
A Scalable Elimination-based Exchange Channel∗

William N. Scherer III
Dept. of Computer Science

University of Rochester
Rochester, NY 14627

scherer@cs.rochester.edu

Doug Lea
Computer Science Dept.

SUNY Oswego
Oswego, NY 13126
dl@cs.oswego.edu

Michael L. Scott
Dept. of Computer Science

University of Rochester
Rochester, NY 14627

scott@cs.rochester.edu

ABSTRACT
We present a new nonblocking implementation of the exchange
channel, a concurrent data structure in which 2N participants form
N pairs and each participant exchanges data with its partner. Our
new implementation combines techniques from our previous work
in dual stacks and from the elimination-based stack of Hendler et
al. to yield very high concurrency.

We assess the performance of our exchange channel using
experimental results from a 16-processor SunFire 6800. We
compare our implementation to that of the Java SE 5.0 class
java.util.concurrent.Exchanger using both a synthetic microbench-
mark and a real-world application that finds an approximate solu-
tion to the traveling salesman problem using genetic recombina-
tion. Our algorithm outperforms the Java SE 5.0 Exchanger in the
microbenchmark by a factor of two at two threads up to a factor of
50 at 10; similarly, it outperforms the Java SE 5.0 Exchanger by a
factor of five in the traveling salesman problem at ten threads. Our
exchanger has been adopted for inclusion in Java 6.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel Programming

General Terms
algorithms, performance, experimentation

Keywords
nonblocking synchronization, dual data structures, elimination, ex-
changer, lock-freedom, parallel genetic algorithms

1. INTRODUCTION
The problem of exchange channels (sometimes known as ren-

dezvous channels) arises in a variety of concurrent programs. In
it, a thread ta with datum da that enters the channel pairs up with
another thread tb (with datum db) and exchanges data such that ta

returns with db and tb returns with da. More generally, 2N threads
form N pairs 〈ta1

, tb1
〉, 〈ta2

, tb2
〉, 〈ta3

, tb3
〉, ..., 〈taN

, tbN
〉 and

exchange data pairwise.
In the basic exchange problem, if no partner is available immedi-

ately, thread ta waits until one becomes available. In the abortable

∗This work was supported in part by NSF grants numbers EIA-
0080124, CCR-0204344, and CNS-0411127, and by financial and
equipment grants from Sun Microsystems Laboratories.

exchange problem, however, ta specifies a patience pa that repre-
sents a maximum length of time it is willing to wait for a partner to
appear; if no partner appears within pa µseconds, ta returns empty-
handed. Caution must be applied in implementations to ensure that
a thread tb that sees ta just as it “gives up” and returns failure must
not return da: Exchange must be bilateral.

Exchange channels are frequently used in parallel simulations.
For example, the Promela modeling language for the SPIN model
checker [8] uses rendezvous channels to simulate interprocess com-
munication channels. Another typical use is in operating systems
and server software. In a system with one producer and one con-
sumer, the producer might work to fill a buffer with data, then ex-
change it with the buffer-draining consumer. This simultaneously
bounds memory allocation for buffers and throttles the producer to
generate data no faster than the consumer can process it.

2. BACKGROUND

2.1 Nonblocking Synchronization
Linearizability [5] has become the standard technique for

demonstrating that a concurrent implementation of an object is cor-
rect. Informally, it “provides the illusion that each operation. . .
takes effect instantaneously at some point between its invocation
and its response” [5, abstract]. Linearizability is nonblocking in
that it never requires a call to a total method (one whose precondi-
tion is simply true) to wait for the execution of any other method.
The fact that it is nonblocking makes linearizability particularly at-
tractive for reasoning about nonblocking implementations of con-
current objects, which provide guarantees of various strength re-
garding the progress of method calls in practice. In a wait-free im-
plementation, every contending thread is guaranteed to complete its
method call within a bounded number of its own time steps [6]. In a
lock-free implementation, some contending thread is guaranteed to
complete its method call within a bounded number of steps (from
any thread’s point of view) [6]. In an obstruction-free implemen-
tation, a thread is guaranteed to complete its method call within a
bounded number of steps in the absence of contention, i.e. if no
other threads execute competing methods concurrently [4].

2.2 Dual Data Structures
In traditional nonblocking implementations of concurrent ob-

jects, every method is total: It has no preconditions that must be
satisfied before it can complete. Operations that might normally
block before completing, such as dequeuing from an empty queue,
are generally totalized to simply return a failure code in the case
that their preconditions are not met. Then, calling the totalized
method in a loop until it succeeds allows one to simulate the partial
operation.

mls
OOPSLA Workshop on Synchronization and Concurrency inObject-Oriented Languages (SCOOL), San Diego, CA, October 2005

But this doesn’t necessarily respect our intuition for the seman-
tics of an object! For example, consider the following sequence of
events for threads A, B, C, and D:

A calls dequeue
B calls dequeue
C enqueues a 1
D enqueues a 2
B’s call returns the 1
A’s call returns the 2

If thread A’s call to dequeue is known to have started before
thread B’s call, then intuitively, we would think that A should
get the first result out of the queue. Yet, with the call-in-a-loop
idiom, ordering is simply a function of which thread happens to
try a totalized dequeue operation first once data becomes avail-
able. Further, each invocation of the totalized method introduces
performance-sapping contention for memory–interconnect band-
width on the data structure. Finally, note that the mutual-swap se-
mantics of an exchange channel do not readily admit a totalized
implementation: If one simply fails when a partner is not available
at the exact moment one enters the channel, the rate of successful
rendezvous connections will be very low.

As an alternative, suppose we could register a request for a part-
ner in the channel. Inserting this reservation could be done in a
nonblocking manner, and checking to see whether someone has
come along to fulfill our reservation could consist of checking a
boolean flag in the data structure representing the request. Even
if the overall exchange operation requires blocking, it can be di-
vided into two logical halves: the pre-blocking reservation and the
post-blocking fulfillment.

In our earlier work [10], we define a dual data structure to be one
that may hold reservations (registered requests) instead of, or in ad-
dition to, data. A nonblocking dual data structure is one in which
(a) every operation either completes or registers a request in non-
blocking fashion; (b) fulfilled requests complete in non–blocking
fashion; and (c) threads that are waiting for their requests to be ful-
filled do not interfere with the progress of other threads. In a lock-
free dual data structure, then, every operation either completes or
registers a request in a lock-free manner and fulfilled requests com-
plete in a lock-free manner.

For a more formal treatment of linearizability for dual data struc-
tures, and for practical examples of dual stacks and queues, we refer
the reader to our earlier work [10].

2.3 Elimination
Elimination is a technique introduced by Shavit and Touitou [11]

that improves the concurrency of data structures. It exploits the
observation, for example, that one Push and one Pop, when applied
with no intermediate operations to a stack data structure, yield a
state identical to that from before the operations. Intuitively, then,
if one could pair up Push and Pop operations, there would be no
need to reference the stack data structure; they could “cancel each
other out”. Elimination thus reduces contention on the main data
structure and allows parallel completion of operations that would
otherwise require accessing a common central memory location.

More formally, one may define linearization points for mutually-
canceling elimination operations in a manner such that no other
linearization points intervene between them; since the operations
effect (collectively) no change to the base data structure state, the
history of operations – and its correctness – is equivalent to one in
which the two operations never happened.

Although the original eliminating stack of Shavit and
Touitou [11] is not linearizable [5], follow-up work by Hendler et

al. [3] details one that is. Elimination has also been used for shared
counters [1] and even for FIFO queues [9].

3. ALGORITHM DESCRIPTION
Our exchanger uses a novel combination of nonblocking dual

data structures and elimination arrays to achieve high levels of con-
currency. The implementation is originally based on a combination
of our dual stack [10] and the eliminating stack of Hendler et al. [3],
though peculiarities of the exchange channel problem limit the visi-
bility of this ancestry. Source code for our exchanger may be found
in the Appendix.

To simplify understanding, we present our exchanger algorithm
in two parts. Section 3.1 first illustrates a simple exchanger that
satisfies the requirements for being a lock-free dual data structure
as defined earlier in Section 2.2. We then describe in Section 3.2 the
manner in which we incorporate elimination to produce a scalable
lock-free exchanger.

3.1 A Simple Nonblocking Exchanger
The main data structure we use for the simplified exchanger is a

modified dual stack [10]. Additionally, we use an inner node class
that consists of a reference to an Object offered for exchange
and an AtomicReference representing the hole for an object.
We associate one node with each thread attempting an exchange.
Exchange is accomplished by successfully executing a compare-
AndSet, updating the hole from its initial null value to the part-
ner’s node. In the event that a thread has limited patience for how
long to wait before abandoning an exchange, signaling that it is
no longer interested consists of executing a compareAndSet on
its own hole, updating the value from null to a FAIL sentinel. If
this compareAndSet succeeds, no other thread can successfully
match the node; conversely, the compareAndSet can only fail if
some other thread has already matched it.

From this description, one can see how to construct a simple non-
blocking exchanger. Referencing the implementation in Listing 1:
Upon arrival, if the top-of-stack is null (line 07), we compare-
AndSet our thread’s node into it (08) and wait until either its pa-
tience expires (10-12) or another thread matches its node to us (09,
17). Alternatively, if the top-of-stack is non-null (19), we attempt
to compareAndSet our node into the existing node’s hole (20);
if successful, we then compareAndSet the top-of-stack back to
null (22). Otherwise, we help remove the matched node from the
top of the stack; hence, the compareAndSet is unconditional.

In this simple exchanger, the initial linearization point for an in-
progress swap is when the compareAndSet on line 18 succeeds;
this inserts a reservation into the channel for the next data item to
arrive. The linearization point for a fulfilling operation is when
the compareAndSet on line 20 succeeds; this breaks the waiting
thread’s spin (lines 9-16). (Alternatively, a successful compare-
AndSet on line 11 is the linearization point for an aborted ex-
change.) As it is clear that the waiter’s spin accesses no remote
memory locations and that both inserting and fulfilling reservations
are lock-free (a compareAndSet in this case can only fail if an-
other has succeeded), the simple exchanger constitutes a lock-free
implementation of the exchanger dual data structure as defined in
Section 2.2.

3.2 Adding Elimination
Although the simple exchanger from the previous section is non-

blocking, it will not scale very well: The top-of-stack pointer in
particular is a hotspot for contention. This scalability problem can
be resolved by adding an elimination step to the simple exchanger
from Listing 1.

00 Object exchange(Object x, boolean timed,
01 long patience) throws TimeoutException {
02 boolean success = false;
03 long start = System.nanotime();
04 Node mine = new Node(x);
05 for (;;) {
06 Node top = stack.getTop();
07 if (top == null) {
08 if (stack.casTop(null, mine)) {
09 while (null == mine.hole) {
10 if (timedOut(start, timed, patience) {
11 if (mine.casHole(null, FAIL))
12 throw new TimeoutException();
13 break;
14 }
15 /* else spin */
16 }
17 return mine.hole.item;
18 }
19 } else {
20 success = top.casHole(null, mine);
21 stack.casTop(top, null);
22 if (success)
23 return top.item;
24 }
25 }
26 }

Listing 1: A simple lock-free exchanger

In order to support elimination, we replace the single top-of-
stack pointer with an arena (array) of (P + 1)/2 Java SE 5.0
AtomicReferences, where P is the number of processors in
the runtime environment. Logically, the reference in position 0 is
the top-of-stack; the other references are simply locations at which
elimination can occur.

Following the lead of Hendler et al., we incorporate elimination
with backoff when encountering contention at top-of-stack. As in
their work, by only attempting elimination under conditions of high
contention, we incur no additional overhead for elimination.

Logically, in each iteration of a main loop, we attempt an ex-
change in the 0th arena position exactly as in the simple exchanger.
If we successfully insert or fulfill a reservation, we proceed exactly
as before. The difference, however, comes when a compareAnd-
Set fails. Now, instead of simply retrying immediately at the top-
of-stack, we back off to attempt an exchange at another (random-
ized) arena location. In contrast to exchanges at arena[0], we
limit the length of time we wait with a reservation in the remain-
der of the arena to a value significantly smaller than our overall
patience. After canceling the reservation, we return to arena[0]
for another iteration of the loop.

In iteration i of the main loop, the arena location at which we
attempt a secondary exchange is selected randomly from the range
1..b, where b is the lesser of i and the arena size. Hence, the first
secondary exchange is always at arena[1], but with each itera-
tion of the main loop, we increase the range of potential backoff
locations until we are randomly selecting a backoff location from
the entire arena. Similarly, the length of time we wait on a reser-
vation at a backoff location is randomly selected from the range
0..2(b+k) − 1, where k is a base for the exponential backoff.

From a correctness perspective, the same linearization points as
in the simple exchanger are again the linearization points for the
eliminating exchanger; however, they can occur at any of the arena
slots, not just at a single top-of-stack. Although the eliminating
stack can be shown to support LIFO ordering semantics, we have
no particular ordering semantics to respect in the case of an ex-
change channel: Any thread in the channel is free to match to any
other thread, regardless of when it entered the channel.

The use of timed backoff accentuates the probabilistic nature
of limited-patience exchange. Two threads that attempt an ex-
change with patience zero will only discover each other if they both
happen to probe the top of the stack at almost exactly the same
time. However, with increasing patience levels, the probability de-
creases exponentially that they will fail to match after temporally
proximate arrivals. Other parameters that influence this rapid fall
include the number of processors and threads, hardware instruc-
tion timings, and the accuracy and responsiveness of timed waits.
In modern environments, the chance of backoff arena use causing
two threads to miss each other is far less than the probability of
thread scheduling or garbage collection delaying a blocked thread’s
wakeup for long enough to miss a potential match.

3.3 Pragmatics
Our implementation of this algorithm (shown in the Appendix)

reflects a few additional pragmatic considerations to maintain good
performance:

First, we use an array of AtomicReferences rather than a
single AtomicReferenceArray. Using a distinct reference
object per slot helps avoid some false sharing and cache contention,
and places responsibility for their placement on the Java runtime
system rather than on this class.

Second, the time constants used for exponential backoff can have
a significant effect on overall throughput. We empirically chose a
base value to be just faster than the minimum observed round-trip
overhead, across a set of platforms, for timed parkNanos() calls
on already-signaled threads. By so doing, we have selected the
smallest value that does not greatly underestimate the actual wait
time. Over time, future versions of this class might be expected to
use smaller base constants.

4. EXPERIMENTAL RESULTS

4.1 Benchmarks
We present experimental results for two benchmarks. The first

is a microbenchmark in which threads swap data in an exchange
channel as fast as they can.

Our second benchmark exemplifies the way that an exchange
channel might be used in a real-world application. It consists of a
parallel implementation of a solver for the traveling salesman prob-
lem, implemented via genetic algorithms. It accepts as parameters
a number of cities C, a population size P , and a number of gener-
ations G, in each of which B breeders mate and create B children
to replace B individuals that die (the remaining P − B individu-
als carry forward to the next generation). Breeders enter a central
exchange channel one or more times to find a partner with which
to exchange genes (a subset of the circuit); the number of partners
ranges from four down to one in a simulated annealing fashion.
Between randomization of the order of breeders and the (semi-)
nondeterministic manner in which pairings happen in the exchange
channel, we achieve a diverse set of matings with high probability.

4.2 Methodology
All results were obtained on a SunFire 6800, a cache-coherent

multiprocessor with 16 1.2GHz UltraSPARC III processors. We
tested each benchmark with both our new exchanger and the
Java SE 5.0 java.util.concurrent.Exchanger1 in Sun’s Java SE 5.0
1Actually, the Java SE 5.0 Exchanger contains a flaw in which a
wake-up signal is sometimes delivered to the wrong thread, forc-
ing a would-be exchanger to time out before noticing it has been
matched. For our tests, we compare instead to a modified version
(Exchanger15a) that corrects this issue.

10000

100000

1e+06

5 10 15 20 25 30
threads

Exchanges/s [Patience: 0.5 ms]

Exchanger15a New Exchanger

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1

5 10 15 20 25 30
threads

Success rate [Patience: 0.5 ms]

Exchanger15a New Exchanger

Figure 1: Microbenchmark: Throughput (top) and Success
rate (bottom). Note that the throughput graph is in log scale.

HotSpot VM, ranging from 2 to 32 threads. For both tests, we com-
pute the average of three test runs.

For the traveling salesman application, we used 100 cities, a pop-
ulation of 1000 chromosomes, and 200 breeders. We measure the
total wall-clock time required to complete 20000 generations and
calculate the total number of generations per second achieved at
each thread level.

Figure 1 displays throughput and the rate at which exchanges are
successful for our microbenchmark analysis of exchangers. Fig-
ure 2 presents total running time, as a function of the number of
threads, and the generation completion throughput for our parallel
genetic algorithm-based traveling salesman solver.

4.3 Discussion
As can be seen from the top half of Figure 1, our exchanger

outperforms the Java SE 5.0 Exchanger by a factor of two at two
threads up to a factor of 50 by 10 threads. The performance of the
Java SE 5.0 Exchanger degrades as the number of threads partici-
pating in swaps increases. This lack of scalability may be attributed
to the coarse-grained locking strategy that it uses. Another part of
the reason for this difference may be observed from the bottom half
of Figure 1. While our nonblocking exchanger is able to maintain
nearly 100% success in exchange operations, the Java SE 5.0 Ex-
changer gets dramatically worse as the number of active threads
increases, particularly in the presence of preemption (beyond 16
threads).

For the traveling salesman application, we see no difference in
the total running time (Figure 2 top) at two threads, but by 10
threads the difference in running time is nearly a factor of five.
When we look at the throughput rate of computation (generations
per second) in the bottom half of Figure 2, we see that again, our

0
100
200
300
400
500
600
700

5 10 15 20 25 30 35
threads

TSPExchangerTest: Execution time (seconds)

Exchanger15a New Exchanger

0
20
40
60
80

100
120
140
160
180

5 10 15 20 25 30 35
threads

TSPExchangerTest: Generations/second

Exchanger15a New Exchanger

Figure 2: Parallel GA-Traveling Salesman: Total Execution
Time (top) and Generations per second throughput (bottom).

exchanger scales more-or-less linearly up to 8 threads, and con-
tinues to gain parallel speedup through 12, but the Java SE 5.0
Exchanger degrades in performance as the number of threads in-
creases. The drop-off in throughput for our exchanger we see be-
ginning at 16 threads reflects the impact of preemption in slowing
down exchanges and inter-generation barriers

4.4 Field Notes: Multi-party Exchange
Consider the exchanger used with more than two threads. In our

parallel traveling salesman implementation (pseudocode for a piece
of which appears in Listing 2), each thread is assigned a certain
number of individuals to breed, and the breedings are conducted in
parallel. As mentioned earlier, each breeding consists of swapping
genes with a partner found from a central exchange channel.

With two threads, no complications arise, but beginning at four,
a problem appears wherein all but one thread can meet up enough
times to finish breeding, leaving one thread high and dry. Consider
the following example, in which four threads (T1..T4) each have
three elements (a, b, c) to swap. Suppose that swaps occur accord-
ing to the following schedule:

〈T1(a), T2(a)〉
〈T1(b), T3(a)〉
〈T2(b), T3(b)〉
〈T1(c), T2(c)〉
〈T3(c), T4(a)〉

Now, T4 still needs to swap b and c, but has no one left to swap
with. Although one could use a barrier between trips to the ex-
changer to keep threads synchronized, this would be an exceed-
ingly high-overhead solution; it would hurt scalability and perfor-
mance. Further, it would result in more deterministic pairings be-

for (int 1 = 0; i < numToBreed; i++) {
Chromosome parent = individuals[breeders[first+i]];
try {
Chromosome child = new Chromosome(parent);

1 Chromosome peer = x.exchange(child, 100,
TimeUnit.MICROSECONDS);

children[i] = child.reproduceWith(peer, random);
} catch (TimeoutException e) {

2 if (1 == barrier.getPartiesRemaining()) {
// No peers left, so we mate with ourselves

3 mateWithSelf(i, numToBreed, children);
break;

}
4 // Spurious failure; retry the breeding

--i;
}

}
barrier.await();

Listing 2: Multi-party exchange

for (int 1 = 0; i < numToBreed; i++) {
Chromosome parent = individuals[breeders[first+i]];
Chromosome child = new Chromosome(parent);
Exchanger.Color clr = ((1 == tid & 1) ? RED : BLUE;
Chromosome peer = x.exchange(child, clr);
children[i] = child.reproduceWith(peer, random);

}

Listing 3: Multi-party exchange with a red-blue exchanger

tween threads in our traveling salesman application, which is unde-
sirable in genetic algorithms.

Instead, we detect this case by limiting how long would-be
breeders wait in the exchange channel. If they time out from the
breeding (*1*), we enter a catch block where we check a barrier to
see if we’re the only ones left (*2*). If not, we retry the breeding
(*4*); otherwise, we know that we’re the only thread left and we
simply recombine within the breeders we have left (*3*).

It is unfortunate that an external checking idiom is required to
make use of the exchange channel with multiple threads. Our trav-
eling salesman benchmark already needs a barrier to ensure that
one generation completes before the next begins, so this adds little
overhead in our specific case. However, the same cannot be readily
guaranteed across all potential multi-party swap applications.

On the other hand, suppose we had a channel that allows an ex-
change party to be one of two colors (red or blue) and that con-
strains exchanges to being between parties of dissimilar color. Such
an exchanger could be built, for example, as a shared-memory im-
plementation of generalized input-output guards [2] for Hoare’s
Communicating Sequential Processes (CSP) [7]. Then, by assign-
ing RED to threads with odd ID and BLUE to threads with even ID,
we could simplify the code as shown in Listing 3.

Note that we no longer need timeout: Assuming the number of
threads and breeders are both even, an equal number will swap with
red as with blue; stranded exchanges are no longer possible. (The
slightly reduced non-determinism in breeding seems a small price
to pay for simpler code and for eliminating the determinism that oc-
curs when a thread must breed with itself.) A red-blue exchanger
also generalizes producer-consumer buffer exchange to multiple
producers and multiple consumers. By simply marking producers
blue and consumers red, swaps will always consist of a producer
receiving an empty buffer and a consumer receiving a full one.

Implementing a red-blue exchanger would be a relatively
straightforward extension to our new exchanger. In particular,
rather than assuming that any pair of threads match in arena[0],
we could switch to a full implementation of a dual stack, using
Push() for red threads and Pop() for blue. We would similarly

need to update elimination in the nonzero arena slots. No other
changes to our algorithm would be needed, however, to support a
bi-chromatic exchange channel.

5. CONCLUSIONS
In this paper, we have demonstrated a novel lock-free exchange

channel that achieves very high scalability through the use of elim-
ination. To our knowledge, this is the first combination of dual data
structures and elimination arrays.

In a head-to-head microbenchmark comparison, our algorithm
outperforms the Java SE 5.0 Exchanger by a factor of two at two
threads and a factor of 50 at 10 threads. We have further shown
that this performance differential spells the difference between per-
formance degradation and linear parallel speedup in a real-world
genetic algorithm-based traveling salesman application. Our new
exchange channel has been adopted for inclusion in Java 6.

For future work, we suspect that other combinations of elimina-
tion with dual data structures might see similar benefits; in partic-
ular, our dual queue seems to be an ideal candidate for such ex-
perimentation. Additionally, we look forward to implementing and
experimenting with our red-blue exchanger.

6. ACKNOWLEDGMENTS
We are grateful to Christopher Brown for useful suggestions in

designing the genetic algorithm-based traveling salesman solver.

7. REFERENCES
[1] W. Aiello, C. Busch, M. Herlihy, M. Mavronicolas, N. Shavit, and D.

Touitou. Supporting Increment and Decrement Operations in
Balancing Networks. In Chicago Journal of Theoretical Computer
Science, Dec. 2000. Originally presented at the 16th Intl. Symp. on
Theoretical Aspects of Computer Science, Trier, Germany, March
1999, and published in Lecture Notes in Computer Science, Vol.
1563, pp. 393-403.

[2] A. J. Bernstein. Output Guards and Nondeterminism in
Communicating Sequential Processes. ACM Trans. on Programming
Languages and Systems, 2(2):234–238, Apr. 1980.

[3] D. Hendler, N. Shavit, and L. Yerushalmi. A Scalable Lock-Free
Stack Algorithm. In Proc. of the 16th Annual ACM Symp. on
Parallelism in Algorithms and Architectures, pages 206–215,
Barcelona, Spain, June 2004.

[4] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-Free
Synchronization: Double-Ended Queues as an Example. In Proc. of
the 23rd Intl. Conf. on Distributed Computing Systems, Providence,
RI, May, 2003.

[5] M. P. Herlihy and J. M. Wing. Linearizability: A Correctness
Condition for Concurrent Objects. ACM Trans. on Programming
Languages and Systems, 12(3):463–492, July 1990.

[6] M. Herlihy. Wait-Free Synchronization. ACM Trans. on
Programming Languages and Systems, 13(1):124–149, Jan. 1991.

[7] C. A. R. Hoare. Communicating Sequential Processes. Comm. of the
ACM, 21(8):666–677, Aug. 1978.

[8] G. J. Holzmann. The Model Checker SPIN. IEEE Trans. on Software
Engineering, 23(5), May 1997.

[9] M. Moir, D. Nussbaum, O. Shalev, and N. Shavit. Using Elimination
to Implement Scalable and Lock-Free FIFO Queues. In Proc. of the
17th Annual ACM Symp. on Parallelism in Algorithms and
Architectures, pages 253–262, Las Vegas, NV, July 2005.

[10] W. N. Scherer III and M. L. Scott. Nonblocking Concurrent Objects
with Condition Synchronization. In Proc. of the 18th Intl. Symp. on
Distributed Computing, Amsterdam, The Netherlands, Oct. 2004.

[11] N. Shavit and D. Touitou. Elimination Trees and the Construction of
Pools and Stacks. In Proc. of the 7th Annual ACM Symp. on Parallel
Algorithms and Architectures, Santa Barbara, CA, July 1995.

APPENDIX
Exchanger Source Code
The following code may be found online at http://
gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/
jsr166/src/main/java/util/concurrent/
Exchanger.java

public class Exchanger<V> {
private static final int SIZE =

(Runtime.getRuntime().availableProcessors() + 1) / 2;
private static final long BACKOFF_BASE = 128L;
static final Object FAIL = new Object();
private final AtomicReference[] arena;
public Exchanger() {

arena = new AtomicReference[SIZE + 1];
for (int i = 0; i < arena.length; ++i)

arena[i] = new AtomicReference();
}

public V exchange(V x) throws InterruptedException {
try {

return (V)doExchange(x, false, 0);
} catch (TimeoutException cannotHappen) {

throw new Error(cannotHappen);
}

}
public V exchange(V x, long timeout, TimeUnit unit)

throws InterruptedException, TimeoutException {
return (V)doExchange(

x, true, unit.toNanos(timeout));
}

private Object doExchange(
Object item, boolean timed, long nanos)
throws InterruptedException, TimeoutException {
Node me = new Node(item);
long lastTime = (timed)? System.nanoTime() : 0;
int idx = 0;
int backoff = 0;

for (;;) {
AtomicReference<Node> slot =
(AtomicReference<Node>)arena[idx];

// If this slot is occupied, an item is waiting...
Node you = slot.get();
if (you != null) {
Object v = you.fillHole(item);
slot.compareAndSet(you, null);
if (v != FAIL) // ... unless it’s cancelled

return v;
}

// Try to occupy this slot
if (slot.compareAndSet(null, me)) {
Object v = ((idx == 0)?

me.waitForHole(timed, nanos) :
me.waitForHole(true, randomDelay(backoff)));

slot.compareAndSet(me, null);
if (v != FAIL)

return v;
if (Thread.interrupted())

throw new InterruptedException();
if (timed) {

long now = System.nanoTime();
nanos -= now - lastTime;
lastTime = now;
if (nanos <= 0)

throw new TimeoutException();
}
me = new Node(item);
if (backoff < SIZE - 1)

++backoff;
idx = 0; // Restart at top

}

else // Retry with a random non-top slot <= backoff
idx = 1 + random.nextInt(backoff + 1);

}
}

private long randomDelay(int backoff) {
return ((BACKOFF_BASE << backoff) - 1) &
random.nextInt();

}

static final class Node
extends AtomicReference<Object> {
final Object item;
final Thread waiter;
Node(Object item) {
this.item = item;
waiter = Thread.currentThread();

}

Object fillHole(Object val) {
if (compareAndSet(null, val)) {

LockSupport.unpark(waiter);
return item;

}
return FAIL;

}

Object waitForHole(
boolean timed, long nanos) {
long lastTime = (timed)?

System.nanoTime() : 0;
Object h;
while ((h = get()) == null) {

// If interrupted or timed out, try to
// cancel by CASing FAIL as hole value.
if (Thread.currentThread().isInterrupted() ||

(timed && nanos <= 0)) {
compareAndSet(null, FAIL);

} else if (!timed) {
LockSupport.park();

} else {
LockSupport.parkNanos(nanos);
long now = System.nanoTime();
nanos -= now - lastTime;
lastTime = now;

}
}
return h;

}
}

}

