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improves overall performance when care is taken to avoid interference with inter-node software
coherence.

We have implemented Cashmere on a Compaq AlphaServer/Memory Channel cluster, an archi-
tecture that provides fast user-level messages. Experiments indicate that a one-level, version of
the Cashmere protocol provides performance comparable to, or slightly better than, that of Tread-
Marks’ lazy release consistency. Comparisons to Compaq’s Shasta protocol also suggest that while
fast user-level messages make finer-grain software DSMs competitive, VM-based systems continue
to outperform software-based access control for applications without extensive fine-grain sharing.

Within the family of Cashmere protocols, we find that leveraging intranode hardware coherence
provides a 37% performance advantage over a more straightforward one-level implementation.
Moreover, contrary to our original expectations, noncoherent hardware support for remote memory
writes, total message ordering, and broadcast, provide comparatively little in the way of additional
benefits over just fast messaging for our application suite.

Categories and Subject Descriptors: C.1.4 [Processor Architectures]: Parallel Architectures—
Distributed architectures; C.5.5 [Computer System Implementation]: Servers

General Terms: Experimentation, Performance

Additional Key Words and Phrases: Distributed shared memory, relaxed consistency, software
coherence

1. INTRODUCTION

The high performance computing community has relied on parallel processing
for over twenty years. At both the architectural and program levels, it is custom-
ary to categorize parallel systems as shared memory or message based. Message
based systems are typically easier to construct but more difficult to program;
the inverse is true for their shared memory counterparts. Small-scale symmet-
ric multiprocessors have made shared memory popular and cost-effective for a
variety of low-end parallel systems, and there is a strong incentive to provide
an easy migration path to higher-performance systems.

At the very high end, where hardware remains the dominant cost, and
programmers are willing to invest as much time as necessary to achieve the
maximum possible performance, it is likely that message based hardware
and software will continue to dominate for the indefinite future. Shared
memory, however, is increasingly popular in the mid-range world. Several
vendors, including SGI, Sun, IBM, and HP, sell cache-coherent, nonuniform
memory access (CC-NUMA) machines that scale to dozens or even a few
hundreds of processors. Unfortunately, these machines have significantly
higher per-processor costs than their smaller SMP cousins. As a consequence,
many organizations are opting instead to deploy clusters of SMPs, connected
by high-bandwidth, low-latency system-area networks (SANs) when their
applications allow for such substitution.

Software distributed shared memory (S-DSM) attempts to bridge the gap
between the conceptual appeal of shared memory and the price-performance
of message passing hardware by allowing shared memory programs to run on
nonshared memory clusters. S-DSM as a research field dates from the thesis
work of Kai Li in the mid 1980s [Li and Hudak 1989]. Li’s Ivy system, designed
for a network of Apollo workstations, and its successor, Shiva [Li and Schaefer
1989], for the Intel Hypercube, used the virtual memory system to emulate
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a simple cache coherence protocol. Accesses to nonlocal data would result in
read or write page faults, treated like nonexclusive or exclusive misses in a
traditional invalidation-based coherence protocol [Goodman 1987].

Counting Ivy and Shiva as the first, we can identify four different gener-
ations of S-DSM systems. The second generation sought to improve perfor-
mance through protocol optimizations and relaxed memory models. The Munin
project [Bennett et al. 1990; Carter et al. 1991] at Rice University showed
how to tune the coherence protocol to the sharing patterns of the application.
Rice’s subsequent TreadMarks project [Amza et al. 1996; Keleher et al. 1992]
achieved further performance improvements by introducing the concept of lazy
release consistency, in which multiple processes can modify (separate portions
of) a page at the same time, sending updates only to those processes that are
later determined to be causally “downstream.” TreadMarks has been widely
distributed to sites throughout the world. It is now commercially available, and
has become the standard against which other S-DSM systems are judged.

Third-generation S-DSM systems allow coherence blocks to correspond to
semantically meaningful data structures, rather than VM pages, thereby elim-
inating the false sharing that can lead to spurious coherence overhead when
independent shared structures lie in a single page. In return, third-generation
systems typically impose a more restrictive programming model [Hill et al.
1993; Johnson et al. 1995; Sandhu et al. 1993; Zekauskas et al. 1994].

Fourth-generation S-DSM systems attempt to improve the performance
of second generation systems and remove the programming limitations of
the third generation through inexpensive hardware support, finer grain
access control, or both. Example systems include the Princeton Shrimp
[Blumrich et al. 1994], the Wisconsin Typhoon [Reinhardt et al. 1994],
Cashmere [Kontothanassis et al. 1997], Shasta [Scales et al. 1996],
Blizzard [Schoinas et al. 1994], and HLRC [Samanta et al. 1998]. Shrimp and
Typhoon employ snooping hardware capable of reflecting loads and stores to
remote locations, or enforcing access control at the granularity of cache lines.
Blizzard and Shasta exploit low latency user-level messaging and couple it with
software instrumentation of reads and writes to provide finer granularity ac-
cess control to data. Cashmere and HLRC rely entirely on the emergence of
very low latency user-level messaging and commodity SMP nodes.

The Cashmere project has its roots in the “NUMA memory management”
work of the late 1980s [Bolosky et al. 1989, 1991; Cox and Fowler 1989;
LaRowe and Ellis 1991]. This work sought to minimize the overhead of remote
memory access on cacheless shared memory multiprocessors by replicating and
migrating pages. In subsequent work we employed trace-based [Bolosky and
Scott 1992] and execution-based [Kontothanassis and Scott 1995a] simulation
to explore how similar techniques might be used to simplify the construction of
cache-based multiprocessors. In particular, we speculated that very attractive
price-performance ratios might be obtained by combining VM-based software
coherence with hardware capable of (noncoherent) remote fills and write-backs
of cache lines.

By 1995 technological advances had led to the commercial availability of
system-area networks resembling those assumed in our simulations. One of
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these was the first-generation Memory Channel network [Gillett 1996] from
Digital Equipment Corporation, which we acquired as a field test site under an
external research grant. Others include the Princeton Shrimp [Blumrich et al.
1994] and HP Hamlyn [Buzzard et al. 1996] projects, Myrinet (with appropri-
ate software on its interface card) [Philbin et al. 1997], and the GSN/HIPPI
[American National Standards Institute 1996], VIA [Compaq et al. 1997], and
Infiniband [InfiniBand Trade Association 2002] standards. The last four of
these are available as commercial products.

By separating authorization from communication, and using ordinary loads
and stores to trigger the latter, modern system-area networks are able to
achieve latencies more than two decimal orders of magnitude lower than is
typically possible with messages implemented by the OS kernel. The second-
generation Memory Channel [Fillo and Gillett 1997], for example, can modify
remote memory safely in approximately 3µs. It also provides sustained point-
to-point bandwidth (with programmed I/O) of over 75 MB/s. Finally, Memory
Channel provides ordered, reliable delivery of packets (eliminating the need
for acknowledgments), broadcast/multicast (possibly eliminating the need for
multiple messages), and the ability to write to user-accessible remote memory
without the intervention of a remote processor. All of these features are ex-
ploited by Cashmere, though simple low latency messaging proved to be by far
the most important.

The original version of Cashmere (also referred to as CSM-1L), described
at ISCA [Kontothanassis et al. 1997], treated each individual processor, even
within a multiprocessor, as if it were a separate network node. It also employed
an assembly language rewriting tool to “double” shared memory stores, effec-
tively implementing writethrough to the (remote) home location of the data.
The next Cashmere version was a two-level protocol (also known as CSM-2L)
that exploits hardware coherence within multiprocessor nodes, and uses a novel
“two-way diffing” mechanism to update both home and remote data copies. This
version of the system was first described at SOSP [Stets et al. 1997], and ex-
ploits Memory Channel features whenever possible. Subsequent variants of
this protocol described at HPCA [Stets et al. 2000] vary their use of the spe-
cial Memory Channel features and at one extreme use the network only for
low-latency messages. We have also developed a version of Cashmere (called
Cashmere-VLM) that allows the programmer to control the paging policy for
out-of-core datasets [Dwarkadas et al. 1999a]; we do not describe that system
here.

The remainder of this article is organized as follows. We describe the
Cashmere protocol in more detail in Section 2, focusing on the two-level ver-
sion of the system (also referred to as CSM-2L) and its variants. We begin
Section 3 with a description of our hardware platform and application suite,
and then continue with performance results. Section 4 summarizes the relative
strengths and weaknesses of Cashmere with respect to other state-of-the-art
S-DSM systems, notably TreadMarks and Shasta [Scales et al. 1996]. We show
that a one-level version of the Cashmere protocol provides performance com-
parable to or better than that of TreadMarks-style lazy release consistency. It
also outperforms Shasta-style fine-grain S-DSM for “well tuned” applications.
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However, Shasta is less sensitive to fine-grain temporal and spatial sharing,
and has an advantage in the (generally less scalable) applications that exhibit
them. We discuss related work in more detail in Section 5, and conclude with
recommendations and suggestions for future research in Section 6.

2. PROTOCOL VARIANTS AND IMPLEMENTATION

Cashmere was designed for clusters connected by a high performance (low la-
tency) system area network. It was also designed to take advantage of hardware
cache coherence within symmetric multiprocessor (SMP) nodes, when available.
Though the system can be configured to treat each processor of an SMP as if
it were a separate network node, work on Cashmere [Dwarkadas et al. 1999b;
Stets et al. 1997] and other systems [Dwarkadas et al. 1999b; Erlichson et al.
1996; Samanta et al. 1998; Scales and Gharachorloo 1997; Scales et al. 1998;
Schoinas et al. 1998] has shown that SMP-aware protocols can significantly
improve the performance of S-DSM. In the interest of brevity, we therefore fo-
cus in this article on the SMP-aware version of the protocol. At the same time,
we consider protocol variants that exploit, to varying degrees, several special
features of the Memory Channel network, allowing us to evaluate the marginal
utility of these features for Cashmere-style S-DSM.

We begin this section by describing the basic features of the SMP-aware
Cashmere protocol. This protocol exploits several special features of the Mem-
ory Channel network, including remote memory writes, broadcast, and in-order
message delivery, in addition to low-latency messaging. Following a more de-
tailed description of the network, we introduce protocol variants that make
progressively less use of its features, culminating in a variant that depends on
nothing more than low-latency messaging. A discussion of the SMP-oblivious
version of the protocol can be found in earlier work [Kontothanassis et al. 1997].

2.1 Protocol Overview

Cashmere provides users with a process model of shared memory, requiring
explicit allocation/declaration of shared data. Cashmere also requires all ap-
plications to follow a data-race-free [Adve and Hill 1993] programming model.
Simply stated, one process must synchronize with another in order to see its
modifications, and all synchronization primitives must be visible to the sys-
tem. More specifically, applications must protect accesses to shared data with
explicit acquire and release operations. Acquires typically correspond to critical
section entry and to departure from a barrier; releases typically correspond to
critical section exit and to arrival at a barrier.

Cashmere uses the virtual memory (VM) subsystem to track data accesses.
The coherence unit is an 8 KB VM page (this is the minimum page size on the
Alpha architecture used in our implementation). Each page of shared memory
in Cashmere has a single, distinguished home node. The home node maintains a
master copy of the page. The coherence protocol implements a “moderately lazy”
version of release consistency [Keleher et al. 1992]. Invalidation messages are
sent at release operations, and the master copy of the page is updated to reflect
changes made by the releaser, but the processing of invalidations is delayed
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until a subsequent acquire at the destination node, and retrieval of updates
from the master copy is delayed until the next access after the invalidation. A
page may be written by more than one processor concurrently, but for data-race-
free applications we can be sure that the changes made by those processors will
be to disjoint portions of the page, and can be merged at the home node without
conflict.

The resulting consistency model lies in between those of TreadMarks [Amza
et al. 1996] and Munin [Carter et al. 1991]. Munin invalidates or updates (de-
pending on the protocol variant) all copies of a page at release time. TreadMarks
communicates consistency information among synchronizing processes at ac-
quire time, allowing it to invalidate copies only when there is a causal chain
between a producer and a consumer. Updates are generated lazily, on demand,
and communicated between producers and consumers point-to-point. Invali-
dations in Cashmere take effect at the time of the next acquire, whether it
is causally related or not, and all outstanding updates are gathered from the
home node at the time of a subsequent access.

A logically global page directory indicates, for each page, the identity of the
home node and the members of the sharing set—the nodes that currently have
copies. The main protocol entry points are page faults and synchronization
operations. On a page fault, the protocol updates sharing set information in the
page directory and obtains an up-to-date copy of the page from the home node. If
the fault is due to a write access, the protocol also creates a pristine copy of the
page (called a twin) and adds the page to the local dirty list. As an optimization
in the write fault handler, a page that is shared by only one node is moved into
exclusive mode. In this case, the twin and dirty list operations are skipped, and
the page will incur no protocol overhead until another sharer emerges.

When a process reaches a release operation, it invokes protocol code, which
examines each page in the dirty list and compares the page to its twin (per-
forming a diff operation) in order to identify modifications. These modifications
are collected and either written directly into the master copy at the home node
(using remote writes) or, if the page is not mapped into Memory Channel space,
sent to the home node in the form of a diff message, for local incorporation. After
propagating diffs, the protocol downgrades permissions on the dirty pages and
sends write notices to all nodes in the sharing set. Like diffs, write notices can
be sent by means of remote writes or explicit messages, depending on the pro-
tocol variant. Notices sent to a given node are accumulated in a list that each
of the node’s processors will peruse on its next acquire operation, invalidating
any mentioned pages that have a mapping on that processor, and that have not
subsequently been updated by some other local processor.

Temporal ordering of protocol operations is maintained through intra-node
timestamps. Each node has a logical clock that is incremented on protocol
events: page faults, acquires, and releases—the operations that result in com-
munication with other nodes. This logical clock is used to timestamp the local
copy of a page at the time of its last update, as well as to indicate when a write
notice for the page was last processed. Page fetch requests can safely be elimi-
nated if the page’s last update timestamp is greater than the page’s last write
notice timestamp.
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All processors in a given node share the same physical frame for a given
data page. Software overhead is incurred only when sharing spans nodes. More-
over protocol transactions from different processors on the same node are co-
alesced whenever possible, reducing both computational and communication
overhead.

To avoid conflicts between inter-node software coherence and intra-node
hardware coherence, data from the home node cannot simply be copied into
local memory during a page update operation if there are other concurrent
writers on the local node. A common solution to this problem has been to “shoot
down” the other processors’ mappings, and then force those processors to wait
while the processor performing the page update operation flushes changes to
the home node and then downloads the entire page. To avoid the expense of
shootdown, CSM-2L employs a novel incoming diff page update operation that
is predicated on the applications being data-race-free. The processor compares
incoming data from the home node to the existing twin of the page (if any) and
then writes only the differences to both the working page and the twin. Since
applications are required to be data-race-free, these differences are exactly the
modifications made on remote nodes, and will not overlap with modifications
made on the local node. Using diffs to update the working page ensures that
concurrent modifications on the local node are not overwritten. Updating the
twin ensures that only local modifications are flushed back to the home node at
the time of the next release. Full details of the SMP-aware Cashmere protocol
can be found in our SOSP paper [Stets et al. 1997].

2.2 Memory Channel

The Memory Channel is a reliable, low-latency network with a memory-
mapped, programmed I/O interface. We have experimented with two versions of
the Memory Channel—Memory Channel I uses a bus-based network hub, while
Memory Channel II’s hub is cross-bar based with higher cross-sectional band-
width. The hardware provides remote-write capability, allowing processors to
modify remote memory without remote processor intervention. To use remote
writes, a processor must first attach to transmit regions or receive regions in
the Memory Channel’s address space, which is 512 MB in size (it was 128 MB
in the first-generation network). Transmit regions are mapped to uncacheable
I/O addresses on the Memory Channel’s PCI-based network adapter. Receive
regions are backed by physical memory, which must be “wired down” by the
operating system. All I/O operations are fully pipelined, making it possible for
the processors to use the full PCI bus bandwidth.

An application sets up a message channel by logically connecting transmit
and receive regions. A store to a transmit region passes from the host processor
to the Memory Channel adapter, where the data are placed into a packet and
injected into the network. At the destination, the network adapter removes the
data from the packet and uses DMA to write the data to the corresponding
receive region in main memory.

A store to a transmit region can optionally be reflected back to a receive
region on the source node by instructing the source adaptor to use loopback
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Table I. Cashmere Protocol Variants. These Protocol Variants have been Chosen to Isolate the
Performance Impact of Special Network Features on the Areas of S-DSM Communication. Use of

Special Memory Channel Features is Denoted by an “MC” Under the Area of Communication.
Otherwise, Explicit Messages are Used. The Use of Memory Channel Features is also Denoted in
the Protocol Suffix (D, M, and/or S), as is the Use of Home Node Migration (Mg). ADB (Adaptive

Data Broadcast) Indicates the Use of Broadcast to Communicate Widely Shared Data
Modifications

Protocol Name Data Metadata Synchronization Home Migration
CSM-DMS MC MC MC No
CSM-MS Explicit MC MC No
CSM-S Explicit Explicit MC No
CSM-None Explicit Explicit Explicit No
CSM-MS-Mg Explicit MC MC Yes
CSM-None-Mg Explicit Explicit Explicit Yes
CSM-ADB (2L) Explicit/ADB MC MC Yes
CSM-ADB (1L) MC/ADB MC MC No

mode for a given channel. A loopback message goes out into the network and
back, and is then processed as a normal message.

By connecting a transmit region to multiple receive regions, nodes can make
use of hardware broadcast. The network guarantees that broadcast messages
will be observed in the same order by all receivers, and that all messages
from a single source will be observed in the order sent. Broadcast is more
expensive than point-to-point messages especially in the case of the Memory
Channel II network, because it must “take over” the crossbar-based central
network hub. Broadcast and total ordering, together with loopback, are useful
in implementing cluster-wide synchronization, which will be described in the
following section.

2.3 Protocol Variants

Special network features like direct read/write (load/store) access to remote
memory, broadcast/multicast, and total message ordering may be used for a
variety of purposes in S-DSM, including data propagation, metadata (directory
and write notice) maintenance, and synchronization. As noted in the previous
section, the Memory Channel provides all of these other than direct remote
reads, and the base Cashmere protocol depends on all of them.

In an attempt to identify the marginal utility of special network features for
various protocol operations, we developed several variants of the Cashmere-
2L protocol, summarized in Table I. The first four variants, described in more
detail in Section 2.3.1, all follow the outline described in Section 2.1, but vary
in their reliance on special network features. The next two variants, described
in more detail in Section 2.3.2, exploit the observation that when remote writes
are not used for data propagation, one can change the home node of a page
at very low cost, often achieving significant savings in coherence overhead.
This optimization is unattractive when program data reside in the Memory
Channel address space, because of the high cost of remapping transmit and
receive regions. The last two protocol variants in the table, described in more
detail in Section 2.3.3, use broadcast not only for synchronization and page
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directory maintenance, but for data propagation as well. In an attempt to assess
scalability, we consider it not only in CSM-2L, but in CSM-1L as well, where
we can treat the processors of our hardware cluster as 32 separate nodes.

All of our protocol variants rely in some part on efficient explicit messages. To
minimize delivery overhead [Kontothanassis et al. 1997], we arrange for each
processor to poll for messages on every loop back edge, branching to a handler
if appropriate. The polling instructions are automatically added to application
binaries by an assembly language rewriting tool.

2.3.1 Reliance on Special Network Features. For each of the areas of pro-
tocol communication (data propagation, metadata maintenance, and synchro-
nization), we can leverage the full capabilities of the Memory Channel (remote
writes, total ordering, and inexpensive broadcast), or instead send explicit mes-
sages between nodes. The combinations we consider are described in the fol-
lowing paragraphs. We assume in all cases that reliable message delivery is
ensured by the network hardware. When using explicit messages, however,
we send acknowledgments whenever we need to determine the order in which
messages arrived, or to ensure that they arrive in some particular order.

2.3.1.1 CSM-DMS: Data, Metadata, and Synchronization using Memory
Channel. The base protocol, denoted CSM-DMS, is the Cashmere-2L protocol
described in Section 2.1 and in our original paper on SMP-aware S-DSM [Stets
et al. 1997]. This protocol exploits the Memory Channel for all communication:
to propagate shared data, to maintain metadata, and for synchronization.

Data: All shared data are mapped into the Memory Channel address space.
Each page is assigned a home node, namely, the first node to touch the page
after initialization. The home node creates a receive mapping for the page. All
other nodes create a transmit mapping as well as a local copy of the page.
Shared data are fetched from the home node using messages. Fetches could be
optimized by a remote read operation or by allowing the home node to write the
data directly to the working address on the requesting node. Unfortunately,
the first optimization is not available on the Memory Channel. The second
optimization is also effectively unavailable because it would require shared
data to be mapped at distinct Memory Channel addresses on each node. With
only 512 MB of Memory Channel address space, this would severely limit the
maximum dataset size. (For eight nodes, we could share only about 64 MB.)

Modifications are written back to the home node at the time of a release.1

With home node copies kept in Memory Channel space, these modifications
can be applied with remote writes, avoiding the need for processor intervention
at the home. Addressing constraints still limit dataset size, but the limit is
reasonably high, and is not affected by system size.

To avoid race conditions, Cashmere must be sure that all diffs are completed
before returning from a release operation. To avoid the need for explicit ac-
knowledgments, CSM-DMS writes all diffs to the Memory Channel and then

1An earlier Cashmere study [Kontothanassis et al. 1997] investigated using write-through to prop-
agate data modifications. Release-time diffs were found to use bandwidth more efficiently than
write-through, and to provide better performance.
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resets a synchronization location in Memory Channel space to complete the
release. Network total ordering ensures that the diffs will be complete before
the completion of the release is observed.

Metadata: System-wide metadata in CSM-DMS consists of the page directory
and write notice lists. CSM-DMS replicates the page directory on each node and
uses remote write to broadcast all changes. It also uses remote writes to deliver
write notices to a list on each node using appropriate locking. The write notice
buffers are sized to hold write notices for all shared pages, thereby avoiding
overflow issues. At an acquire, a processor simply reads its write notices from
local memory. As with diffs, CSM-DMS takes advantage of network ordering to
avoid write notice acknowledgments.

Synchronization: Application locks, barriers, and flags all leverage the Mem-
ory Channel’s broadcast and write ordering capabilities. Locks are represented
by an 8-entry array in Memory Channel space, and by a test-and-set flag on
each node. A process first acquires the local test-and-set lock and then sets,
via remote-write broadcast, its node’s entry in the 8-entry array. The process
waits for its write to appear via loopback, and then reads the entire array. If
no other entries are set, the lock is acquired; otherwise the process resets its
entry, backs off, and tries again. This lock implementation allows a processor to
acquire a lock without requiring any remote processor assistance. Barriers are
represented by an 8-entry array, a “sense” variable in Memory Channel space,
and a local counter on each node. The last processor on each node to arrive
at the barrier updates the node’s entry in the 8-entry array. A single master
processor waits for all nodes to arrive and then toggles the sense variable, on
which the other nodes are spinning. Flags are write-once notifications based on
remote write and broadcast.

2.3.1.2 CSM-MS: Metadata and Synchronization using Memory Channel.
CSM-MS does not place shared data in Memory Channel space, and so avoids
network-induced limitations on dataset size. As a result, however, CSM-MS
cannot use remote writes to apply diffs. Instead it sends diff messages, which
require processing assistance from the home node and explicit acknowledg-
ments to establish ordering. In CSM-MS, metadata and synchronization still
leverage all Memory Channel features.

2.3.1.3 CSM-S: Synchronization using Memory Channel. CSM-S uses spe-
cial network features only for synchronization. Explicit messages are used both
to propagate shared data and to maintain metadata. Instead of broadcast-
ing a directory change, a process must send the change to the home node in
an explicit message. The home node updates the entry and acknowledges the
request.

Directory updates (or reads that need to be precise) can usually be piggy-
backed onto an existing message. For example, a directory update is implicit
in a page fetch request and so can be piggybacked. Also, write notices always
follow diff operations, so the home node can simply piggyback the sharing set
(needed to identify where to send write notices) onto the diff acknowledgment.
In fact, an explicit directory message is needed only when a page is invalidated.
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2.3.1.4 CSM-None: No Use of Special Memory Channel Features. The
fourth protocol, CSM-None, uses explicit messages (and acknowledgments) for
all communication. This protocol variant relies only on low-latency messaging,
and so could easily be ported to other low-latency network architectures. Our
protocol still depends on polling to efficiently detect message arrival. Other
efficient mechanisms for message arrival detection could be used instead if
available on other platforms. Polling can also be implemented efficiently on
non-remote write networks [Dunning et al. 1998; Welsh et al. 1997].

2.3.2 CSM-XXX-Mg: Home Node Migration. All of the above protocol
variants use first-touch home node assignment [Marchetti et al. 1995]. Home
assignment is extremely important because processors on the home node write
directly to the master copy of the data and so do not incur the overhead of
twins and diffs. If a page has multiple writers during the course of execution,
protocol overhead can potentially be reduced by migrating the home node to
an active writer.

Due to the high cost of remapping Memory Channel regions, home node mi-
gration is unattractive when data are placed in Memory Channel space. Hence,
home node migration cannot be combined with CSM-DMS. In our experiments
we incorporate it into CSM-MS and CSM-None, creating CSM-MS-Mg and
CSM-None-Mg. (We also experimented with CSM-S-Mg, but its performance
does not differ significantly from that of CSM-S. We omit it to minimize clutter
in the graphs.) When a processor incurs a write fault, these protocols check the
local copy of the directory to see if any process on the home node appears to
be actively writing the page (the local copy is only a hint in CSM-None-Mg). If
there appears to be no other writer, a migration request is sent to the home.
The request is granted if it is received when no process on the home node is
currently writing the page. The home changes the directory entry to point to
the new home. The new home node will receive an up-to-date copy of the page
as part of the normal coherence operations. The marginal cost of changing the
home node identity is therefore very low.

2.3.3 CSM-ADB: Adaptive Broadcast. The protocol variants described in
the previous sections all use invalidate-based coherence: data are updated only
when accessed. CSM-ADB uses Memory Channel broadcast to efficiently com-
municate application data that is widely shared (read by multiple consumers).
To build the protocol, we modified the CSM-MS messaging system to create
a new set of buffers, each of which is mapped for transmit by any node and
for receive by all nodes except the sender. Pages are written to these globally
mapped buffers selectively, based on the following heuristics: multiple requests
for the same page are received simultaneously; multiple requests for the same
page are received within the same synchronization interval on the home node
(where a new interval is defined at each release); or there were two or more
requests for the page in the previous interval. These heuristics enable us to
capture both repetitive and non-repetitive multiple-consumer access patterns.
Pages in the broadcast buffers are invalidated at the time of a release if the
page has been modified in that interval (at the time at which the directory
on the home node is updated). Nodes that are about to update their copy of a
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Table II. Basic Memory Channel Properties and Operation Costs on
32 Processors. Diff Cost Varies According to the Size of the Diff

MC property Value
Latency 3.3 µs
Bandwidth (p2p) 70 MB/s

Operation MC Direct MC Messages
Diff (µs) 31–129 70–245
Lock (µs) 10 33
Barrier (µs) 29 53

page check the broadcast buffers for a valid copy before requesting one from
the home node. The goal is to reduce contention and bandwidth consumption
by eliminating multiple requests for the same data. In an attempt to assess the
effects of using broadcast with a larger number of nodes, we also report CSM-
ADB results using 32 processors on a one-level protocol [Kontothanassis et al.
1997]—one that does not leverage hardware shared memory for sharing within
the node—so as to emulate the communication behavior of a 32-node system.

3. RESULTS

We begin this section with a brief description of our hardware platform and our
application suite. Next, we compare the performance of the one-level (CSM-
1L) protocol (CSM-1L treats each processor as a separate node and does not
use intra-node hardware coherence) with that of the two-level DMS version
(CSM-2L) that leverages intra-node hardware coherence. Finally, we present
our investigation of the impact on performance of Memory Channel features
and of the home node migration and broadcast optimizations.

3.1 Platform and Basic Operation Costs

Unless otherwise indicated, our experimental platform is a set of eight
AlphaServer 4100 5/600 nodes, each with four 600 MHz 21164A processors, an
8 MB direct-mapped board-level cache with a 64-byte line size, and 2 GBytes
of memory. The 21164A has two levels of on-chip cache. The first level consists
of 8 kB each of direct-mapped instruction and (write-through) data cache, with
a 32-byte line size. The second level is a combined 3-way set associative 96 kB
cache, with a 64-byte line size. The nodes are connected by a Memory Channel
2 system area network with a peak point-to-point bandwidth of 70 MB/sec and
a one-way, cache-to-cache latency for a 64-bit remote-write operation of 3.3 µs.

Each AlphaServer node runs Compaq Tru64 Unix 4.0F, with TruCluster v1.6
(Memory Channel) extensions. The systems execute in multi-user mode, but
with the exception of normal Unix daemons no other processes were active
during the tests. In order to increase cache efficiency, application processes are
pinned to a processor at startup. No other nodes are connected to the Memory
Channel.

The typical round-trip latency for a null message in Cashmere is 15 µs.
This time includes the transfer of the message header and the invocation of
a null handler function. A page fetch operation costs 220 µs. A twin operation
requires 68 µs.

As described in Section 2.3.1, remote writes, broadcast, and total ordering
can be used to significantly reduce the cost of diffs, metadata maintenance (di-
rectory updates and write notice propagation), and synchronization. Table II
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shows the basic Memory Channel latency and bandwidth properties as well
as costs for diff operations, lock acquires, and barriers with (MC Direct) and
without (MC Messages) the use of these special features. The cost of diff oper-
ations varies according to the size of the diff. In the MC Direct case, directory
updates, write notices, and flag synchronization all leverage remote writes and
total ordering, and directory updates and flag synchronization, also rely on in-
expensive broadcast. In the MC Messages case, directory updates are small
messages with simple handlers, so their cost is only slightly more than the cost
of a null message. The cost of write notices depends greatly on the write notice
count and number of destinations. Write notices sent to different destinations
can be overlapped, thus reducing the operation’s overall latency. Flag opera-
tions must be sent to all nodes, but again messages to different destinations
can be overlapped, so perceived latency should not be much more than that of
a null message.

3.2 Application Suite

Most of our applications are well known benchmarks from the Splash [Singh
et al. 1992; Woo et al. 1995] and TreadMarks [Amza et al. 1996] suites.

Briefly, the applications are Barnes, an N-body simulation derived from the
same application in the SPLASH-1 suite; CLU and LU, lower and upper trian-
gular matrix factorization kernels (with and without contiguous allocation of a
single processor’s data, respectively), from the SPLASH-2 suite;2 EM3D, a pro-
gram to simulate electromagnetic wave propagation through 3D objects [Culler
et al. 1993]; Gauss, a locally-developed solver for a system of linear equations
Ax = B using Gaussian Elimination and back-substitution; Ilink, a widely
used genetic linkage analysis program from the FASTLINK 2.3P [Dwarkadas
et al. 1994] package, which locates disease genes on chromosomes; SOR, a Red-
Black Successive Over-Relaxation program, from the TreadMarks distribution;
TSP, a traveling salesman problem, from the TreadMarks distribution; Water-
Nsquared, a fluid flow simulation from the SPLASH-2 suite; Water-Spatial,
another SPLASH-2 fluid flow simulation that solves the same problem as Water-
Nsquared, but with the data partitioned spatially; Ocean, which simulates
large-scale ocean currents using a Gauss-Seidel multigrid equation solver; Ray-
trace, which renders a three-dimensional scene using a hierarchical uniform
grid; and Volrend, which uses ray casting and an octree structure to render a
three-dimensional cube of voxels.

Wherever available, we present results for all the above applications. The
dataset sizes and uniprocessor execution times for those applications executed
on our base platform are presented in Table III. Our choice of dataset sizes
was driven by a desire to allow reasonable scaling while still showcasing the
various protocol overheads. Larger dataset sizes would lead to better speedups
but less protocol differentiation. Execution times were measured by running

2Both CLU and LU tile the input matrix and assign each column of tiles to a contiguous set
of processors. Due to its different allocation strategy, LU incurs a large amount of false sharing
across tiles. To improve scalability, we modified LU to assign a column of tiles to processors within
the same SMP, thereby reducing false sharing across node boundaries.
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Table III. Dataset Sizes and Sequential Execution Time of Applications.
Ocean, Raytrace, and Volrend Appear Only in Section 4.2

Program Problem Size Time (s)
Barnes 128K bodies (26 MB) 120.4
CLU 2048 × 2048 (33 MB) 75.4
LU 2500 × 2500 (50 MB) 143.8
EM3D 64000 nodes (52 MB) 30.6
Gauss 2048 × 2048 (33 MB) 234.8
Ilink CLP (15 MB) 212.7
SOR 3072 × 4096 (50 MB) 36.2
TSP 17 cities (1 MB) 1342.5
Water-Nsquared 9261 mols. (6 MB) 332.6
Water-Spatial 9261 mols. (16 MB) 20.2

each uninstrumented application sequentially without linking it to the protocol
library.

3.3 Performance Impact of a Multilevel Protocol

Figure 1 presents speedup bar charts for our applications on up to 32 processors
on both the 1-level and 2-level protocols using the CSM-DMS protocol variant.
All calculations are with respect to the sequential times in Table III. The config-
urations we use are written as N :M , where N is the total number of processes
(each on its own processor), and M is the number of processes per cluster node.
So 8:2, for example, uses two processors in each of 4 nodes, while 8:4 uses all
four processors in each of 2 nodes.

Figure 2 presents a breakdown of execution time at 32 processors for each
application. The breakdown is normalized with respect to total execution time
for CSM-2L. The components shown represent time spent executing user code
(User), time spent in protocol code (Protocol), and communication and wait
time (Comm & Wait). In addition to the execution time of user code, User time
also includes cache misses, polling instrumentation overhead, and time needed
to enter protocol code: kernel overhead on traps and function call overhead
from a successful message poll. Protocol time includes all time spent executing
within the Cashmere library, while communication and wait time includes stalls
waiting for page transfers, and wait time at synchronization points.

Compared to the base 1L protocol, the two-level protocol shows slight im-
provement for CLU, SOR, TSP, and Water-Nsquared (1–18%), good improve-
ment for EM3D, Barnes, Ilink, and Gauss (46–53%), and substantial improve-
ment for LU, and Water-spatial (66–70%). An optimized version of the one-level
protocol that eliminates twin and diff operations on processors on the home node
and leverages hardware coherence on the home node [Stets et al. 1997] closes
the gap for EM3D, but the full two-level protocols (ones that leverage hardware
coherence on all nodes including the home node) still hold their performance
edge for the applications overall.

SOR and EM3D both benefit from the ability of 2L to use hardware coher-
ence within nodes to exploit application locality, in particular, nearest neighbor
sharing. This locality results in a significant reduction in page faults, page
transfers, coherence operations, and time spent in protocol code. Performance
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Fig. 1. Speedups for One-Level (1L) and Two-Level (2L) protocols.

benefits due to protocol improvements are more pronounced for EM3D since
it has a low computation-to-communication ratio and protocol time is a higher
percentage of overall execution time.

CLU benefits from hardware coherence within the home node and from a
reduction in the amount of data transferred, due to the ability to coalesce mul-
tiple requests for the same data from a single node. CLU’s high computation-to-
communication ratio limits overall improvements. Water-Nsquared also bene-
fits from coalescing remote requests for data. In both applications, the amount
of data transmitted in 2L relative to 1L is halved.

Gauss shows significant benefits from coalescing requests for, and the fetch
of, data from remote nodes, since the access pattern for the shared data is essen-
tially single producer/multiple consumer (ideally implemented with broadcast).
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Fig. 2. Breakdown of percent normalized execution time for the Two-Level (2L) and One-Level
(1L) protocols at 32 processors. The components shown represent time spent executing user code
(User), time spent in protocol code (Protocol), and communication and wait time (Comm & Wait).

There is a four-fold reduction in the amount of data transferred, but little re-
duction in the number of read and write page faults. These gains come at the
expense of slightly higher protocol overhead due to increased maintenance costs
of protocol metadata (Figure 2). However, there is a 50% improvement in exe-
cution time, a result of the reduction in communication and wait time. Ilink’s
communication pattern is all-to-one in one phase, and one-to-all in the other (a
master-slave style computation). Hence, its behavior is similar to that of Gauss,
with a 50% improvement in performance. Barnes shows a 46% improvement
in performance. The benefits in this case also come from the ability to coalesce
page fetch requests, which significantly reduces the amount of data transferred.
Since the computation-to-communication ratio is low for this application, this
reduction has a marked effect on performance.

LU and Water-Spatial show the largest improvements when moving from a
one-level to a two-level protocol. LU incurs high communication costs due to
write-write false sharing at row boundaries. Leveraging hardware coherence
within nodes alleviates this effect and results in a dramatic reduction in com-
munication and wait time. This is further evidenced by the performance differ-
ences among configurations with the same number of processors. Using more
processors per node and a smaller number of nodes results in much higher per-
formance. Water-Spatial exhibits behavior similar to that of SOR and EM3D.
Simulated molecules are grouped into physically proximate cells, so data shar-
ing happens only when processors must access molecules in neighboring cells.
Molecules can move among cells, however, creating a loss of locality and an
increase in false sharing over time. The two-level protocol can better deal with
loss of locality within an SMP node and as a result experiences significantly
reduced communication and synchronization overheads.

TSP’s behavior is nondeterministic, which accounts for the variations in user
time. Performance of the two-level protocol is comparable to that of the one-level
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protocol. The high computation-to-communication ratio results in good perfor-
mance in both cases.

3.3.1 Effect of Clustering. The performance of SOR and Gauss decreases
for all protocols when the number of processors per node (degree of clustering)
is increased, while keeping the number of processors fixed (see Figure 1). Both
applications are matrix-based, with only a small amount of computation per
element of the matrix. Their dataset sizes do not fit in the second level caches
and hence a large amount of traffic is generated between the caches and main
memory due to capacity misses. Increasing the number of processors per node
increases the traffic on the shared node bus, thereby reducing performance.
Cox et al. [1994] report similar results in their comparison of hardware and
software shared memory systems.

CLU exhibits negative clustering effects only for the one-level protocols. The
4:4, 8:4, and 16:4 configurations experience a significant performance drop,
which is not present in the two-level protocol. This can be attributed to the
burstiness of CLU’s page accesses. As a pivot row is factored, its pages are
accessed only by their owner, and are therefore held in exclusive mode. After
factoring is complete, other processors immediately access the pages, gener-
ating requests for each page to leave exclusive mode. As the number of pro-
cessors per node increases, the shared network link creates a communication
bottleneck. The two-level protocol alleviates this bottleneck by exploiting hard-
ware coherence and coalescing requests sent to a remote node for the same
page.

EM3D, LU, Water-spatial, and Barnes show a performance improvement
when the number of processors per node is increased in the two-level protocol.
The one-level protocol does not show similar performance gains. These applica-
tions have low computation-to-communication ratios, allowing the reduction in
internode traffic due to the use of intranode sharing in the two-level protocol to
yield benefits even at 8 and 16 processor totals. At 4 processors, the two-level
protocol also benefits from sharing memory in hardware thus avoiding software
overheads and extra traffic on the bus.

At first glance, these results may appear to contradict those of previous stud-
ies [Bilas et al. 1996; Cox et al. 1994; Erlichson et al. 1996], which report that
bandwidth plays a major role in the performance of clustered systems. Our re-
sults compare one- and two-level protocols on the same clustered hardware, as
opposed to two-level protocols on clustered hardware versus one-level protocols
on non-clustered hardware (with consequently higher network bandwidth per
processor).

The performance of Water-Nsquared, TSP, and Ilink is unaffected by the
number of processors per node at 8 and 16 processor totals, regardless of the
protocol. The reduction in internode communication due to the use of hard-
ware coherence in the two-level protocol improves performance significantly at
24 and 32 processors for Gauss, Ilink, EM3D, LU, Water-spatial, and Barnes.
SOR, CLU, TSP, and Water-Nsquared show only slight overall benefits from ex-
ploiting hardware coherence, due to their high computation-to-communication
ratios.
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Fig. 3. Normalized execution time breakdown for the applications and protocol variants on 32 pro-
cessors. The suffix on the protocol name indicates the kinds of communication using special Memory
Channel features (D: shared Data propagation, M: protocol Metadata maintenance, S: Synchroniza-
tion, None: No use of Memory Channel features). Mg indicates a migrating home node policy.

Overall the extra synchronization and data structures in the two-level
protocol have little effect on performance. This observation is supported by
the similar performance of the 8:1 configuration for most of the applications
studied.

3.4 Performance Impact of Protocol Variants

Throughout this section, we will refer to Figure 3 and Table IV. Figure 3
shows a breakdown of execution time, normalized to that of the CSM-DMS
protocol, for the first six protocol variants from Table I. The breakdown in-
dicates time spent executing application code (User), executing protocol code
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Table IV. Application Speedups and Statistics at 32 Processors. For Home Node Migrations, the
Parenthesized Figure Indicates the Number of Attempts

Cashmere Variant

Application DMS MS S None MS-Mg None-Mg
Speedup (32 procs) 7.6 5.5 4.2 4.2 6.3 5.9

Barnes Page Transfers (K) 66.0 63.4 96.8 96.1 69.1 78.5
Diffs (K) 60.8 50.2 66.4 61.8 45.1 47.5
Migrations (K) — — — — 15.6 (15.6) 11.6 (67.4)
Speedup (32 procs) 18.3 18.4 18.0 18.0 18.2 17.7

CLU Page Transfers (K) 8.3 11.9 11.9 11.9 11.9 11.9
Diffs (K) 0 0 0 0 0 0
Migrations (K) — — — — 3.5 (3.5) 3.5 (3.5)
Speedup (32 procs) 4.0 3.5 3.6 3.6 12.5 12.4

LU Page Transfers (K) 44.1 44.4 44.6 44.4 51.1 53.1
Diffs (K) 285.6 278.06 278.9 277.4 1.1 1.1
Migrations (K) — — — — 5.5 (5.5) 5.5 (5.5)
Speedup (32 procs) 13.5 10.5 10.5 10.3 10.2 9.8

EM3D Page Transfers (K) 32.8 32.8 33.1 33.1 43.9 43.8
Diffs (K) 7.1 7.1 7.1 7.1 0 0
Migrations (K) — — — — 1.9 (1.9) 1.9 (1.9)
Speedup (32 procs) 22.7 21.9 23.2 23.0 22.1 21.9

Gauss Page Transfers (K) 38.2 42.2 40.1 40.3 43.9 44.1
Diffs (K) 3.6 3.6 3.6 3.6 0.5 0.1
Migrations (K) — — — — 4.5 (4.5) 4.6 (4.6)
Speedup (32 procs) 12.5 12.1 11.1 11.1 11.6 11.4

Ilink Page Transfers (K) 50.0 50.0 53.1 53.1 51.9 56.1
Diffs (K) 12.0 12.2 12.4 12.4 8.7 8.6
Migrations (K) — — — — 1.9 (2.7) 1.9 (6.2)
Speedup (32 procs) 31.2 30.1 30.1 29.9 31.2 30.9

SOR Page Transfers (K) 0.3 0.3 0.3 0.3 0.7 0.7
Diffs (K) 1.4 1.4 1.4 1.4 0 0
Migrations (K) — — — — 0 0
Speedup (32 procs) 33.9 34.0 33.8 34.2 33.9 34.0

TSP Page Transfers (K) 12.6 12.2 12.3 12.2 14.1 13.9
Diffs (K) 8.0 7.8 7.8 7.8 0.1 0.1
Migrations (K) — — — — 5.0 (5.0) 5.0 (5.0)
Speedup (32 procs) 20.6 18.0 17.8 17.0 19.6 19.3

Water- Page Transfers (K) 31.5 29.8 29.4 22.9 28.3 32.9
Nsquared Diffs (K) 251.1 234.4 249.7 243.7 17.2 26.3

Migrations (K) — — — — 9.2 (9.3) 11.0 (11.7)
Speedup (32 procs) 7.7 7.0 7.0 7.2 12.3 11.8

Water- Page Transfers (K) 4.0 4.5 4.8 4.9 5.2 5.6
Spatial Diffs (K) 6.2 6.2 6.4 6.4 0.1 0.1

Migrations (K) — — — — 0.3 (0.3) 0.3 (0.3)

(Protocol), waiting on synchronization operations (Wait), and sending or re-
ceiving messages (Message). Table IV lists the speedups and statistics on pro-
tocol communication for each of the applications running on 32 processors. The
statistics include the numbers of page transfers, diff operations, and home node
migrations (and attempts).

3.4.1 The Impact of Memory Channel Features. Five of our ten applications
show measurably better performance on CSM-DMS (fully leveraging Memory
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Channel features) than on CSM-None (using explicit messages). Barnes runs
44% faster; EM3D and Water-Nsquared run 17–23% faster; LU and Water-
Spatial run approximately 8–9% faster. CLU, Gauss, Ilink, SOR, and TSP are
not sensitive to the use of Memory Channel features and do not show any
significant performance differences across our protocols. All of the protocols
use first-touch initial home node assignment. With multiple sharers per page,
however, the timing differences among protocol variants can lead to first-touch
differences. To eliminate these differences and isolate Memory Channel impact,
we captured the first-touch assignments from CSM-DMS and used them to
explicitly assign home nodes in the other protocols.

Barnes exhibits a high degree of sharing and incurs a large Wait time on all
protocol variants (see Figure 3). CSM-DMS runs roughly 28% faster than CSM-
MS and 44% faster than CSM-S and CSM-None. This performance difference
is due to the lower Message and Wait times in CSM-DMS. In this application,
the Memory Channel features serve to optimize data propagation and meta-
data maintenance, thereby reducing application perturbation, and resulting in
lower wait time. Due to the large amount of false sharing in Barnes, application
perturbation also results in large variations in the number of pages transferred.
Since synchronization time is dominated by software coherence protocol over-
head, the use of Memory Channel features to optimize synchronization has
little impact on performance.

Water-Nsquared, too, obtains its best performance on CSM-DMS. The main
reason is page lock contention for the delivery of diffs and servicing of page
faults. CSM-DMS does not experience this contention since it can deliver diffs
using remote writes. The Memory Channel features also provide a noticeable
performance advantage by optimizing synchronization operations in this appli-
cation. Water-Nsquared uses per-molecule locks, and so performs a very large
number of lock operations. Overall, CSM-DMS performs 11% better than CSM-
MS and CSM-S and 14% better than CSM-None.

CSM-DMS also provides the best performance for EM3D: a 21% margin over
the other protocols. Again, the advantage is due to the use of Memory Channel
features to optimize data propagation. In contrast to Barnes and LU, the major
performance differences in EM3D are due to Wait time, rather than Message
time. Performance of EM3D is extremely sensitive to higher data propagation
costs. The application exhibits a nearest neighbor sharing pattern, so diff op-
erations in our SMP-aware protocol occur only between adjacent processors
spanning nodes. These processors perform their diffs at barriers, placing them
directly in the critical synchronization path. Any increase in diff cost will di-
rectly impact the overall Wait time. Figure 3 shows this effect, as Message time
increases from 18% in CSM-DMS to 24% in CSM-MS, but Wait time increases
from 41% to 65%. This application provides an excellent example of the sensi-
tivity of synchronization Wait time to any protocol perturbation.

At the given matrix size, LU incurs a large amount of protocol communication
due to write-write false sharing at row boundaries, and CSM-DMS performs
11% better than the other protocols. The advantage is due primarily to opti-
mized data propagation, as CSM-DMS uses remote writes and total ordering
to reduce the overhead of diff application.
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Water-Spatial is sensitive to data propagation costs. The higher cost in CSM-
MS, CSM-S, and CSM-None perturbs the synchronization Wait time and hurts
overall performance. CSM-DMS outperforms the other protocols on Water-
Spatial by 9%.

CLU shows no significant difference in overall performance across the pro-
tocols. This application has little communication that can be optimized. Any
increased Message time is hidden by the existing synchronization time. Ilink
performs a large number of diffs, and might be expected to benefit significantly
from remote writes. However, 90% of the diffs are applied at the home node
by idle processors, so the extra overhead is mostly hidden from the applica-
tion. Hence, the benefits are negligible. Gauss, SOR, and TSP, likewise, are not
noticeably dependent on the use of Memory Channel features.

3.4.2 Home Node Migration: Optimization for a Scalable Data Space.
Home node migration can reduce the number of remote memory accesses by
moving the home node to active writers, thereby reducing the number of in-
validations, twins and diffs, and sometimes the amount of data transferred
across the network. Our results show that this optimization can be very effec-
tive. Six of our ten applications are affected by home node migration. Two of
them (EM3D and Ilink) suffer slightly; four (LU, Water-Spatial, Barnes, and
Water-Nsquared) benefit, in some cases dramatically.

Migration is particularly effective in LU and Water-Spatial, where it sig-
nificantly reduces the number of diff and attendant twin operations (see
Table IV). In fact, for these applications, CSM-None-Mg, which does not lever-
age the special Memory Channel features at all, outperforms the full Memory
Channel protocol, CSM-DMS, reducing execution time by 67% in LU and 34%
in Water-Spatial.

In Barnes and Water-Nsquared, there are also benefits, albeit smaller, from
using migration. In both applications, CSM-MS-Mg and CSM-None-Mg outper-
form their first-touch counterparts, CSM-MS and CSM-None. Both applications
incur many fewer diffs when using migration (see Table IV). The smaller num-
ber of diffs (and twins) directly reduces Protocol times and, indirectly, Wait
time. In Barnes, the execution times for CSM-MS-Mg and CSM-None-Mg are
12% and 27% lower, respectively, than in CSM-MS and CSM-None, bringing
performance to within 30% of CSM-DMS for CSM-None-Mg. Water-Nsquared
shows 8% and 12% improvements in CSM-MS-Mg and CSM-None-Mg, respec-
tively, bringing performance to within 7% of CSM-DMS for CSM-None-Mg.

Home migration hurts performance in EM3D and Ilink. The reduction in the
number of diff operations comes at the expense of increased page transfers due
to requests by the consumer, which was originally the home node. Since only
a subset of the data in a page is modified, the net result is a larger amount of
data transferred, which negatively impacts performance. CSM-None-Mg also
suffers from a large number of unsuccessful migration requests in Ilink (see
Table IV). These requests are denied because the home node is actively writing
the page. In CSM-MS-Mg, the home node’s writing status is globally available
in the replicated page directory, so a migration request can be skipped if inap-
propriate. In CSM-None-Mg, however, a remote node only caches a copy of a
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Fig. 4. Normalized execution time breakdown using adaptive broadcast of data (CSM-ADB) in
comparison to CSM-MS-Mg at 8 nodes (32 processors) and CSM-DMS at 32 nodes (32 processors).

page’s directory entry, and may not always have current information concern-
ing the home node. Thus, unnecessary migration requests cannot be avoided.
Barnes, like Ilink, suffers a large number of unsuccessful migration attempts
with CSM-None-Mg, but the reduction in page transfers and diffs more than
makes up for these.

Overall, the migration-based protocol variants deliver very good perfor-
mance, while avoiding the need to map shared data into the limited amount
of remotely accessible address space. The performance losses in EM3D and
Ilink are fairly low (3–5%), while the improvements in other applications are
comparatively large (up to 67%).

3.4.3 Selective Broadcast for Widely Shared Data. Selective use of broad-
cast for data that are accessed by multiple consumers (as in CSM-ADB) can
reduce the number of messages and the amount of data sent across the net-
work, in addition to reducing contention and protocol overhead at the producer
(home node). Compared against CSM-MS-Mg (the non-broadcast variant with
the best performance), performance improvements on an 8-node, 32-processor
system vary from −3% in SOR (the only application hurt by broadcast) to 13%
in Ilink (Figure 4). Since data are distributed to both producer and consumer
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during the first iteration of SOR, broadcast is used for the second iteration.
Subsequent iterations correctly detect a single consumer and revert to point-
to-point messaging. While the cost of predicting whether broadcast should be
used is negligible, the use of broadcast when only one (due to misprediction) or
a small number of nodes share the data could result in potential contention by
not allowing simultaneous point-to-point communication.

In order to determine the effects on performance when using a larger clus-
ter, we emulated a 32-node system by running a one-level (non-SMP-aware)
protocol in which each processor is in effect a separate node.3 Performance
improvements at 32 nodes jump to 18, 49, and 51% for LU, Ilink and Gauss,
respectively. The large gains in these applications come from a reduction in
Message and Wait time. In Gauss, the protocol is able to detect and optimize
the communication of each pivot row to multiple consumers: 10K pages are
placed in the broadcast buffers, and satisfy 172K out of a total of 182K page
updates. In Ilink, 12K pages are placed in the broadcast buffers, and satisfy
191K out of a total of 205K page updates. The number of consumers in LU is
not as large: 106K pages are placed in the broadcast buffers, and satisfy 400K
out of a total of 1.19M page updates. SOR is again the only application to be
hurt by broadcast, and only by about 1%.

4. ALTERNATE SOFTWARE DSM APPROACHES USING FAST
USER-LEVEL MESSAGES

Cashmere was developed with a Memory Channel style architecture in mind.
Our goal in this section is to compare Cashmere’s performance with that of other
software DSM approaches on the same hardware, with the goal of identifying
the effects of the architecture on protocol design. To that end, we look at the
relative performance of Cashmere and two other state-of-the-art DSMs: Tread-
Marks [Amza et al. 1996; Keleher et al. 1992] and Shasta [Scales et al. 1996].
TreadMarks was developed for higher latency networks but is likely to benefit
from the lower-latency Memory Channel messages as well. Shasta was designed
with a Memory Channel architecture in mind but also attempts to reduce over-
heads associated with fine-grain sharing by using smaller coherence units and
an all-software approach to detecting coherence events. Unfortunately, we have
been unable to recollect the performance numbers for TreadMarks and Shasta
on the latest version of our experimental environment and thus the performance
numbers in this section are based on earlier versions of the hardware. To avoid
any confusion, we describe the experimental platform on which performance
numbers were collected in each of the subsections below.

4.1 Comparing Cashmere with TreadMarks

TreadMarks [Amza et al. 1996; Keleher et al. 1992] is widely recognized as
the benchmark system for S-DSM on local-area networks. In this section, we

3Emulation differs from a real 32-node system in that the (four) processors within a node share
the same network interface and messages among processors within a node are exchanged through
shared memory. We used CSM-DMS as the base to which ADB was added, since this was the only
protocol for which we had 32-node emulation capabilities.
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Fig. 5. Comparative speedups of TreadMarks (TMK) and Cashmere (CSM) on 32 processors (16
for Barnes).

compare the performance of one-level versions of both Cashmere (CSM-DMS)
and TreadMarks, with an eye toward evaluating the impact of the Memory
Channel network on coherence protocol design. Due to the fact that it was
designed for high-latency local-area networks, TreadMarks uses lazy release
consistency to reduce the total number of messages transferred by delaying and
aggregating the propagation of data as far as is possible. Cashmere, on the other
hand, takes advantage of the low latency of the Memory Channel to perform
some protocol operations early (at release time rather than at the causally
related acquire) and to take the operations off the application’s critical path.

While the two-level version of Cashmere provides substantial performance
improvements over the one-level implementation, a two-level version of Tread-
Marks was unavailable at the time this comparison was undertaken. There-
fore, we limited ourselves to the comparison of the one-level versions. The
performance numbers presented in this section were collected on eight DEC
AlphaServer 2100 4/233 computers connected by the first generation of the
Memory Channel network. Each AlphaServer was equipped with four 21064A
processors operating at 233 Mhz and with 256 MB of physical memory. The
Memory Channel 1 interconnect provides a process-to-process one-way mes-
sage latency of 5.2 µs and per-link transfer bandwidths of 29 MB/s. Aggregate
peak bandwidth is about 60 MB/s.

We have discussed the relative performance of Cashmere and TreadMarks
in considerable detail in an earlier paper [Kontothanassis et al. 1997]. Unfor-
tunately the version of Cashmere presented in that paper used write-doubling
to collect remote changes to a page. In that initial design, we employed an ex-
tra compilation pass to add an additional write to Memory Channel space for
every write to the shared memory program area. This extra write would propa-
gate the modified value to the home node of the page, keeping the master copy
of the data continually up-to-date. The goal was to overlap computation with
communication. Later experiments revealed, however, that the computational
cost, network interface occupancy, and additional network contention of write
doubling on the Memory Channel were detrimental to performance.

In a subsequent redesign of the system, we moved away from write-doubling
and adopted twins and diffs [Carter et al. 1991] to collect remote changes to a
page [Stets et al. 1997]. Figure 5 shows speedup results with this later (but still
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one-level) version of the protocol. Neither Cashmere nor TreadMarks is taking
advantage of intranode hardware coherence in this experiment; both treat the
hardware as 32 separate processors. An exception occurs with Barnes, in which
performance becomes worse (for both protocols) with more than 16 processors.
To ensure a reasonable comparison, we report results for 16 processors in this
case.

For five of the applications (SOR, LU, Water-Nsquared, EM3D, and Barnes),
Cashmere outperforms TreadMarks by 12% to 31%. For two applications (Gauss
and TSP), performance is approximately the same. For Ilink, TreadMarks out-
performs Cashmere by approximately 19%. The comparative overhead of de-
pendence tracking in Cashmere and TreadMarks depends on the nature of
the application: Cashmere may force a process to invalidate a falsely shared
page at an acquire operation even when that page has been modified only
by a non-causally-related process. Conversely, TreadMarks requires causally-
related write notice propagation to processes at the time of an acquire, even
for pages they never touch. However, the primary reasons for the differences in
the above applications stem from two factors—Cashmere’s use of a home node
to collect all modifications and subsequent transmission of the entire page to
update other nodes’ cached copies; and TreadMarks’ use of accumulated diffs
to perform the same updates.

For Barnes, Cashmere outperforms TreadMarks mainly due to the ability
to get new versions of a page from a single home node, rather than having to
collect diffs from multiple previous writers. For Water-Nsquared, TreadMarks
loses performance due to the multiple overlapping diffs (and therefore extra
data transmitted) that need to be transmitted in order to ensure coherence.
For SOR, LU, and Em3d, Cashmere performs better due to the ability to avoid
twinning and diffing by appropriate placement of the home node. For Ilink, in
which TreadMarks performs better than Cashmere, the difference derives from
the sparsity of the application’s data structures. Only a small portion of each
page is modified between synchronization operations, and TreadMarks benefits
from the ability to fetch diffs rather than whole pages. This is also the reason
for TreadMarks’ slightly improved performance on Gauss.

Overall, our conclusion is that the lower latency provided by modern system-
area networks favors the “less aggressively lazy” release consistency of Cash-
mere that allows protocol operations to be performed earlier and potentially off
the application’s critical path—a conclusion shared by the designers of Prince-
ton’s HLRC [Samanta et al. 1998]. The directory structure used by Cashmere
and HLRC is also significantly simpler than the comparable structure in Tread-
Marks (distributed intervals and timestamps).

4.2 Tradeoffs between Cashmere and Fine-grain Software Shared Memory

Shasta [Scales et al. 1996] is a software-only S-DSM system designed for the
same hardware as Cashmere. Like Cashmere, Shasta exploits low-latency mes-
sages in its coherence protocol, but rather than leverage virtual memory, it re-
lies on compiler support to insert coherence checks in-line before load and store
instructions. Aggressive static analysis serves to eliminate redundant checks
in many cases, and the lack of reliance on VM allows the system to associate
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Fig. 6. Comparative speedup for Shasta and Cashmere on our application suite.

checks with small and variable-size coherence blocks. Both systems leverage
intranode hardware coherence. Software is invoked only in cases of internode
sharing. In collaboration with the Shasta designers, we undertook a detailed
comparison of the two systems [Dwarkadas et al. 1999b]; we summarize that
comparison here. A similar study appeared in Zhou et al. [1997]. The main
difference between our work and that study is our use of SMP nodes and a
software-only fine-grain coherence protocol.

The performance numbers presented in this section were collected on four
DEC Alpha Server 4100 multiprocessors connected by a Memory Channel net-
work. Each AlphaServer had four 400 Mhz 21164 processors with 512 MB of
memory. This experimental system provides a process-to-process one-way mes-
sage latency of 3.2 µs and per-link transfer bandwidths of 70 MB/s. Aggregate
peak bandwidth is about 100 MB/s.

Figure 6 shows the speedup achieved on 16 processors by the two systems for
our application suite. For nine of the applications (LU, CLU, Raytrace, Volrend,
Water-Nsquared, Water-spatial, Em3d, Gauss, and Ilink), Cashmere outper-
forms Shasta by amounts varying between 11% and 48%; for two applications
(Ocean and SOR) performance is approximately the same; for the remaining two
(Barnes and TSP) Shasta outperforms Cashmere by 42% and 13% respectively.

These numbers are based on the best version of each application on each sys-
tem. Some of the applications (notably Raytrace, Volrend, and Barnes) had to
be modified before they could yield good performance on Cashmere [Dwarkadas
et al. 1999b]. These modifications were all quite minor, but did require an un-
derstanding of the program source. They yielded performance improvements
for Shasta as well, but nowhere nearly as much as they did for Cashmere.

In general, we found that Shasta’s ability to enforce coherence on blocks
smaller than the virtual memory pages used by Cashmere provides significant
advantages for programs that exhibit fine-grain temporal and spatial sharing.
This advantage, however, comes at a price in more coarse-grain applications,
due to the overhead of in-line coherence checks. Furthermore, in many cases
smaller coherence blocks increase the total number of internode coherence op-
erations: larger coherence blocks are more natural in coarse-grain applications.
Conversely, we have discovered that for systems like Cashmere, which detect
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access faults using the virtual memory hardware, the main sources of overhead
are critical section dilation and the communication of unneeded data in com-
putations with spatially fine-grain access. Certain programming idioms that
are commonly used in the context of hardware supported shared memory, such
as work queues, parallel reductions, and atomic counters, can cause excessive
communication overhead unless they are tuned for coarser-grain systems. It
is our belief that for programmers developing shared-memory applications for
clusters “from scratch”, VM-based coherence can be expected to provide higher
performance than software-only alternatives. Shasta on the other hand pro-
vides an easier migration path for shared memory applications developed on
hardware-coherent SMPs.

5. RELATED WORK

The original idea of using virtual memory to implement coherence on networks
dates from Kai Li’s thesis work [Li and Hudak 1989]. Nitzberg and Lo [1991]
provide a survey of early VM-based systems. Several groups employed similar
techniques to migrate and replicate pages in early, cacheless shared-memory
multiprocessors [Bolosky et al. 1991; LaRowe and Ellis 1991]. Lazy, multi-
writer protocols were pioneered by Keleher et al. [1992], and later adopted by
several other groups. Several of the ideas in Cashmere were based on Petersen’s
coherence algorithms for small-scale, non-hardware-coherent multiprocessors
[Petersen and Li 1993].

Wisconsin’s Blizzard system [Schoinas et al. 1994] maintains coherence for
cache-line-size blocks, either in software or by using artificially-induced ECC
faults to catch references to invalid blocks. It runs on the Thinking Machines
CM-5 and provides a sequentially-consistent programming model. The Shasta
system [Scales et al. 1996], described in Section 4.2, extends the software-based
Blizzard approach with a relaxed consistency model and variable-size coherence
blocks.

AURC [Iftode et al. 1996] is a multi-writer protocol designed for the Shrimp
network interface [Blumrich et al. 1994]. Like Cashmere, AURC relies on re-
mote memory access to write shared data updates to home nodes. Because the
Shrimp interface connects to the memory bus of its ia486-based nodes, AURC
is able to double writes in hardware, avoiding a major source of overhead in
Cashmere-1L. On the protocol side, AURC uses distributed information in the
form of timestamps and write notices to maintain sharing information. As a
result, AURC has no need for directory, lock, or write notice metadata: remote-
mapped memory is used only for fast messages and doubled writes. Finally,
where the Cashmere protocol was originally designed to read lines from remote
memory on a cache miss [Kontothanassis and Scott 1995b], the AURC protocol
was designed from the outset with the assumption that whole pages would be
copied to local memory.

Inspired by AURC, Samanta et al. [1998] developed an SMP-aware Home-
based LRC protocol (HLRC) that detects writes and propagates diffs entirely
in software. They implemented three versions of their protocol: one in which
processes within an SMP do not share any state (similar to CSM-1L); one in
which processes within an SMP share data but have independent page tables
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and thus can have independent views of a page’s state (similar to CSM-2L);
and one in which all processes within an SMP share data and page tables,
so that coherence operations on behalf of a process affect all processes in the
SMP. Reported results indicate that the ability to share state improves perfor-
mance, but that this state is best accessed through separate page tables. These
results are consistent with our findings in Cashmere. The most significant dif-
ference between CSM-2L and the best-performing HLRC variant is the latter’s
continued use of vector timestamps, passed through synchronization objects,
to avoid page update operations on non-causally-related execution paths. Like
hardware coherence protocols, Cashmere opts for simplicity by ensuring that
all of a process’s data are up-to-date at synchronization time.

A variety of systems implement coherence entirely in software, without VM
support, but require programmers to adopt a special programming model. In
some systems, such as Split-C [Culler et al. 1993] and Shrimp’s Deliberate
Update [Blumrich et al. 1994], the programmer must use special primitives
to read and write remote data. In others, including Shared Regions [Sandhu
et al. 1993], Cid [Nikhil 1994], and CRL [Johnson et al. 1995], remote data
are accessed with the same notation used for local data, but only in regions
of code that have been bracketed by special operations. The Midway sys-
tem [Zekauskas et al. 1994] requires the programmer to associate shared data
with synchronization objects, allowing ordinary synchronization acquires and
releases to play the role of the bracketing operations. Several other systems
use the member functions of an object-oriented programming model to trig-
ger coherence operations [Chase et al. 1989; Feeley et al. 1994; Tanenbaum
et al. 1992]. The extra information provided by such systems to the coherence
system can lead to superior performance at the cost of extra programming ef-
fort. In some cases, it may be possible for an optimizing compiler to obtain
the performance of the special programming model without the special syntax
[Dwarkadas et al. 1996].

Cox et al. [1994] were among the first to study layered hardware/software
coherence protocols. They simulate a system of 8-way, bus-based multi-
processors connected by an ATM network, using a protocol derived from
TreadMarks [Amza et al. 1996], and show that for clustering to provide signif-
icant benefits, reduction in internode messages and bandwidth requirements
must be proportional to the degree of clustering. Karlsson and Stenstrom [1996]
examined a similar system in simulation and found that the limiting factor in
performance was the latency rather than the bandwidth of the message-level
interconnect. Bilas et al. [1996] present a simulation study of the automatic
update release consistent (AURC) protocol on SMP nodes. They find that the
write-through traffic of AURC, coupled with the fact that processors within
an SMP have to share the same path to the top-level network, can result in
TreadMarks-style lazy release consistency performing better than AURC with
clustering.

Yeung et al. [1996], in their MGS system, were the first to actually imple-
ment a layered coherence protocol. They use a Munin-like multi-writer protocol
to maintain coherence across nodes. The protocol also includes an optimization
that avoids unnecessary diff computation in the case of a single writer.

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.



Shared Memory Computing on Clusters • 329

The MGS results indicate that performance improves with larger numbers
of processors per node in the cluster. MGS is implemented on the Alewife
[Agarwal et al. 1995] hardware shared memory multiprocessor with a mesh
interconnect, allowing per-node network bandwidth to scale up with the num-
ber of processors. In contrast, commercial multiprocessors typically provide
a single connection (usually through the I/O bus) that all processors within a
node have to share, thus limiting the benefits of larger nodes.

SoftFLASH [Erlichson et al. 1996] is a kernel-level implementation of a two-
level coherence protocol on a cluster of SMPs. The protocol is based on the
hardware coherent FLASH protocol. Shared data are tracked via TLB faults,
and page tables are shared among processes, necessitating the frequent use of
interprocessor TLB shootdown. Experimental results with SoftFLASH indicate
that any beneficial effects of clustering are offset by increased communication
costs. These results are largely explained, we believe, by the heavy overhead of
shootdown, especially for larger nodes.

Bilas et al. [1999] use their GeNIMA S-DSM to examine the impact of spe-
cial network features on S-DSM performance. Their network has remote write,
remote read, and specialized lock support, but no broadcast or total ordering.
The GeNIMA results show that a combination of remote write, remote read,
and synchronization support help avoid the need for interrupts or polling and
provide moderate improvements in S-DSM performance. However, the base
protocol against which they perform their comparisons uses interprocessor in-
terrupts to signal message arrival. Interrupts on commodity machines are typ-
ically on the order of a hundred microseconds, and so largely erase the benefits
of a low-latency network [Kontothanassis et al. 1997]. Our evaluation assumes
that messages can be detected through a much more efficient polling mech-
anism, as is found with other SANs [Dunning et al. 1998; von Eicken et al.
1995], and so each of our protocols benefits from the same low messaging la-
tency. Our evaluation also goes beyond the GeNIMA work by examining protocol
optimizations that are closely tied to the use (or nonuse) of special network fea-
tures. One of the protocol optimizations, home node migration, cannot be used
when shared data are remotely accessible, while another optimization, adap-
tive data broadcast, relies on a very efficient mapping of remotely accessible
memory.

Speight and Bennett [1998] evaluate the use of multicast and multithreading
in the context of S-DSM on high-latency unreliable networks. In their environ-
ment, remote processors must be interrupted to process multicast messages,
thereby resulting in higher penalties when updates are unnecessary. In ad-
dition, while their adaptive protocol is purely history-based, Cashmere-ADB
relies on information about the current synchronization interval to predict re-
quests for the same data by multiple processors. This allows us to capture
multiple-consumer access patterns that do not repeat.

Our home node migration policy is conceptually similar to the page migra-
tion policy found in some CC-NUMA multiprocessors [Laudon and Lenoski
1997; Verghese et al. 1996]. Both policies attempt to migrate pages to active
writers. The respective mechanisms are very different, however. In the CC-
NUMA multiprocessors, the system will attempt to migrate the page only after
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remote write misses exceed a threshold. The hardware will then invoke the
OS to transfer the page to the new home node. In Cashmere, the migration
occurs on the first write to a page and also usually requires only an inexpensive
directory change. Since the migration mechanism is so lightweight, Cashmere
can afford to be very aggressive.

Amza et al. [1997] describe adaptive extensions to the TreadMarks [Amza
et al. 1996] protocol that avoid twin/diff operations on shared pages with
only a single writer (pages with multiple writers still use twins and diffs). In
Cashmere, if a page has only a single writer, the home always migrates to that
writer, and so twin/diff operations are avoided. Even in the presence of multiple
concurrent writers, our scheme will always migrate to one of the multiple con-
current writers, thereby avoiding twin/diff overhead at one node. Cashmere is
also able to take advantage of the replicated directory when making migration
decisions (to determine if the home is currently writing the page). Adaptive
DSM (ADSM) [Monnerat and Bianchini 1998] also incorporates a history-
based sharing pattern characterization technique to adapt between single and
multiwriter modes, and between invalidate and update-based coherence. Our
adaptive update mechanism uses the initial request to detect sharing, and then
uses broadcast to minimize overhead on the processor responding to the request.

6. CONCLUSIONS

This article has traced the progression of a state-of-the-art software distributed
shared memory system over time. The Cashmere system was originally devel-
oped to take advantage of new system-area network (SAN) technology that
offered fast user level communication, broadcast, the ability to write remote
memory, and ordering and reliability guarantees. These features allowed us to
develop a simpler protocol that matched or exceeded the performance of lazy re-
lease consistency on this type of network. The simplicity of the protocol allowed
us to extend it relatively easily to take advantage of intranode cache coherence,
improving performance by an additional 37%.

We also examined tradeoffs among alternative ways of implementing S-DSM
on SANs. We considered a software-only approach developed by colleagues at
Compaq’s Western Research Lab, and also examined multiple variants of the
Cashmere protocol that utilize the special Memory Channel features to different
degrees. We discovered that while the software-only approach is less sensitive
to fine-grain sharing, a VM-based system continues to provide a noticeable per-
formance advantage for “well tuned” applications. We also discovered, to our
surprise, that most of the performance benefits realized by Cashmere are due to
fast user-level messaging; the protocol is much less dependent on other network
features (remote writes, broadcast, total ordering) than initially expected, and
in fact, avoiding the use of remote writes for data enabled protocol optimiza-
tions that improved performance by almost three orders of magnitude in one
application. Nonetheless, the special network features improve performance
for certain applications, with improvements as high as 44%.

High performance technical computing remains an important segment
of the computer industry, with increased usage expected in such fields as
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biotechnology and life sciences. Moreover, clusters are becoming the de facto
hardware platform in these fields, with basic building blocks ranging from
uniprocessor machines to medium-size multiprocessors. As of this writing,
two of the top three supercomputers in the world [http://www.top500.org/
lists/2003/06/] are SAN-connected clusters. While hand-tuned message-passing
code is likely to remain the dominant programming paradigm at the high end,
S-DSM systems will continue to provide an attractive solution for medium-scale
systems, particularly for programmers “migrating up” from small-scale SMPs,
where shared memory is the programming model of choice due to its ease of
use and programmer familiarity.
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DWARKADAS, S., SCHÄFFER, A. A., COTTINGHAM JR., R. W., COX, A. L., KELEHER, P., AND ZWAENEPOEL,
W. 1994. Parallelization of General Linkage Analysis Problems. Human Heredity 44, 127–
141.

DWARKADAS, S., COX, A. L., AND ZWAENEPOEL, W. 1996. An integrated compile-time/Run-time Soft-
ware Distributed Shared Memory System. In Proceedings of the 7th International Conference
on Architectural Support for Programming Languages and Operating Systems, Cambridge, MA,
Oct.

DWARKADAS, S., HARDAVELLAS, N., KONTOTHANASSIS, L. I., NIKHIL, R., AND STETS, R. 1999a. Cashmere-
VLM: Remote memory paging for software distributed shared memory. In Proceedings of the 13th
International Parallel Processing Symposium, San Juan, Puerto Rico, Apr.

DWARKADAS, S., GHARACHORLOO, K., KONTOTHANASSIS, L. I., SCALES, D. J., SCOTT, M. L., AND STETS, R.
1999b. Comparative evaluation of fine- and coarse-grain approaches for software distributed
shared memory. In Proceedings of the 5th International Symposium on High Performance Com-
puter Architecture, Orlando, FL, Jan.

ERLICHSON, A., NUCKOLLS, N., CHESSON, G., AND HENNESSY, J. 1996. SoftFLASH: Analyzing the
performance of clustered distributed virtual shared memory. In Proceedings of the 7th Interna-
tional Conference on Architectural Support for Programming Languages and Operating Systems,
Cambridge, MA, Oct.

FEELEY, M. J., CHASE, J. S., NARASAYYA, V. R., AND LEVY, H. M. 1994. Integrating coherency and
recovery in distributed systems. In Proceedings of the 1st Symposium on Operating Systems
Design and Implementation, Monterey, CA, Nov.

FILLO, M. AND GILLETT, R. B. 1997. Architecture and implementation of memory channel 2. Digital
Technical Journal 9, 1, 27–41.

GILLETT, R. 1996. Memory channel: An optimized cluster interconnect. IEEE Micro 16, 2 (Feb.),
12–18.

GOODMAN, J. R. 1987. Coherency for multiprocessor virtual address caches. In Proceedings of
the 2nd International Conference on Architectural Support for Programming Languages and
Operating Systems, Palo Alto, CA, Oct.

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.



Shared Memory Computing on Clusters • 333

HILL, M. D., LARUS, J. R., REINHARDT, S. K., AND WOOD, D. A. 1993. Cooperative shared memory:
Software and hardware for scalable multiprocessors. ACM Trans. Comput. Syst. 11, 4, 300–318,
Nov.

IFTODE, L., DUBNICKI, C., FELTEN, E. W., AND LI, K. 1996. Improving release-consistent shared
virtual memory using automatic update. In Proceedings of the 2nd International Symposium on
High Performance Computer Architecture, San Jose, CA, Feb.

INFINIBAND TRADE ASSOCIATION. 2002. InfiniBand Architecture Specification. Release 1.1, Nov.
Available at www.infinibandta.org/specs.

JOHNSON, K. L., KAASHOEK, M. F., AND WALLACH, D. A. 1995. CRL: High-performance all-software
distributed shared memory. In Proceedings of the 15th ACM Symposium on Operating Systems
Principles, Copper Mountain, CO, Dec.

KARLSSON, M. and STENSTROM, M. P. 1996. Performance evaluation of a cluster-based multipro-
cessor built from ATM switches and bus-based multiprocessor servers. In Proceedings of the 2nd
International Symposium on High Performance Computer Architecture, San Jose, CA, Feb.

KELEHER, P., COX, A. L., AND ZWAENEPOEL, W. 1992. Lazy release consistency for software dis-
tributed shared memory. In Proceedings of the 19th International Symposium on Computer Ar-
chitecture, Gold Coast, Australia, May.

KONTOTHANASSIS, L. I. AND SCOTT, M. L. 1995a. High performance software coherence for current
and future architectures. J. Para. Distrib. Comput. 29, 2 (Nov.), 179–195.

KONTOTHANASSIS, L. I. AND SCOTT, M. L. 1995b. Software cache coherence for large scale multi-
processors. In Proceedings of the 1st International Symposium on High Performance Computer
Architecture, Raleigh, NC, Jan.

KONTOTHANASSIS, L. I. AND SCOTT, M. L. 1996. Using memory-mapped network interfaces to im-
prove the performance of distributed shared memory. In Proceedings of the 2nd International
Symposium on High Performance Computer Architecture, San Jose, CA, Feb.

KONTOTHANASSIS, L. I., HUNT, G. C., STETS, R., HARDAVELLAS, N., CIERNIAK, M., PARTHASARATHY, S.,
MEIRA, W., DWARKADAS, S., AND SCOTT, M. L. 1997. VM-based shared memory on low-latency,
remote-memory-access networks. In Proceedings of the 24th International Symposium on Com-
puter Architecture, Denver, CO, June.

LAROWE JR., R. P. AND ELLIS, C. S. 1991. Experimental comparison of memory management poli-
cies for NUMA multiprocessors. ACM Trans. Comput. Syst. 9, 4 (Nov.), 319–363.

LAUDON, J. AND LENOSKI, D. 1997. The SGI origin: A ccNUMA highly scalable server. In Proceed-
ings of the 24th International Symposium on Computer Architecture, Denver, CO, June.

LI, K. AND SCHAEFER, R. 1989. A hypercube shared virtual memory system. In Proceedings of the
1989 International Conference on Parallel Processing, St. Charles, IL, Aug. Penn. State Univ.
Press.

LI, K. AND HUDAK, P. 1989. Memory coherence in shared virtual memory systems. ACM Trans.
Comput. Syst. 7, 4 (Nov.), 321–359.

MARCHETTI, M., KONTOTHANASSIS, L. I., BIANCHINI, R., AND SCOTT, M. L. 1995. Using simple
page placement policies to reduce the cost of cache fills in coherent shared-memory systems.
In Proceedings of the 9th International Parallel Processing Symposium, Santa Barbara, CA,
Apr.

MONNERAT, L. R. AND BIANCHINI, R. 1998. Efficiently adapting to sharing patterns in software
DSMs. In Proceedings of the 4th International Symposium on High Performance Computer Ar-
chitecture, Las Vegas, NV, Feb.

NIKHIL, R. S. 1994. Cid: A parallel, “Shared-memory” C for Distributed-Memory Machines. In
Proceedings of the 7th Annual Workshop on Languages and Compilers for Parallel Computing,
Aug.

NITZBERG, B. AND LO, V. 1991. Distributed shared memory: A Survey of issues and algorithms.
Comput. 24, 8 (Aug.), 52–60.

PETERSEN, K. AND LI, K. 1993. Cache coherence for shared memory multiprocessors based on
virtual memory support. In Proceedings of the 7th International Parallel Processing Symposium,
Newport Beach, CA, Apr.

PHILBIN, J. F., DUBNICKI, C., BILAS, A., AND LI, K. 1997. Design and implementation of virtual
memory-mapped communication on myrinet. In Proceedings of the 11th International Parallel
Processing Symposium, Geneva, Switzerland, Apr.

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.



334 • L. Kontothanassis et al.

REINHARDT, S. K., LARUS, J. R., and WOOD, D. A. 1994. Tempest and Typhoon: User-level shared-
memory. In Proceedings of the 21st International Symposium on Computer Architecture, Chicago,
IL, Apr.

SAMANTA, R., BILAS, A., IFTODE, L., AND SINGH, J. P. 1998. Home-based SVM protocols for SMP
clusters: Design and performance. In Proceedings of the 4th International Symposium on High
Performance Computer Architecture, Las Vegas, NV, Feb.

SANDHU, H. S., GAMSA, B., AND ZHOU, S. 1993. The shared regions approach to software cache
coherence on multiprocessors. In Proceedings of the 4th ACM Symposium on Principles and
Practice of Parallel Programming, San Diego, CA, May.

SCALES, D. J., GHARACHORLOO, K., AND THEKKATH, C. A. 1996. Shasta: A low overhead, software-
only approach for supporting fine-grain shared memory. In Proceedings of the 7th International
Conference on Architectural Support for Programming Languages and Operating Systems, Cam-
bridge, MA, Oct.

SCALES, D. J. AND GHARACHORLOO, K. 1997. Towards transparent and efficient software distributed
shared memory. In Proceedings of the 16th ACM Symposium on Operating Systems Principles,
St. Malo, France, Oct.

SCALES, D. J., GHARACHORLOO, K., AND AGGARWAL, A. 1998. Fine-grain software distributed shared
memory on SMP clusters. In Proceedings of the 4th International Symposium on High Perfor-
mance Computer Architecture, Las Vegas, NV, Feb.

SCHOINAS, I., FALSAFI, B., HILL, M. D., LARUS, J. R. AND WOOD, D. A. 1998. Sirocco: Cost-effective
fine-grain distributed shared memory. In Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques (PACT), Paris, France, Oct.

SCHOINAS, I., FALSAFI, B., LEBECK, A. R., REINHARDT, S. K., LARUS, J. R., AND WOOD, D. A. 1994.
Fine-grain access control for distributed shared memory. In Proceedings of the 6th International
Conference on Architectural Support for Programming Languages and Operating Systems, San
Jose, CA, Oct.

SINGH, J. P., WEBER, W.-D., AND GUPTA, A. 1992. SPLASH: Stanford parallel applications for
shared-memory. ACM SIGARCH Computer Architecture News 20, 1 (Mar.), 5–44.

SPEIGHT, E. AND BENNETT, J. K. 1998. Using multicast and multithreading to reduce communi-
cation in software DSM systems. In Proceedings of the 4th International Symposium on High
Performance Computer Architecture, Las Vegas, NV, Feb.

STETS, R., DWARKADAS, S., KONTOTHANASSIS, L. I., RENCUZOGULLARI, U., AND SCOTT, M. L. 2000. The Ef-
fect of Network Total Order, Broadcast, and Remote-Write Capability on Network-Based Shared
Memory Computing. In Proceedings of the 6th International Symposium on High Performance
Computer Architecture, Toulouse, France, Jan.

STETS, R., DWARKADAS, S., HARDAVELLAS, N., HUNT, G. C., KONTOTHANASSIS, L. I., PARTHASARATHY, S., AND

SCOTT, M. L. 1997. Cashmere-2L: Software coherent shared memory on a clustered remote-
write network. In Proceedings of the 16th ACM Symposium on Operating Systems Principles, St.
Malo, France, Oct.

TANENBAUM, A. S., KAASHOEK, M. F., AND BAL, H. E. 1992. Parallel programming using shared
objects and broadcasting. Comput. 25, 8 (Aug.), 10–19.

Top 500 Supercomputer Sites. 2003. Univ. of Manheim, Univ. of Tennessee, and NERSC/LBNL,
June. http://www.top500.org/lists/2003/06/.

VERGHESE, B., DEVINE, S., GUPTA, A., AND ROSENBLUM, M. 1996. Operating system support for
improving data locality on CC-NUMA compute servers. In Proceedings of the 7th Interna-
tional Conference on Architectural Support for Programming Languages and Operating Systems,
Cambridge, MA, Oct.

VON EICKEN, T., BASU, A., BUCH, V., AND VOGELS, W. 1995. U-Net: A user-level network interface for
parallel and distributed computing. In Proceedings of the 15th ACM Symposium on Operating
Systems Principles, Copper Mountain, CO, Dec.

WELSH, M., BASU, A., and VON EICKEN, T. 1997. Incorporating memory management into user-level
network interfaces. Tech. Rep. TR97-1620, Cornell Univ., Aug.

WOO, S. C., OHARA, M., TORRIE, E., SINGH, J. P., AND GUPTA, A. 1995. Methodological Consid-
erations and Characterization of the SPLASH-2 Parallel Application Suite. In Proceedings of
the 22nd International Symposium on Computer Architecture, Santa Margherita Ligure, Italy,
June.

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.



Shared Memory Computing on Clusters • 335

YEUNG, D., KUBIATOWITCZ, J., AND AGARWAL, A. 1996. MGS: A multigrain shared memory system.
In Proceedings of the 23rd International Symposium on Computer Architecture, Philadelphia,
PA, May.

ZEKAUSKAS, M. J., SAWDON, W. A., AND BERSHAD, B. N. 1994. Software write detection for distributed
shared memory. In Proceedings of the 1st Symposium on Operating Systems Design and Imple-
mentation, Monterey, CA, Nov.

ZHOU, Y., IFTODE, L., SINGH, J. P., LI, K., TOONEN, B. R., SCHOINAS, I., HILL, M. D., AND WOOD, D. A. 1997.
Relaxed consistency and coherence granularity in DSM systems: A performance evaluation. In
Proceedings of the 6th ACM Symposium on Principles and Practice of Parallel Programming, Las
Vegas, NV, June.

Received September 2003; accepted September 2004

ACM Transactions on Computer Systems, Vol. 23, No. 3, August 2005.


