
its value was incorrectly speculated. On commit it will be the only valid copy; hence the reversion toM.
Software must ensure that conflicting writers never both commit, and that if a conflicting reader and writer
both commit, the reader does so first from the point of view of program semantics. Lines inTMI state assert
the T signal on the bus in response to BusRd messages. The reading processor then transitions toTII rather
thanTSSor TEE. Processors executing aTStoreinstruction (writing processors) continue to transition to
TMI; only one of the writers will eventually commit, resulting in only one of the caches reverting toM state.
Lines originally inM or TMM state require a writeback on the firstTStoreto ensure that memory has the
latest nonspeculative value.

Among hardware TM systems, only TCC and RTM support read-write and write-write sharing; all the
other schemes mentioned in Sections 1 and 3 use eager conflict detection. By allowing a reader transaction
to commit before a conflicting writer acquires the contended object, RTM permits significant concurrency
between readers and long-running writers. Write-write sharing is more problematic, since only one trans-
action can usually commit, but may be desirable in conjunction with early release [16]. Note that nothing
about the TMESI protocolrequiresread-write or write-write sharing; if the software protocol detects and
resolves conflicts eagerly, theTII andTMI states will simply go unused.

12

BusRd
/Flush

BusRdX
/Flush

PrTWr/Flush

PrTRd/−

PrTRd/−

PrTRd/−

PrTWr/−

PrTRd/−

PrTWr
/BusRdX

PrWr

BusRdX

PrRd/− BusRd
/Flush

PrWr

PrRd

PrRd/−
BusRd/Flush

PrRd

/ BusRdX

PrRd,PrWr/−

PrWr/−

/ BusRd(S)

PrTRd/BusRd(T)

PrTRd/BusRd(S,T)

 −

/BusRdX

/BusRdX

E

M

I

S

PrTWr/−

BusRdX

/Flush
BusRdX

BusRd TMI

TSS

PrTWr

TEE

TMM

TII

PrTWr
/BusRdX

PrTRd/−

/Flush

/Flush’

/Flush’

BusRdX/Flush’

BusRd/Flush

PrTRd,PrTWr,
BusRd,BusRdX/−

BusRdX/Flush’

− −

PrTRd/BusRd(S,T)
 −

MESI States

TMESI States

PrTRd/−

BusRd/Flush’

CAS−Commit

ABORT

PrTRd,BusRdX/−
BusRd/Flush’

/Flush
PrTWr

PrTWr/ BusRdx

/BusRd(S)

Figure 4: TMESI Protocol. Dashed boxes enclose the MESI and TMESI subsets of the state space. All
TMESI lines revert to MESI states in the wake of aCAS-Commitor Abort. Specifically, the 2nd and 3rd
letters of a TMESI state name indicate the MESI state to which to revert on commit or abort, respectively.
Notation on transitions is conventional: the part before the slash is the triggering message; after is the
ancillary action. “Flush” indicates that the cache supplies the requested data; “Flush′” indicates it does so
iff the base protocol prefers cache–cache transfers over memory–cache. When specified, S and T indicate
signals on the “shared” and “threatened” bus lines; an overbar means “not signaled”.

4.2.2 Abort-on-invalidate

In addition to the states shown in Figure 4, the TMESI protocol providesAM, AE, andASstates. TheA
bit is set in response to anALoad instruction, and cleared in response to anARelease, CAS-Commit, or
Abort instruction (each of these requires an additional processor–cache message not shown in Figure 4).
Invalidation or eviction of anAx line aborts the current transaction. If the processor is executing at interrupt
level when an abort occurs, delivery is deferred until the return from interrupt. If the processor is in kernel
mode when the abort is delivered, delivery takes the form of an exception. If the processor is in user mode,
delivery takes the form of a spontaneous subroutine call. The current program counter is pushed on the user
stack, and control transfers to the address specified by the most recentSetHandlerinstruction. If either the
stack pointer or the handler address is invalid, an exception occurs.

13

Tag Array Data Array

T A MESI C/A M/I PAddr

T A MESI C/A M/I State
0 0 0 0 — —
0 0 1 1 0 0

}
I

0 0 0 1 — — S
0 0 1 0 — — E
0 0 1 1 1 —
0 0 1 1 0 1

}
M

1 0 0 0 — — TII
1 0 0 1 — — TSS
1 0 1 0 — — TEE
1 0 1 1 — 0 TMI
1 0 1 1 — 1 TMM
0 1 0 1 — — AS
0 1 1 0 — — AE
0 1 1 1 1 —
0 1 1 1 0 1

}
AM

T Line is (1) / is not (0) transactional
A Line is (1) / is not (0) abort-on-invalidate
MESI 2 bits: I (00), S (01), E (10), or M (11)
C/A Most recent txn committed (1) or aborted (0)
M/I Line is/was in TMM (1) or TMI (0)

Table 3: Tag array encoding. Tags are organized schematically as shown at top, with theT bit used to
selectively enable broadcast on theC/A line. Interpretations of the bits (below right) give rise to 15 valid
encodings of the 12 TMESI states.

ALoads serve three related roles in RTM. First, every transactionALoads its own transaction descriptor
(the word it will eventually attempt toCAS-Commit). If any other transaction aborts it (by CAS-ing its
descriptor toaborted), the first transaction is guaranteed to notice immediately. Second, every hardware
transactionALoads the headers of objects it reads, so it will abort if a writer acquires them. Third, a
software transactionALoads the header of any object it is copying (AReleaseing it immediately afterward),
to ensure the integrity of the copy. Note that a software transaction never requires more than twoALoaded
words at once, and we can guarantee that these are never evicted from the cache.

4.2.3 State tag encoding

All told, a TMESI cache line can be in any of 12 different states: the four MESI states (I, S, E, M), the five
transactional states (TII, TSS, TEE, TMM, TMI), and the three abort-on-invalidate states (AS, AE, AM). For
the sake of fast commits and aborts, we encode these in five bits, as shown in Table 3.

At commit time, if the CAS inCAS-Commitsucceeds, we first broadcast a 1 on the C/A bit line, and
use theT bits to conditionally enable only the tags of transactional lines. Following this we flash-clear the
A andT bits. ForTSS, TMM, TII, andTEE the flash clear alone would suffice, butTMI lines must revert to
M on commit andI on abort. We use theC/A bit to distinguish between these: a line is interpreted as being
in stateM if its MESI bits are 11 and eitherC/A or M/I is set. On Aborts we broadcast 0 on the C/A bit line.

14

4.3 Conflict Detection & Immediate Aborts

Hardware TM systems typically checkpoint processor state at the beginning of a transaction. As soon as
a conflict is noticed, the hardware restarts the losing transaction. Most hardware systems make conflicts
visible as soon as possible; TCC delays detection until commit time. Software systems, by contrast, require
that transactionsvalidatetheir status explicitly, and restart themselves if they have lost a conflict.

The overhead of validation, as we saw in Section 3.3, is one of the dominant costs of software TM.
RTM avoids this overhead byALoading object headers in hardware transactions. When a writer modifies
the header, all conflicting readers are aborted by a single (broadcast) BusRdX. In contrast to most hardware
TM systems, this broadcast happens only at acquire time,notat the first transactional store, allowing flexible
policy.

Unfortunately, nothing guarantees that a software transaction will have all of its object headers in
ALoaded lines. Moreover software validation at the nextopenoperation cannot ensure consistency: be-
cause hardware transactions modify data in place, objects are not immutable, and inconsistency can arise
among words of the same object read at different times. The RTM software therefore makes every software
transaction a visible reader, and arranges for it toALoad its own transaction descriptor. Writers (whether
hardware or software) abort such readers at acquire time, one by one, by writing to their descriptors. In a
similar vein, a software writerALoads the header of any object it needs to clone, to make sure it will receive
an immediate abort if a hardware transaction modifies the object in place during the cloning operation.3

Because RTM detects conflicts based on access to object headers only, correctness for hardware transac-
tions does not require thatTII, TSS, TEE, or TMM lines remain in the cache. These can be freely evicted and
reloaded on demand. Memory always has an up-to-date nonspeculative copy of data, which it returns; lines
in TMI state do not respond to read or write requrests from the bus, thereby allowing both hardware and
software readers to work with the stable nonspeculative copy. When choosing lines for eviction, the cache
preferentially retainsTMI andAx lines. If it must evict one of these, it aborts the current transaction, which
will then retry in software. Other hardware schemes buffer both transactional reads and writes, exerting
much higher pressure on the cache.

The abort delivery mechanism, described in Section 4.2.2, allows both the kernel and user programs
to execute hardware transactions, so long as those transactions complete before control transfers to the
other. The operating system is expected to abort any currently running user-level hardware transaction when
transferring from an interrupt handler into the top half of the kernel. Interrupts handled entirely in the
bottom half (TLB refill, register window overflow) can safely coexist with user-level transactions. Interrupt
handlers themselves cannot make use of transactions. User transactions that take longer than a quantum to
run will inevitably execute in software. With simple statistics gathering, RTM can detect when this happens
repeatedly, and skip the initial hardware attempt.

4.4 Example

Figure 5 illustrates the interactions among three simple concurrent transactions. Only the transactional in-
structions are shown. Numbers indicate the order in which instructions occur. At the beginning of each
transaction, RTM software executes aSetHandlerinstruction, initializes a transaction descriptor (in soft-
ware), andALoads that descriptor. Though theopencalls are not shown explicitly, RTM software also
executes anALoadon each object header at the time of theopenand before the initialTLoador TStore.

Let us assume that initially objects A and B are invalid in all caches. Aty1 transaction T1 performs
a TLoad of object A. RTM software will haveALoaded A’s header into T1’s cache in stateAE (since it

3An immediate abort is not strictly necessary if the cloning operation is simply a bit-wise copy; for this it suffices to double-
check validity after finishing the copy. In object-oriented languages, however, the user can provide a class-specificclone method
that will work correctly only if the object remains internally consistent.

15

1

1

TLoad A

TStore B

Acquire B
CAS-Commit

T1

3

3

TLoad A

TLoad B

CAS-Commit

T3

4

4

5

5

Data
T1 TEE A

AE OH(A)
Tag Data

T1
Tag

AS OH(A)
TII A

DataTag
T2 AS OH(A)

TMI A

Data
T1

Tag
AS OH(A)

AE OH(B)
TMI B

TII A

DataTag
T2 AS OH(A)

TMI A

Data
T1

Tag
AS OH(A)

AS OH(B)
TMI B

TII A

Data
T1

Tag
AS OH(A)

AE OH(B)
TMI B

TII A

DataTag
T2 AS OH(A)

TMI A

DataTag
T3 AS OH(A)

TII A
DataTag

T2 AS OH(A)
TMI A

Data
T3

Tag
AS OH(A)

AS OH(B)
TII B

TII A

CAS-Commit
Acquire A

TStore A

T2

2

2

E1 E2 E3

Figure 5: Execution of Transactions. Top: interleaving of accesses in three transactions, with lazy acquire.
Bottom: Cache tag arrays at various event points. (OH(x) is used to indicate the header of object x.)

is the only cached copy) at the time of theopen. The referenced line of A is then loaded inTEE. When
the store happens in T2 aty2, the line inTEE in T1 sees a BusRdX message and drops toTII. The line
remains valid, however, and T1 can continue to use it until T2 acquires A (thereby aborting T1) or T1 itself
commits. Regardless of T1’s outcome, TheTII line must drop toI to reflect the possibility that a transaction
threatening that line can subsequently commit.

At y3 T1 performs aTStoreto object B. RTM loads B’s header in stateAE at the time of theopen, and
B itself is loaded inTMI, since the write is speculative. If T1 commits, the line will revert toM, making
theTStore’s change permanent. If T1 aborts, the line will revert toI, since the speculative value will at that
point be invalid.

At y4 transaction T3 performs aTLoadon object A. Since T2 holds the line inTMI, it asserts the T
signal in response to T3’s BusRd message. This causes T3 to load the line inTII, giving it access only
until it commits or aborts (at which point it loses the protection of software conflict detection). Prior to the
TLoad, RTM software will haveALoaded A’s header into T3’s cache during theopen, causing T2 to assert
the S signal and to drop its own copy of the header toAS. If T2 acquires A while T3 is active, its BusRdX
on A’s header will cause an invalidation in T3’s cache and thus an immediate abort of T3.

Event y5 is similar to y4, and B is also loaded inTII .

We now consider the ordering of events~E1 , ~E2 , and ~E3 .

16

1. E1 happens before E2 and E3: When T1 acquires B’s header, it invalidates the line in T3’s cache.
This causes T3 to abort. T2, however, can commit. When it retries, T3 will see the new value of A
from T1’s commit.

2. E2 happens before E1 and E3: When T2 acquires A’s header, it aborts both T1 and T3.

3. E3 happens before E1 and E2: Since T3 is only a reader of objects, and has not been invalidated by
writer acquires, it commits. T2 can similarly commit, if E1 happens before E2, since T1 is a reader
of A. Thus, the orderingE3, E1, E2will allow all three transactions to commit. TCC would also
admit this scenario, but none of the other hardware schemes mentioned in Sections 1 or 3 would do
so, because of eager conflict detection. RTM enforces consistency with a single BusRdX per object
header. In contrast, TCC must broadcast all speculatively modified lines at commit time.

5 RTM Software

In the previous section we presented the TMESI hardware, which enables flexible policy making in software.
With a few exceptions related to the interaction of hardware and software transactions, policy is set entirely
in software, with hardware serving simply to speed the common case. Transactions that overflow hardware
due to the size or associativity of the cache are executed entirely in software, while ensuring interoperability
with concurrent hardware transactions. Software transactions are essentiallyunboundedin space and time.

In the subsections below we first describe the metadata that allows hardware and software transactions to
share a common set of objects, thereby combining fast execution in the common case with unbounded space
in the general case. We then describe mechanisms used to ensure consistency when handling immediate
aborts. Finally, we present context-switching support for transactions with unbounded time.

5.1 Transactions Unbounded in Space

The principal metadata employed by RTM are illustrated in Figure 6. The object header has five main
fields: a pointer to the most recent writer transaction, a serial number, pointers to one or two clones of
the object, and a head pointer for a list of software transactions currently reading the object. (The need
for explicitly visible software readers, explained in Section 4.3, is the principal policy restriction imposed
by RTM. Without such visibility [and immediate aborts] we see no way to allow software transactions to
interoperate with hardware transactions that may modify objects in place.)

The low bit of the transaction pointer in the object header is used to indicate whether the most recent
writer was a hardware or software transaction. If the writer was a software transaction and it has committed,
then the “new” object is current; otherwise the “old” object is current (recall that hardware transactions
make updates in place). Writers acquire a header by updating it atomically with aWide-CASinstruction. To
first approximation, RTM object headers combine DSTM-styleTMObjectandLocatorfields [11].4

Serial numbers allow RTM to avoid dynamic memory management by reusing transaction descriptors.
When starting a new transaction, a thread increments the number in the descriptor. When acquiring an
object, it sets the number in the header to match. If, atopentime, a transaction finds mismatched numbers
in the object header and the descriptor to which it points, it interprets it as if the header had pointed to a
matchingcommitteddescriptor. On abort, a thread must erase the pointers in any headers it has acquired.
As an adaptive performance optimization for read-intensive applications, a reader that finds a pointer to a

4RSTM avoids the need for WCAS by moving much of an object’s metadata into the data object instance, rather than the header.
In particular, it arranges for the newer data object to point to the older [17]. We keep all metadata in the header in RTM to minimize
the need forALoaded cache lines.

17

Reader 1 Reader 2

Serial Number

Status

Txn−1 Descriptor

Single Version

Data Object −

Serial Number

Status

Txn−2 Descriptor

Transaction

Old Object

New Object

Serial Number

Reader List
Software Txn

Serial Number

Status

Serial Number

Status

Txn−1 Descriptor

Old Version

Data Object −
Clone

Txn−2 Descriptor
Software WriterHardware Writer

Object HeaderObject Header

Reader 1 Reader 2

Transaction

Old Object

New Object

Serial Number

Software Txn
Reader List

H

S

H

S

Data Object −

Figure 6: RTM metadata structure. On the left a hardware transaction is in the process of acquiring the
object, overwriting the transaction pointer and serial number fields. On the right a software transaction
will also overwrite the New Object field. If a software transaction acquires an object previously owned
by a committed software transaction, it overwrites〈Old Object, New Object〉 with 〈New Object, Clone〉.
Several software transactions can work concurrently on their own object clones prior toacquiretime, just
as hardware transactions can work concurrently on copies buffered in their caches.

committeddescriptor replaces it with a sentinel value that saves subsequent readers the need to dereference
the pointer.

For hardware transactions, the in-place update of objects and reuse of transaction descriptors elimi-
nate the need for dynamic memory management. Software transactions, however, must still allocate and
deallocate clones and entries for explicit reader lists. For these purposes RTM employs a lightweight, cus-
tom storage manager. In a software transaction, acquisition installs a new data object in the “New Object”
field, erases the pointer to any data objectO that was formerly in that field, and reclaims the space forO.
Immediate aborts ensure that dangling references will never be used.

5.2 Deferred Aborts

While aborts must be synchronous to avoid any possible data inconsistency, there are times when they should
not occur. Most obviously, they need to be postponed whenever a transaction is currently executing RTM
system code (e.g., memory management) that needs to run to completion. Within the RTM library, code
that should not be interrupted is bracketed withBEGIN_NO_ABORT. . .END_NO_ABORTmacros. These
function in a manner reminiscent of the preemption avoidance mechanism of SymUnix [2]:BEGIN_NO_
ABORTincrements a counter, inspected by the standard abort handler installed by RTM. If an abort occurs
when the counter is positive, the handler sets a flag and returns.END_NO_ABORTdecrements the counter.
If it reaches zero and the flag is set, it clears the flag and reinvokes the handler.

Transactions are permitted to perform nontransactional operations for logging, profiling, debugging, or
similar purposes. Occasionally these must be executed to completion (e.g. because they acquire and release
an I/O library lock). For this purpose, RTM makesBEGIN_NO_ABORTandEND_NO_ABORTavailable to
user code.

18

5.3 Transactions Unbounded in Time

To permit transactions of unbounded duration, RTM must ensure that software transactions survive a context
switch, and that they be aware, on wakeup, of any significant events that transpired while they were asleep.
Toward these ends, RTM requires that the scheduler be aware of the location of each thread’s transaction
descriptor, and that for software transactions this descriptor contain, in addition to the information shown
in Figure 6, (1) an indication of whether the transaction is running in hardware or in software, and (2) for
software transactions, the transaction pointer and serial number of any object currently being cloned.

The scheduler performs the following actions.

1. To avoid confusing the state of multiple transactions, the scheduler executes anAbort instruction on
every context switch, thereby clearing both T and A states out of the cache. A software transaction
can resume execution when rescheduled. A hardware transaction, on the other hand, is aborted. The
scheduler modifies its state so that it will wake up in its abort handler when rescheduled.

2. As previously noted, interoperability between hardware and software transactions requires that a soft-
ware transactionALoad its transaction descriptor, so it will notice immediately if aborted by another
transaction. When resuming a software transaction, the scheduler re-ALoads the descriptor.

3. A software transaction may be aborted while it is asleep. At preemption time the scheduler notes
whether the transaction’s status is currentlyactive. On wakeup it checks to see if this has been changed
to aborted. If so, it modifies the thread’s state so that it will wake up in its abort handler.

4. A software transaction mustALoad the header of any object it is cloning. On wakeup the scheduler
checks to see whether that object (if any) is still valid (by comparing the current and saved serial
numbers and transaction pointers). If not, it arranges for the thread to wake up in its handler. If so, it
re-ALoads the header.

These rules suffice to implement unbounded software transactions that interoperate correctly with (bounded)
hardware transactions.

6 Conclusions and Future Work

We have described a transactional memory system, RTM, that uses hardware to accelerate transactions man-
aged by a software protocol. RTM is 100% source-compatible with the RSTM software TM system, pro-
viding users with a gentle migration path from legacy machines. We believe this style of hardware/software
hybrid constitutes the most promising path forward for transactional programming models.

In contrast to previous transactional hardware protocols, RTM

1. requires only one new bus signal, no new bus messages, and no hardware consensus protocol.

2. requires, for fast path operation, that onlyspeculatively writtenlines be buffered in the cache.

3. falls back to software on overflow, or at the direction of the contention manager, thereby accommo-
dating transactions of effectively unlimited size and duration.

4. allows software transactions to interoperate with ongoing hardware transactions.

5. supports immediate aborts of remote transactions, even if their transactional state has overflowed the
cache.

19

6. permits read-write and write-write sharing, when desired by the software protocol.

7. permits “leaking” of information from inside aborted transactions, for logging, profiling, debugging,
and similar purposes.

8. performs contention management entirely in software, enabling the use of adaptive and application-
specific protocols.

We are currently nearing completion of an RTM implementation using the GEMS SIMICS/SPARC-
based simulation infrastructure [19]. Since the cost of metadata management is linear in the number of
objectsopened, it is reasonable to expect rather modest performance differences in comparison to full hard-
ware TM, differences that we expect will be compensated for by flexible policy. In future work, we plan to
explore a variety of topics, including other styles of RTM software (e.g., word-based); nested transactions;
gradual fall-back to software, with ongoing use of whatever fits in cache; context tags for simultaneous
transactions in separate hardware threads; and realistic real-world applications. We also hope to arrange a
(simulated) head-to-head comparison with one or more hardware TM systems.

Acknowledgments

We are grateful to the Scalable Synchronization Group at Sun Microsystems Laboratories for providing
access to the DSTM code, on which ASTM is based, and to the Multifacet group at the University of
Wisconsin–Madison for providing access to the GEMS simulation infrastructure, currently being used to
evaluate RTM.

References

[1] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and S. Lie. Unbounded Transactional Memory.
In Proceedings of the Eleventh International Symposium on High Performance Computer Architecture, pages
316–327, San Francisco, CA, February 2005.

[2] J. Edler, J. Lipkis, and E. Schonberg. Process Management for Highly Parallel UNIX Systems. InProceedings
of the USENIX Workshop on Unix and Supercomputers, Pittsburgh, PA, September 1988.

[3] K. Fraser and T. Harris. Concurrent Programming Without Locks. Submitted for publication, 2004. Available
as research.microsoft.com/˜tharris/drafts/cpwl-submission.pdf.

[4] R. Guerraoui, M. Herlihy, and B. Pochon. Polymorphic Contention Management in SXM. InProceedings of the
Nineteenth International Symposium on Distributed Computing, Cracow, Poland, September 2005.

[5] R. Guerraoui, M. Herlihy, M. Kapalka, and B. Pochon. Robust Contention Management in Software Transac-
tional Memory. InProceedings, Workshop on Synchronization and Concurrency in Object-Oriented Languages,
San Diego, CA, October 2005. In conjunction with OOPSLA’05.

[6] R. Guerraoui, M. Herlihy, and B. Pochon. Toward a Theory of Transactional Contention Managers. InProceed-
ings of the Twenty-Fourth ACM Symposium on Principles of Distributed Computing, Las Vegas, Nevada, August
2005.

[7] L. Hammond, V. Wong, M. Chen, B. Hertzberg, B. Carlstrom, M. Prabhu, H. Wijaya, C. Kozyrakis, and K.
Olukotun. Transactional Memory Coherence and Consistency. InProceedings of the Thirty-First International
Symposium on Computer Architecture, München, Germany, June 2004.

[8] T. Harris and K. Fraser. Language Support for Lightweight Transactions. InOOPSLA 2003 Conference Pro-
ceedings, Anaheim, CA, October 2003.

20

[9] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy. Composable Memory Transactions. InProceedings of the
Tenth ACM Symposium on Principles and Practice of Parallel Programming, Chicago, IL, June 2005.

[10] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-Free Synchronization: Double-Ended Queues as an Ex-
ample. InProceedings of the Twenty-Third International Conference on Distributed Computing Systems, Provi-
dence, RI, May, 2003.

[11] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Software Transactional Memory for Dynamic-sized
Data Structures. InProceedings of the Twenty-Second ACM Symposium on Principles of Distributed Computing,
pages 92–101, Boston, MA, July 2003.

[12] M. P. Herlihy and J. M. Wing. Linearizability: A Correctness Condition for Concurrent Objects.ACM Transac-
tions on Programming Languages and Systems, 12(3):463–492, July 1990.

[13] M. Herlihy. A Methodology for Implementing Highly Concurrent Data Objects.ACM Transactions on Pro-
gramming Languages and Systems, 15(5):745–770, November 1993.

[14] M. Herlihy and J. E. Moss. Transactional Memory: Architectural Support for Lock-Free Data Structures. In
Proceedings of the Twentieth International Symposium on Computer Architecture, pages 289–300, San Diego,
CA, May 1993. Expanded version available as CRL 92/07, DEC Cambridge Research Laboratory, December
1992.

[15] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hybrid Transactional Memory. InProceedings
of the Eleventh ACM Symposium on Principles and Practice of Parallel Programming, New York, NY, March
2006.

[16] V. J. Marathe, W. N. Scherer III, and M. L. Scott. Adaptive Software Transactional Memory. InProceedings of
the Nineteenth International Symposium on Distributed Computing, Cracow, Poland, September 2005.

[17] V. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. N. Scherer III, and M. L. Scott. Lowering
the Overhead of Software Transactional Memory. TR 893, Department of Computer Science, University of
Rochester, March 2006. Condensed version submitted for publication.

[18] J. F. Mart́ınez and J. Torrellas. Speculative Synchronization: Applying Thread-Level Speculation to Explic-
itly Parallel Applications. InProceedings of the Tenth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 18–29, San Jose, CA, October 2002.

[19] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D.
Hill, and D. A. Wood. Multifacet’s General Execution-driven Multiprocessor Simulator (GEMS) Toolset. In
ACM SIGARCH Computer Architecture News, September 2005.

[20] M. M. Michael. Scalable Lock-Free Dynamic Memory Allocation. InProceedings of the SIGPLAN 2004
Conference on Programming Language Design and Implementation, pages 35–46, Washington, DC, June 2004.

[21] M. M. Michael and M. L. Scott. Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue
Algorithms. InProceedings of the Fifteenth ACM Symposium on Principles of Distributed Computing, pages
267–275, Philadelphia, PA, May 1996.

[22] M. Moir. Hybrid Transactional Memory. Unpublished manuscript, Sun Microsystems Laboratories, Burlington,
MA, July 2005.

[23] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood. LogTM: Log-based Transactional Memory.
In Proceedings of the Twelfth International Symposium on High Performance Computer Architecture, Austin,
TX, February 2006.

[24] E. Moss and T. Hosking. Nested Transactional Memory: Model and Preliminary Architecture Sketches. In
Proceedings, Workshop on Synchronization and Concurrency in Object-Oriented Languages, San Diego, CA,
October 2005. In conjunction with OOPSLA’05.

[25] R. Rajwar and J. R. Goodman. Speculative Lock Elision: Enabling Highly Concurrent Multithreaded Execution.
In Proceedings of the Thirty-Fourth International Symposium on Microarchitecture, Austin, TX, December 2001.

21

[26] R. Rajwar and J. R. Goodman. Transactional Lock-Free Execution of Lock-Based Programs. InProceedings
of the Tenth International Conference on Architectural Support for Programming Languages and Operating
Systems, pages 5–17, San Jose, CA, October 2002.

[27] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing Transactional Memory. InProceedings of the Thirty-Second
International Symposium on Computer Architecture, Madison, WI, June 2005.

[28] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and B. Hertzberg. McRT-STM: A High Performance
Software Transactional Memory System for a Multi-Core Runtime. InProceedings of the Eleventh ACM Sym-
posium on Principles and Practice of Parallel Programming, New York, NY, March 2006.

[29] W. N. Scherer III and M. L. Scott. Contention Management in Dynamic Software Transactional Memory. In
Proceedings of the ACM PODC Workshop on Concurrency and Synchronization in Java Programs, St. John’s,
NL, Canada, July 2004.

[30] W. N. Scherer III and M. L. Scott. Advanced Contention Management for Dynamic Software Transactional
Memory. InProceedings of the Twenty-Fourth ACM Symposium on Principles of Distributed Computing, Las
Vegas, NV, July 2005.

[31] N. Shavit and D. Touitou. Software Transactional Memory.Distributed Computing, 10(2):99–116, February
1997. Originally presented at theFourteenth ACM Symposium on Principles of Distributed Computing, August
1995.

[32] H. Sundell and P. Tsigas. NOBLE: A Non-Blocking Inter-Process Communication Library. InProceedings
of the Sixth Workshop on Languages, Compilers, and Run-time Systems for Scalable Computers, Washington,
DC, March 2002. Also TR 2002-02, Chalmers University of Technology and Göteborg University, G̈oteborg,
Sweden.

[33] R. K. Treiber. Systems Programming: Coping with Parallelism. RJ 5118, IBM Almaden Research Center, April
1986.

[34] A. Welc, S. Jagannathan, and A. L. Hosking. Transactional Monitors for Concurrent Objects. InProceedings of
the Eighteenth European Conference on Object-Oriented Programming, pages 519–542, June 2004.

22

