
Scalable Synchronous Queues ∗

William N. Scherer III
University of Rochester

scherer@cs.rochester.edu

Doug Lea
SUNY Oswego

dl@cs.oswego.edu

Michael L. Scott
University of Rochester
scott@cs.rochester.edu

Abstract
We present two new nonblocking and contention-free implementa-
tions of synchronous queues, concurrent transfer channels in which
producers wait for consumers just as consumers wait for producers.
Our implementations extend our previous work in dual queues and
dual stacks to effect very high-performance handoff.

We present performance results on 16-processor SPARC and 4-
processor Opteron machines. We compare our algorithms to com-
monly used alternatives from the literature and from the Java SE 5.0
class java.util.concurrent.SynchronousQueue both directly in syn-
thetic microbenchmarks and indirectly as the core of Java’s Thread-
PoolExecutor mechanism (which in turn is the core of many Java
server programs). Our new algorithms consistently outperform the
Java SE 5.0 SynchronousQueue by factors of three in unfair mode
and 14 in fair mode; this translates to factors of two and ten for the
ThreadPoolExecutor. Our synchronous queues have been adopted
for inclusion in Java 6.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming

General Terms algorithms, performance, experimentation

Keywords nonblocking synchronization, dual data structures,
synchronous queue, dual stack, dual queue, lock freedom, con-
tention freedom

1. Scalable Synchronous Queues
A synchronous queue (perhaps better known as a “synchronous
channel”) is one in which each producer presenting an item (via a
put operation) must wait for a consumer to take this item, and vice
versa. For decades, synchronous queues have played a prominent
role in both the theory and practice of concurrent programming.
They constitute the central synchronization primitive of Hoare’s
CSP [8] and of languages derived from it, and are closely related
to the rendezvous of Ada. They are also widely used in message-
passing software and in hand-off designs [2].

Unfortunately, the design-level tractability of synchronous
queues has often come at the price of poor performance. “Text-
book” algorithms for implementing synchronous queues contain a

∗ This work was supported in part by NSF grants numbers EIA-0080124,
CCR-0204344, and CNS-0411127, and by financial and equipment grants
from Sun Microsystems Laboratories.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPoPP’06 March 29–31, 2006, New York, New York, USA.
Copyright c© 2006 ACM 1-59593-189-9/06/0003. . . $5.00.

series of potential contention or blocking points in every put or
take. (We consider in this paper only those synchronous queues
operating within a single multithreaded program; not across multi-
ple processes or distributed nodes.) For example, Listing 1 shows
one of the most commonly used implementations, due to Han-
son [3], which uses three separate semaphores.

Such heavy synchronization burdens are especially significant
on contemporary multiprocessors and their operating systems, in
which the blocking and unblocking of threads tend to be very
expensive operations. Moreover, even a series of uncontended
semaphore operations usually requires enough costly atomic and
barrier (fence) instructions to incur substantial overhead.

It is also difficult to extend this and other “classic” synchronous
queue algorithms to support other common operations. These in-
clude poll, which takes an item only if a producer is already
present, and offer which fails unless a consumer is waiting. Simi-
larly, many applications require the ability to time out if produc-
ers or consumers do not appear within a certain patience inter-
val or if the waiting thread is asynchronously interrupted. One of
the java.util.concurrent.ThreadPoolExecutor implementations uses
all of these capabilities: Producers deliver tasks to waiting worker
threads if immediately available, but otherwise create new worker
threads. Conversely, worker threads terminate themselves if no
work appears within a given keep-alive period (or if the pool is
shut down via an interrupt).

Additionally, applications using synchronous queues vary in
their need for fairness: Given multiple waiting producers, it may
or may not be important to an application whether the one waiting
the longest (or shortest) will be the next to pair up with the next
arriving consumer (and vice versa). Since these choices amount to
application-level policy decisions, algorithms and implementations

00 public class HansonSQ<E> {
01 E item = null;
02 Semaphore sync = new Semaphore(0);
03 Semaphore send = new Semaphore(1);
04 Semaphore recv = new Semaphore(0);
05
06 public E take() {
07 recv.acquire();
08 E x = item;
09 sync.release();
10 send.release();
11 return x;
12 }
13
14 public void put(E x) {
15 send.acquire();
16 item = x;
17 recv.release();
18 sync.acquire();
19 }
20 }

Listing 1. Hanson’s synchronous queue.

should minimize imposed constraints. For example, while fairness
is often considered a virtue, a thread pool normally runs faster
if the most-recently-used waiting worker thread usually receives
incoming work, due to footprint retained in the cache and VM
system.

In this paper we present synchronous queue algorithms that
combine a rich programming interface with very low intrinsic over-
head. More specifically, our algorithms avoid all blocking other
than that which is intrinsic to the notion of synchronous handoff:
A producer thread must wait until a consumer appears (and vice-
versa), but there is no other way for one thread’s delay to impede
another’s progress. We describe two algorithmic variants: a fair al-
gorithm that ensures strict FIFO ordering and an unfair algorithm
that makes no guarantees about ordering (but is actually based on a
LIFO stack). Section 2 of this paper presents the background for
our approach. Section 3 describes the algorithms and Section 4
presents empirical performance data. We conclude in Section 5 and
discuss potential extensions to this work.

2. Background
2.1 Nonblocking Synchronization
In contrast to lock-based implementations of concurrent data struc-
tures, nonblocking implementations never require a call to a total
method (one whose precondition is simply true) to wait for the
execution of any other method. Linearizability [6] is the standard
technique for demonstrating that a nonblocking implementation of
an object is correct (i.e., that it maintains object invariants). Infor-
mally, linearizability “provides the illusion that each operation. . .
takes effect instantaneously at some point between its invocation
and its response” [6, abstract]. Orthogonally, nonblocking imple-
mentations may provide guarantees of various strength regarding
the progress of method calls. In a wait-free implementation, every
contending thread is guaranteed to complete its method call within
a bounded number of its own execution steps [7]. In a lock-free im-
plementation, some contending thread is guaranteed to complete its
method call within a bounded number of steps (from any thread’s
point of view) [7]. In an obstruction-free implementation, a thread
is guaranteed to complete its method call within a bounded number
of steps in the absence of contention, i.e. if no other threads execute
competing methods concurrently [5].

2.2 Dual Data Structures
In traditional nonblocking implementations of concurrent objects,
every method is total: It has no preconditions that must be satis-
fied before it can complete. Operations that might normally block
before completing, such as dequeuing from an empty queue, are
generally totalized to simply return a failure code when their pre-
conditions are not met. By calling the totalized method in a loop
until it succeeds, one can simulate the partial operation. This simu-
lation, however, doesn’t necessarily respect our intuition for object
semantics. For example, consider the following sequence of events
for threads A, B, C, and D:

A calls dequeue
B calls dequeue
C enqueues a 1
D enqueues a 2
B’s call returns the 1
A’s call returns the 2

If thread A’s call to dequeue is known to have started before
thread B’s call, then intuitively, we would think that A should get
the first result out of the queue. Yet, with the call-in-a-loop idiom,
ordering is simply a function of which thread happens to try a total-
ized dequeue operation first once data becomes available. Further,

each invocation of the totalized method introduces performance-
degrading contention for memory–interconnect bandwidth.

As an alternative, suppose we could register a request for a
handoff partner. Inserting this reservation could be done in a non-
blocking manner, and checking to see whether a partner has arrived
to fulfill our reservation could consist of reading a boolean flag
in the request data structure. In our treatment of dual data struc-
tures [17, 19], objects may contain both data and reservations. We
divide partial methods into separate, first-class request and follow-
up operations, each of which has its own invocation and response.
A total queue, for example, would provide dequeue request and
dequeue followup methods. By analogy with Lamport’s bakery
algorithm [10], the request operation returns a unique ticket that
represents the reservation and is then passed as an argument to the
follow-up method. The follow-up, for its part, returns either the
desired result (if one is matched to the ticket) or, if the method’s
precondition has not yet been satisfied, an error indication.

Given standard definitions of well-formedness, a thread t that
wishes to execute a partial method p must first call p request
and then call p followup in a loop until it succeeds. This is
very different from calling a traditional “totalized” method until
it succeeds: Linearization of distinguished request operations is the
hook that allows object semantics to address the order in which
pending requests will be fulfilled. Moreover unsuccessful follow-
ups, unlike unsuccessful calls to totalized methods, can easily be
designed to avoid bus or memory contention.

For programmer convenience, we provide demand methods that
wait until they can return successfully. Our implementations use
both busy-wait spinning and scheduler-based suspension to effect
waiting in threads whose preconditions are not met.

When reasoning about progress, we must deal with the fact that
a partial method may wait for an arbitrary amount of time (poten-
tially performing an arbitrary number of unsuccessful follow-ups)
before its precondition is satisfied. Clearly it is desirable that re-
quests and follow-ups be nonblocking. In practice, good system
performance will also typically require that unsuccessful follow-
ups not interfere with progress in other threads. We define a con-
current data structure as contention-free if none of its follow-up op-
erations performs more than a constant number of remote memory
accesses across all unsuccessful invocations with the same request
ticket. On a cache-coherent machine that can cache remote mem-
ory locations, an access by thread t within operation o is said to be
remote if it writes to memory that may (in some execution) be read
or written by threads other than t more than a constant number of
times in the interval between o’s invocation and return, or if it reads
memory that may (in some execution) be written by threads other
than t more than a constant number of times in that interval. On a
non-cache-coherent machine, an access by thread t is also remote
if it refers to memory that t itself did not allocate. Compared to
the local-spin property [14], contention freedom allows operations
to block in ways other than busy-wait spinning; in particular, it al-
lows other actions to be performed while waiting for a request to
be satisfied.

2.3 Synchronous Queue Semantics
We model a fair synchronous queue Q as a tuple (D, E, r̂, ŝ, M),
where D = {rd0 , . . . , rdi} is a set of unmatched dequeue requests;
E = {(ve0 , se0), . . . , (vej , sej)} is a set of unmatched enqueue
requests; r̂ ∈ N indicates the number of dequeue reserve
operations that have completed; ŝ ∈ N indicates the number
of enqueue reserve operations that have completed; and M =
{(rm0 , vn0 , sn0), . . . , (rmk , vnk , snk)} is a set of matched en-
queue/dequeue pairs. Initially Q = (∅, ∅, 1, 1, ∅).

The operations enqueue reserve, enqueue followup,
enqueue abort, dequeue reserve, dequeue followup, and

datum dequeue(SynchronousQueue Q) {
reservation r = Q.dequeue_reserve();
do {

datum d = Q.dequeue_followup(r);
if (failed != d) return d;
/* else delay -- spinning and/or scheduler-based */

while (!timed_out());
if (Q.dequeue_abort(r)) return failed;
return Q.dequeue_followup(r);

}

Listing 2. Combined operations: dequeue pseudocode. enqueue
is symmetric.

dequeue abort, with arguments as shown below, induce the fol-
lowing state transitions on Q, with the indicated return values.
These transitions ensure that at all times either D = ∅ or E = ∅.

• enqueue reserve(v̇): If D = ∅, changes Q to be (∅, E ∪
{(v̇, ŝ)}, r̂, ŝ + 1, M). Otherwise, changes Q to be (D r
{rdt}, ∅, r̂, ŝ+1, M ∪{(rdt , v̇, ŝ)}), where ∀r ∈ D, rdt ≤ r.
In either case, returns ŝ.

• enqueue followup(ṡ): If (r, v, ṡ) ∈ M for some r and v,
changes Q to be (D, E, r̂, ŝ, M r{(r, v, ṡ)}∪{(r, v, 0)}) and
returns true . Otherwise, leaves Q unchanged and returns false .

• enqueue abort(ṡ): If (v, ṡ) ∈ E for some v, changes Q to be
(D, E r {(v, ṡ)}, r̂, ŝ, M) and returns true . Otherwise, leaves
Q unchanged and returns false .

• dequeue reserve(): If E = ∅, changes Q to be (D ∪
{r̂}, ∅, r̂ + 1, ŝ, M). Otherwise, changes Q to be (∅, E r
{(vet , set)}, r̂ + 1, ŝ, M ∪ {(r̂, vet , set)}), where ∀(v, s) ∈
E, set ≤ s. In either case, returns r̂.

• dequeue followup(ṙ): If (ṙ, v, s) ∈ M for some v and s,
changes Q to be (D, E, r̂, ŝ, M r {(ṙ, v, s)} ∪ {(0, v, s)})
and returns v. Otherwise, leaves Q unchanged and returns the
distinguished value failed .

• dequeue abort(ṙ): If ṙ ∈ D, changes Q to be (D r
{ṙ}, E, r̂, ŝ, M) and returns true . Otherwise leaves Q un-
changed and returns false .

As mentioned in Section 2.2, we combine dequeue reserve()
and dequeue followup() into a single demand operation that
operates as shown in Listing 2.

An unfair synchronous queue has the same semantics, except
that enqueue reserve and dequeue reserve can “partner” with
an arbitrary request, not necessarily the one with the lowest se-
quence number. Our use of the dual stack as the basis for our unfair
synchronous queue, and its consequent strict LIFO semantics, is
stronger than is strictly necessary for this specification.

An unabortable synchronous queue follows the same semantics
as the abortable queue described here, except that it does not
support the enqueue abort or dequeue abort operations.

2.4 Memory Model
The algorithms and code we present in this paper assume com-
pliance with the Java Memory Model [13], which entails “Store-
Load” fences for compareAndSet and volatile writes, plus other
ordering constraints that are similar to the SPARC TSO and x86
PO models, and requires no further explicit barrier instructions on
most processors. Adapting these algorithms to other memory mod-
els consists of inserting appropriate memory barriers.

3. Algorithm Descriptions
In this section we discuss various implementations of synchronous
queues. We start with classic algorithms that have seen extensive

00 public class NaiveSQ<E> {
01 boolean putting = false;
02 E item = null;
03
04 public synchronized E take() {
05 while (item == null)
06 wait();
07 E e = item;
08 item = null;
09 notifyAll();
10 return e;
11 }
12
13 public synchronized void put(E e) {
14 if (e == null) return;
15 while (putting)
16 wait();
17 putting = true;
18 item = e;
19 notifyAll();
20 while (item != null)
21 wait();
22 putting = false;
23 notifyAll();
24 }
25 }

Listing 3. Naive synchronous queue.

use in production software, then we review newer implementations
that improve upon them. Finally, we describe the implementation
of our new algorithms.

3.1 Classic Synchronous Queues
Perhaps the simplest implementation of synchronous queues is the
naive monitor-based algorithm that appears in Listing 3. In this im-
plementation, a single monitor serializes access to a single item and
to a putting flag that indicates whether a producer has currently
supplied data. Producers wait for the flag to be clear (lines 15–16),
set the flag (17), insert an item (18), and then wait until a consumer
takes the data (20–21). Consumers await the presence of an item
(05–06), take it (07), and mark it as taken (08) before returning.
At each point where their actions might potentially unblock an-
other thread, producer and consumer threads awaken all possible
candidates (09, 20, 24). Unfortunately, this approach results in a
number of wake-ups quadratic in the number of waiting producer
and consumer threads; coupled with the high cost of blocking or
unblocking a thread, this results in poor performance.

Hanson’s synchronous queue (Listing 1) improves upon the
naive approach by using semaphores to target wake-ups to only
the single producer or consumer thread that an operation has un-
blocked. However, as noted in Section 1, it still incurs the overhead
of three separate synchronization events per transfer for each of the
producer and consumer; further, it normally blocks at least once per
put or take operation. It is possible to streamline some of these
synchronization points in common execution scenarios by using a
fast-path acquire sequence [11]. Such a version appears in early
releases of the dl.util.concurrent package, which later evolved into
java.util.concurrent. However, such minor incremental changes im-
prove performance by only a few percent in most applications.

3.2 The Java SE 5.0 Synchronous Queue
The Java SE 5.0 synchronous queue (Listing 4) uses a pair of
queues (in fair mode; stacks for unfair mode) to separately hold
waiting producers and consumers. This approach echoes the sched-
uler data structures of Anderson et al [1]; it improves considerably
on semaphore-based approaches. First, in the case where a con-
sumer finds a waiting producer or a producer finds a waiting con-
sumer, the new arrival needs to perform only one synchronization

00 public class Java5SQ<E> {
01 ReentrantLock qlock = new ReentrantLock();
02 Queue waitingProducers = new Queue();
03 Queue waitingConsumers = new Queue();
04
05 static class Node
06 extends AbstractQueuedSynchronizer {
07 E item;
08 Node next;
09
10 Node(Object x) { item = x; }
11 void waitForTake() { /* (uses AQS) */ }
12 E waitForPut() { /* (uses AQS) */ }
13 }
14
15 public E take() {
16 Node node;
17 boolean mustWait;
18 qlock.lock();
19 node = waitingProducers.pop();
20 if ((mustWait = (node == null)))
21 node = waitingConsumers.push(null);
22 qlock.unlock();
23
24 if (mustWait)
25 return node.waitForPut();
26 else
27 return node.item;
28 }
29
30 public void put(E e) {
31 Node node;
32 boolean mustWait;
33 qlock.lock();
34 node = waitingConsumers.pop();
35 if ((mustWait = (node == null)))
36 node = waitingProducers.push(e);
37 qlock.unlock();
38
39 if (mustWait)
40 node.waitForTake();
41 else
42 node.item = e;
43 }
44 }

Listing 4. The Java SE 5.0 SynchronousQueue class, fair (queue-
based) version. The unfair version uses stacks instead of queues,
but is otherwise identical. (For clarity, we have omitted timeout,
details of the way in which AbstractQueuedSynchronizers are used,
and code to generalize waitingProducers and waitingConsumers to
either stacks or queues.)

operation, acquiring a lock that protects both queues (line 18 or 33).
Even if no counterpart is waiting, the only additional synchroniza-
tion required is to await one (25 or 40). A complete handoff thus
requires only three synchronization operations, compared to six in-
curred by Hanson’s algorithm. In particular, using a queue instead
of a semaphore allows producers to publish data items as they ar-
rive (line 36) instead of having to first wake up from blocking on a
semaphore; consumers need not wait.

3.3 Combining Dual Data Structures with
Synchronous Queues
A key limitation of the Java SE 5.0 SynchronousQueue class is its
reliance on a single lock to protect both queues. Coarse-grained
synchronization of this form is well known for introducing serial-
ization bottlenecks; by creating nonblocking implementations, we
eliminate a major impediment to scalability.

Our new algorithms add support for timeout and for bidirec-
tional synchronous waiting to our previous nonblocking dual queue
and dual stack algorithms [17]. We describe the new algorithms
in three steps. First, Section 3.3.1 reviews our earlier dual stack

00 class Node { E data; Node next; ... }
01
02 void enqueue(E e) {
03 Node offer = new Node(e, Data);
04
05 while (true) {
06 Node t = tail;
07 Node h = head;
08 if (h == t || !t.isRequest()) {
09 Node n = t.next;
10 if (t == tail) {
11 if (null != n) {
12 casTail(t, n);
13 } else if (t.casNext(n, offer)) {
14 casTail(t, offer);
15 while (offer.data == e)
16 /* spin */;
17 h = head;
18 if (offer == h.next)
19 casHead(h, offer);
20 return;
21 }
22 }
23 } else {
24 Node n = h.next;
25 if (t != tail || h != head || n == null)
26 continue; // inconsistent snapshot
27 boolean success = n.casData(null, e);
28 casHead(h, n);
29 if (success)
30 return;
31 }
32 }
33 }

Listing 5. Synchronous dual queue: Spin-based enqueue;
dequeue is symmetric except for the direction of data transfer.
(For clarity, code to support timeout is omitted.)

and dual queue and presents the modifications needed to make
them synchronous. Second, Section 3.3.2 sketches the manner in
which we add timeout support. Finally, Section 3.3.3 discusses ad-
ditional pragmatic issues. Throughout the discussion, we present
fragments of code to illustrate particular features; full source
is available online at http://gee.cs.oswego.edu/cgi-bin/
viewcvs.cgi/jsr166/src/main/java/util/concurrent/
SynchronousQueue.java.

3.3.1 Basic Synchronous Dual Queues and Stacks
Our dual stack and dual queue algorithms [17] already block when
a consumer arrives before a producer; extending them to support
synchronous handoff is thus a matter of arranging for producers to
block until a consumer arrives. We can do this in the synchronous
dual queue by simply having a producer block on its data pointer
until a consumer updates it to null (implicitly claiming the data).
For the synchronous dual stack, fulfilling requests extend our “an-
nihilating” approach by pairing with data at the top of the stack just
as fulfilling data nodes pair with requests.

The Synchronous Dual Queue
Listing 5 shows the enqueue method of the synchronous dual
queue. (Except for the direction of data transfer, dequeue is sym-
metric.) To enqueue, we first read the head and tail pointers of the
queue (lines 06–07). From here, there are two main cases. The first
occurs when the queue is empty (h == t) or contains data (line
08). We read the next pointer for the tail-most node in the queue
(09). If all values read are mutually consistent (10) and the queue’s
tail pointer is current (11), we attempt to insert our offering at the
tail of the queue (13–14). If successful, we wait until a consumer
signals that it has claimed our data (15–16), which it does by up-
dating our node’s data pointer to null. Then we help remove our

Head Tail

...
Dummy

Item

Reserv. Reserv.Cancel

A

B

C

D

C'Item

Figure 1. Synchronous dual queue: Enqueuing when reservations
are present.

node from the head of the queue and return (18–20). The reserva-
tion linearization point for this code path occurs at line 13 when
we successfully insert our offering into the queue; a successful fol-
lowup linearization point occurs when we notice at line 15 that our
data has been taken.

The other case occurs when the queue consists of reservations
(requests for data), and is depicted in Figure 1 (previous page). (We
don’t separately depict the first case because except for waiting
for a consumer to claim its datum, it is essentially the same as
in the original Michael & Scott queue [15].) In this case, after
originally reading the head node (step A), we read its successor
(line 24/step B) and verify consistency (25). Then, we attempt
to supply our data to the head-most reservation (27/C). If this
succeeds, we dequeue the former dummy node (28/D) and return
(30). If it fails, we need to go to the next reservation, so we dequeue
the old dummy node anyway (28) and retry the entire operation (32,
05). The reservation linearization point for this code path occurs
when we successfully supply data to a waiting consumer at line 27;
the followup linearization point occurs immediately thereafter.

The Synchronous Dual Stack
Code for the synchronous dual stack’s push operation appears
in Listing 6. (Except for the direction of data transfer, pop is
symmetric.) We begin by reading the node at the top of the stack
(line 06). The three main conditional branches (beginning at lines
07, 17, and 26) correspond to the type of node we find.

The first case occurs when the stack is empty or contains only
data (line 07). We attempt to insert a new datum (09), and wait
for a consumer to claim that datum (11–12) before returning. The
reservation linearization point for this code path occurs when we
push our datum at line 09; a successful followup linearization point
occurs when we notice that our data has been taken at line 11.

The second case occurs when the stack contains (only) requests
for data (17). We attempt to place a fulfilling datum on the top
of the stack (19); if we succeed, any other thread that wishes to
perform an operation must now help us fulfill the request before
proceeding to its own work. We then read our way down the stack
to find the successor node to the reservation we’re fulfilling (21–22)
and mark the reservation fulfilled (23). Note that our CAS could
fail if another thread helps us and performs it first. Finally, we pop
both the reservation and our fulfilling node from the stack (24) and
return. The reservation linearization point for this code path is at
line 19, when we push our fulfilling datum above a reservation; the
followup linearization point occurs immediately thereafter.

The remaining case occurs when we find another thread’s ful-
filling datum or request node (26) at the top of the stack. We must
complete the pairing and annihilation of the top two stack nodes

00 class Node { E data; Node next, match; ... }
01
02 void push(E e) {
03 Node f, d = new Node(e, Data);
04
05 while (true) {
06 Node h = head;
07 if (null == h || h.isData()) {
08 d.next = h;
09 if (!casHead(h, d))
10 continue;
11 while (d.match == null)
12 /* spin */;
13 h = head;
14 if (null != h && d == h.next)
15 casHead(h, d.next);
16 return;
17 } else if (h.isRequest()) {
18 f = new Node(e, Data | Fulfilling, h);
19 if (!casHead(h, f))
20 continue;
21 h = f.next;
22 Node n = h.next;
23 h.casMatch(null, f);
24 casHead(f, n);
25 return;
26 } else { // h is fulfilling
27 Node n = h.next;
28 Node nn = n.next;
29 n.casMatch(null, h);
30 casHead(h, nn);
31 }
32 }
33 }

Listing 6. Synchronous dual stack: Spin-based annihilating push;
pop is symmetric except for the direction of data transfer. (For
clarity, code for timeout is omitted.)

Top

Reserv.

Top

Reserv.

Top

Reserv.

Fulfill
Data

Fulfill
Data

BA

C

Figure 2. Synchronous dual stack: Satisfying a reservation.

before we can continue our own work. We first read our way down
the stack to find the data or request node for which the fulfillment
node is present (27–28) and then we mark the underlying node as
fulfilled (29) and pop the paired nodes from the stack (30).

Referring to Figure 2, when a consumer wishes to retrieve data
from an empty stack, it first must insert a request node into the
stack (step A). It then waits until its data pointer (branching to
the right is non-null. Meanwhile, if a producer appears, it satisfies
the consumer in a two-step process. First (B), it pushes a fulfilling
data node to the top of the stack. Then, it swings the request’s data
pointer to its fulfillment node (step C). Finally, it updates the top-
of-stack pointer to match the reservation node’s next pointer (step
D, not shown). After the producer has completed step B, other
threads can help update the reservation’s data pointer for step C;
and the consumer thread can additionally help remove itself from
the stack in step D.

3.3.2 Supporting Timeout
Although the algorithms presented in Section 3.3.1 are complete
implementations of synchronous queues, real systems require the
ability to specify limited patience so that a producer (or consumer)
can time out if no consumer (producer) arrives soon enough to take
(provide) our datum. As we noted earlier, Hanson’s synchronous
queue offers no simple way to do this. A key benefit of our new al-
gorithms is that they support timeout in a relatively straightforward
manner.

In the synchronous dual queue, recall that a producer blocks on
its data pointer if it finds data in the queue. A consumer that finds
the producer’s data node head-most in the queue attempts an atomic
update to clear the data pointer. If the CAS fails, the consumer
assumes that another consumer has taken this datum, so it helps
clear the producer’s data node from the queue. To support timeout,
therefore, it suffices for the producer to clear its own data pointer
and leave; when a consumer eventually finds the abandoned node, it
will remove it through the existing helping mechanism. To resolve
the race wherein the producer attempts to time out at the same time
as a consumer attempts to claim its data, the producer needs to clear
its data node pointer with an atomic CAS. Similarly, a consumer
waiting on the data pointer in a reservation node can simply CAS it
back to itself (shown in Figure 1 with the node marked C’) and the
next producer that finds its request will helpfully remove it from
the queue.

Supporting timeout in the synchronous dual stack is similar
to supporting it in the synchronous dual queue, but annihilation
complicates matters somewhat. Specifically, if a request or data
node times out, then a fulfilling node can eventually rest just above
it in the stack. When this happens, the abandoned node must be
deleted from mid-stack so that the fulfilling node can pair to a
request below it (and other threads need to be aware of this need
when helping). But what if it was the last data or request node in
the stack? We now have a stack consisting of just a fulfillment node.
As this case is easy to detect, we handle it by atomically setting the
stack pointer to null (which can also be helped by other threads)
and having the fulfilling thread start over. Finally, we adopt the
requirement that the fulfilling thread cannot time out so long as
it has a fulfilling node atop the stack.

3.3.3 Pragmatics
Our synchronous queue implementations reflect a few additional
pragmatic considerations to maintain good performance. First, be-
cause Java does not allow one to set flag bits in pointers, we
add a word to nodes in our synchronous queues within which we
mark mode bits. We chose this technique over two primary alterna-
tives. The class java.util.concurrent.AtomicMarkableReference al-
lows direct association of tag bits with a pointer, but exhibits very
poor performance. Using run-time type identification (RTTI) to dis-
tinguish between multiple subclasses of the Node classes would
similarly allow us to embed tag bits in the object type informa-
tion. While this approach performs well in isolation, it increases
long-term pressure on the JVM’s memory allocation and garbage
collection routines by requiring construction of a new node after
each contention failure.

Adding timeout support to the original dual stack and dual
queue [17] requires careful management of memory ownership to
ensure that canceled nodes are reclaimed properly. Java’s garbage
collection removes this burden from the implementations we
present in this paper. On the other hand, we must take care to
“forget” references to data, nodes, and threads that might be re-
tained for a long time by blocked threads (preventing the garbage
collector from reclaiming them).

For sake of clarity, the synchronous queues of Figures 5 and 6
blocked with busy-wait spinning to await a counterpart consumer.

00 void clean(Node s) {
01 Node past = s.next;
02 if (past != null && past.isCancelled())
03 past = past.next;
04
05 Node p;
06 while ((p = head) != null && p != past &&
07 p.isCancelled())
08 casHead(p, p.next);
09
10 while (p != null && p != past) {
11 Node n = p.next;
12 if (n != null && n.isCancelled())
13 p.casNext(n, n.next);
14 else
15 p = n;
16 }
17 }

Listing 7. Synchronous dual stack: Cleaning canceled nodes (un-
fair mode).

In practice, however, busy-wait is useless overhead on a unipro-
cessor and can be of limited value on even a small-scale multipro-
cessor. Alternatives include descheduling a thread until it is sig-
naled, or yielding the processor within a spin loop [9]. In prac-
tice, we mainly choose the spin-then-yield approach, using the
park and unpark methods contained in java.util.concurrent.locks
.LockSupport [12] to remove threads from and restore threads to the
ready list. On multiprocessors (only), nodes next in line for fulfill-
ment spin briefly (about one-quarter the time of a typical context-
switch) before parking. On very busy synchronous queues, spin-
ning can dramatically improve throughput because it handles the
case of a near-simultaneous “fly-by” between a producer and con-
sumer without stalling either. On less busy queues, the amount of
spinning is small enough not to be noticeable.

Finally, the simplest approach to supporting timeout involves
marking nodes canceled and abandoning them for another thread
to eventually unlink and reclaim. If, however, items are offered
at a very high rate, but with a very low timeout patience, this
“abandonment” cleaning strategy can result in a long-term build-
up of canceled nodes, exhausting memory supplies and degrading
performance. It is important to effect a more sophisticated cleaning
strategy.

In our implementation, we perform cleaning differently in
stacks (unfair mode) and queues. Listing 7 displays the cleaning
strategy for stacks; the parameter s is a canceled node that needs
to be unlinked. This implementation potentially requires an O(N)
traversal to unlink the node at the bottom of the stack; however, it
can run concurrently with other threads’ stack access.

We work our way from the top of the stack to the first node
we see past s, cleaning canceled nodes as we go. Cleanup occurs
in two main phases. First, we remove canceled nodes from the top
of the stack (06–08), then we remove internal nodes (10–15). We
note that our technique for removing internal nodes from the list
is dependent on garbage collection: A node C unlinked from the
list by being bypassed can be relinked to the list if its predeces-
sor B becomes canceled and another thread concurrently links B’s
predecessor A to C. Resolving this race condition requires compli-
cated protocols [20]. In a garbage-collected language, by contrast,
unlinked nodes remain unreclaimed while references are extant.

In contrast with our cleaning strategy for stacks, for queues we
usually remove a node in O(1) time when it is canceled. However,
at any given time, the last node inserted in the list cannot be
deleted (because there is no obvious way to update the tail pointer
backwards). To accommodate the case where a node is “pinned” at
the tail of the queue, we save a reference to its predecessor (in a
cleanMe field of the queue) after first unlinking any node that was

00 void clean(Node pred, Node s) {
01 while (pred.next == s) {
02 Node h = head;
03 Node hn = h.next;
04 if (hn != null && hn.isCancelled()) {
05 advanceHead(h, hn);
06 continue;
07 }
08 Node t = tail;
09 if (t == h)
10 return;
11 Node tn = t.next;
12 if (t != tail)
13 continue;
14 if (tn != null) {
15 advanceTail(t, tn);
16 continue;
17 }
18 if (s != t) {
19 Node sn = s.next;
20 if (sn == s || pred.casNext(s, sn))
21 return;
22 }
23 Node dp = cleanMe;
24 if (dp != null) {
25 Node d = dp.next;
26 Node dn;
27 if (d == null || d == dp ||
28 !d.isCancelled() ||
29 (d != t && (dn = d.next) != null &&
30 dn != d && dp.casNext(d, dn)))
31 casCleanMe(dp, null);
32 if (dp == pred)
33 return;
34 } else if (casCleanMe(null, pred))
35 return;
36 }
37 }

Listing 8. Synchronous dual queue: Cleaning canceled nodes (fair
mode).

previously saved. Since only one node can be pinned at any time,
at least one of the node to be unlinked and the cached node can
always be reclaimed.

Listing 8 presents our cleaning strategy for queues. In this code,
s is a canceled node that needs to be unlinked, and pred is the node
known to precede it in the queue. We begin by reading the first
two nodes in the queue (lines 02–03) and unlinking any canceled
nodes from the head of the queue (04–07). Then, we check to see
if the queue is empty (08–10), or has a lagging tail pointer (11–
17), before checking whether s is the tail-most node. Assuming it
is not pinned as the tail node, we unlink s unless another thread has
already done so (18–22). The check in line 20 (sn == s) queries
whether a canceled node has been removed from the list: We link a
canceled node’s next pointer back to itself to flag this state.

If s is pinned, we read the currently saved node cleanMe (23).
If no node was saved, we save a reference to s predecessor and
are done (34–35). Otherwise, we must first remove cleanMe’s
canceled successor (25). If that successor is gone (27, d == null)
or no longer in the list (27, d == dp; recall that nodes unlinked
from the list have their next pointers aimed back at themselves), or
uncanceled (28), we simply clear out the cleanMe field. Else, if the
successor is not currently tail-most (29), and is still in the list (30,
dn != d), we remove it (30, casNext call).

4. Experimental Results
4.1 Benchmarks
We present results for several microbenchmarks and one “real
world” scenario. The microbenchmarks employ threads that pro-
duce and consume as fast as they can; this represents the limiting

case of producer–consumer applications as the cost to process el-
ements approaches zero. We consider producer-consumer ratios of
1:N , N :1, and N :N. Separately, we stress the timeout code by dy-
namically adjusting patience between the longest that fails and the
shortest that succeeds.

Our “real world” scenario instantiates synchronous queues as
the core of the Java SE 5.0 class java.util.concurrent.ThreadPool-
Executor, which in turn forms the backbone of many Java-based
server applications. Our benchmark produces tasks to be run by a
pool of worker threads managed by the ThreadPoolExecutor.

4.2 Methodology
We obtained results on a SunFire V40z with 4 2.4GHz AMD
Opteron processors and on a SunFire 6800 with 16 1.3GHz Ultra-
SPARC III processors. On both machines, we used Sun’s Java SE
5.0 HotSpot VM and we varied the level of concurrency from 2 to
64 threads. We tested each benchmark with both the fair and unfair
(stack-based) versions of the Java SE 5.0 java.util.concurrent.Syn-
chronousQueue and our new nonblocking algorithms. For tests
that do not require timeout, we additionally tested with Hanson’s
synchronous queue.

Figure 3 displays the rate at which data is transferred from mul-
tiple producers to multiple consumers; Figure 4 displays the rate
at which data is transfered from a single producer to multiple con-
sumers; Figure 5 displays the rate at which a single consumer re-
ceives data from multiple producers. Figure 6 displays the handoff
attempt rate, given very limited patience for producers and con-
sumers. Figure 7 presents execution time per task for our Thread-
PoolExecutor benchmark.

4.3 Discussion
As can be seen from Figure 3, Hanson’s synchronous queue and the
Java SE 5.0 fair-mode synchronous queue both perform relatively
poorly, taking 4 (Opteron) to 8 (SPARC) times as long to effect
a transfer relative to the faster algorithms. The unfair (stack-based)
Java SE 5.0 synchronous queue in turn incurs twice the overhead of
either the fair or unfair version of our new algorithm, both versions
of which are comparable in performance. The main reason that
the Java SE 5.0 fair-mode queue is so much slower than unfair is
that the fair-mode version uses a fair-mode entry lock to ensure
FIFO wait ordering. This causes pile-ups that block the threads that
will fulfill waiting threads. This difference supports our claim that
blocking and contention surrounding the synchronization state of
synchronous queues are major impediments to scalability.

When a single producer struggles to satisfy multiple consumers
(Figure 4), or a single consumer struggles to receive data from
multiple producers (Figure 5), the disadvantages of Hanson’s syn-
chronous queue are accentuated. Because the singleton necessarily
blocks for every operation, the time it takes to produce or consume
data increases noticeably. Our new synchronous queue consistently
outperforms the Java SE 5.0 implementation (fair vs. fair and unfair
vs. unfair) at all levels of concurrency.

The dynamic timeout test (Figure 6) reveals another deficiency
in the Java SE 5.0 SynchronousQueue implementation: Fair mode
has a pathologically bad response to timeout, due mainly to the
cost of time-out in its fair-mode reentrant locks. Meanwhile, either
version of our new algorithm outperforms the unfair-mode Java SE
5.0 SynchronousQueue by a factor of five.

Finally, in Figure 7, we see that the performance differentials
we observe in java.util.concurrent.SynchronousQueue translate di-
rectly into overhead in the java.util.concurrent.ThreadPoolExe-
cutor: Our new fair version outperforms the Java SE 5.0 imple-
mentation by factors of 14 (SPARC) and 6 (Opteron); our unfair
version outperforms Java SE 5.0 by a factor of three on both plat-
forms. Interestingly, the relative performance of fair and unfair

Producer-Consumer [SPARC]

0

10000

20000

30000

40000

50000

60000

1 2 3 4 6 8 12 16 24 32 48 64

Pairs

n
s/

tr
an

sf
er

 SynchronousQueue SynchronousQueue (fair) New SynchQueue

 New SynchQueue (fair) HansonSQ

Producer-Consumer [Opteron]

0

5000

10000

15000

20000

25000

30000

1 2 3 4 6 8 12 16 24 32 48 64

Pairs

ns
/tr

an
sf

er

 SynchronousQueue SynchronousQueue (fair) New SynchQueue
 New SynchQueue (fair) HansonSQ

Figure 3. Synchronous handoff: N producers, N consumers.

versions of our new algorithm differs between the SPARC and
Opteron platforms. Generally, unfair mode tends to improve local-
ity by keeping some threads “hot” and others buried at the bottom
of the stack. Conversely, however, it tends to increase the number of
times threads are scheduled and descheduled. On the SPARC plat-
form, context switches have a higher relative overhead compared
to other factors; this is why our fair synchronous queue eventually
catches and surpasses the unfair version’s performance. By way of
comparison, the cost of context switches is relatively smaller on the
Opteron platform, so the trade-off tips in favor of increased locality
and the unfair version performs best.

Across all benchmarks, our fair synchronous queue universally
outperforms all other fair synchronous queues and our unfair syn-
chronous queue outperforms all other unfair synchronous queues,
regardless of preemption or the level of concurrency.

5. Conclusions
In this paper, we have presented two new lock-free and contention-
free synchronous queue implementations that outperform all previ-
ously known algorithms by a wide margin. In striking contrast to
previous implementations, there is little performance cost for fair-
ness.

In a head-to-head comparison, our algorithms consistently out-
perform the Java SE 5.0 SynchronousQueue by a factor of three in
unfair mode and up to a factor of 14 in fair mode. We have further
shown that this performance differential translates directly to fac-
tors of two and ten when substituting our new synchronous queue
in for the core of the Java SE 5.0 ThreadPoolExecutor, which is

Single Producer [SPARC]

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 3 5 8 12 18 27 41 62

Consumers

n
s/

tr
an

sf
er

 SynchronousQueue SynchronousQueue (fair) New SynchQueue

 New SynchQueue (fair) HansonSQ

Single Producer [Opteron]

0

5000

10000

15000

20000

25000

1 2 3 5 8 12 18 27 41 62

Consumers

ns
/tr

an
sf

er

 SynchronousQueue SynchronousQueue (fair) New SynchQueue
 New SynchQueue (fair) HansonSQ

Figure 4. Synchronous handoff: 1 producer, N consumers.

itself at the heart of many Java-based server implementations. Our
new synchronous queues have been adopted for inclusion in Java 6.

That our new lock-free synchronous queue implementations are
more scalable than the Java SE 5.0 SynchronousQueue class is un-
surprising: Nonblocking algorithms often scale far better than cor-
responding lock-based algorithms. More surprisingly, our new im-
plementations are faster even at low levels of contention; nonblock-
ing algorithms often exhibit greater base-case overhead than do
lock-based equivalents. Based on our experiments, we recommend
our new algorithms anywhere synchronous handoff is needed.

Although we have improved the scalability of the synchronous
queue, we believe that there is room for further improvement.
In particular, the elimination technique introduced by Shavit and
Touitou [21] seems promising. This technique arranges for pairs of
operations that collectively effect no change to a data structure to
meet in a lower-traffic memory location and “cancel” each other
out. This simultaneously allows us to reduce contention on the
central data structure and to effect multiple concurrent operations
(which otherwise would have been serialized as a consequence of
manipulating a single memory location). For example, in a stack, a
push and a pop can meet in a backoff arena to eliminate each other
without requiring any modifications to the top-of-stack pointer.

The elimination technique has been used by Hendler et al. [4] to
improve the scalability of stacks, by Moir et al. [16] to improve
the scalability of queues, and by ourselves [18] to improve the
scalability of exchange channels. We believe elimination can yield
modest gains in scalability for synchronous queues by reducing
contention on the endpoints of component data structures.

Single Consumer [SPARC]

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 5 8 12 18 27 41 62

Producers

n
s/

tr
an

sf
er

 SynchronousQueue SynchronousQueue (fair) New SynchQueue

 New SynchQueue (fair) HansonSQ

Single Consumer [Opteron]

0

5000

10000

15000

20000

25000

1 2 3 5 8 12 18 27 41 62

Producers

ns
/tr

an
sf

er

 SynchronousQueue SynchronousQueue (fair) New SynchQueue
 New SynchQueue (fair) HansonSQ

Figure 5. Synchronous handoff: N producers, 1 consumer.

Acknowledgments
We are grateful to Dave Dice, Brian Goetz, David Holmes, Mark
Moir, Bill Pugh, and the anonymous referees for giving feedback
that significantly improved the presentation of this paper.

References
[1] T. E. Anderson, E. D. Lazowska, and H. M. Levy. The Performance

Implications of Thread Management Alternatives for Shared-Memory
Multiprocessors. IEEE Trans. on Computers, 38(12):1631–1644,
Dec. 1989.

[2] G. R. Andrews. Concurrent Programming: Principles and Practice.
Benjamin/Cummings, Redwood City, CA, 1991.

[3] D. R. Hanson. C Interfaces and Implementations: Techniques for
Creating Reusable Software. Addison-Wesley, Menlo Park, CA,
1997.

[4] D. Hendler, N. Shavit, and L. Yerushalmi. A Scalable Lock-
Free Stack Algorithm. In Proc. of the 16th Annual ACM Symp.
on Parallelism in Algorithms and Architectures, pages 206–215,
Barcelona, Spain, June 2004.

[5] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-Free Synchro-
nization: Double-Ended Queues as an Example. In Proc. of the 23rd
Intl. Conf. on Distributed Computing Systems, Providence, RI, May,
2003.

[6] M. P. Herlihy and J. M. Wing. Linearizability: A Correctness
Condition for Concurrent Objects. ACM Trans. on Programming
Languages and Systems, 12(3):463–492, July 1990.

Timeout Producer-Consumer [SPARC]

0

50000

100000

150000

200000

250000

300000

1 2 3 4 6 8 12 16 24 32 48 64

Pairs

n
s/

tr
an

sf
er

 SynchronousQueue SynchronousQueue (fair)

 New SynchQueue New SynchQueue (fair)

Timeout Producer-Consumer [Opteron]

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4 6 8 12 16 24 32 48 64

Pairs

ns
/tr

an
sf

er

 SynchronousQueue SynchronousQueue (fair)
 New SynchQueue New SynchQueue (fair)

Figure 6. Synchronous handoff: low patience transfers.

[7] M. Herlihy. Wait-Free Synchronization. ACM Trans. on Program-
ming Languages and Systems, 13(1):124–149, Jan. 1991.

[8] C. A. R. Hoare. Communicating Sequential Processes. Comm. of the
ACM, 21(8):666–677, Aug. 1978.

[9] A. R. Karlin, K. Li, M. S. Manasse, and S. Owicki. Empirical Studies
of Competitive Spinning for a Shared-Memory Multiprocessor. In
Proc. of the 13th ACM Symp. on Operating Systems Principles, pages
41–55, Pacific Grove, CA, Oct. 1991.

[10] L. Lamport. A New Solution of Dijkstra’s Concurrent Programming
Problem. Comm. of the ACM, 17(8):453–455, Aug. 1974.

[11] L. Lamport. A Fast Mutual Exclusion Algorithm. ACM Trans. on
Computer Systems, 5(1):1–11, Feb. 1987.

[12] D. Lea. The java.util.concurrent Synchronizer Framework. Science
of Computer Programming, 58(3):293–309, Dec. 2005.

[13] J. Manson, W. Pugh, and S. Adve. The Java Memory Model. In
Conf. Record of the 32nd ACM Symp. on Principles of Programming
Languages, Long Beach, CA, Jan. 2005.

[14] J. M. Mellor-Crummey and M. L. Scott. Algorithms for Scalable
Synchronization on Shared-Memory Multiprocessors. ACM Trans.
on Computer Systems, 9(1):21–65, Feb. 1991.

[15] M. M. Michael and M. L. Scott. Simple, Fast, and Practical Non-
Blocking and Blocking Concurrent Queue Algorithms. In Proc. of
the 15th ACM Symp. on Principles of Distributed Computing, pages
267–275, Philadelphia, PA, May 1996.

CachedThreadPool [SPARC]

0

10000

20000

30000

40000

50000

60000

1 2 3 4 6 8 12 16 24 32 48 64

threads

n
s/

ta
sk

 SynchronousQueue SynchronousQueue (fair)

 New SynchQueue New SynchQueue (fair)

CachedThreadPool [Opteron]

0

5000

10000

15000

20000

25000

30000

1 2 3 4 6 8 12 16 24 32 48 64

threads

ns
/ta

sk

 SynchronousQueue SynchronousQueue (fair)
 New SynchQueue New SynchQueue (fair)

Figure 7. ThreadPoolExecutor benchmark.

[16] M. Moir, D. Nussbaum, O. Shalev, and N. Shavit. Using Elimination
to Implement Scalable and Lock-Free FIFO Queues. In Proc. of
the 17th Annual ACM Symp. on Parallelism in Algorithms and
Architectures, pages 253–262, Las Vegas, NV, July 2005.

[17] W. N. Scherer III and M. L. Scott. Nonblocking Concurrent Objects
with Condition Synchronization. In Proc. of the 18th Intl. Symp. on
Distributed Computing, Amsterdam, The Netherlands, Oct. 2004.

[18] W. N. Scherer III, D. Lea, and M. L. Scott. A Scalable Elimination-
based Exchange Channel. In Proc., Workshop on Synchronization
and Concurrency in Object-Oriented Languages, San Diego, CA,
Oct. 2005. In conjunction with OOPSLA’05.

[19] W. N. Scherer III. Synchronization and Concurrency in User-level
Software Systems. Ph. D. dissertation, Dept. of Computer Science,
Univ. of Rochester, Jan. 2006.

[20] M. L. Scott and W. N. Scherer III. Scalable Queue-Based Spin Locks
with Timeout. In Proc. of the 8th ACM Symp. on Principles and
Practice of Parallel Programming, Snowbird, UT, June 2001.

[21] N. Shavit and D. Touitou. Elimination Trees and the Construction of
Pools and Stacks. In Proc. of the 7th Annual ACM Symp. on Parallel
Algorithms and Architectures, Santa Barbara, CA, July 1995.

