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Abstract
The obstruction-free Dynamic Software Transac-
tional Memory (DSTM) system of Herlihy et al. al-
lows only one writing transaction at a time to access
an object. Should a second require an object cur-
rently in use, acontention managermust determine
which may proceed and which must wait or abort.

In this case study, we consider the impact of ran-
domization when applied to our “Karma” contention
manager. Previous work has shown that Karma tends
to be a good choice of managers for many applica-
tions. We analyze randomized Karma variants, us-
ing experimental results from a 16-processor Sun-
Fire machine and a variety of benchmarks. We con-
clude that randomizing either abortion decisions or
gain can be highly effective in breaking up patterns
of livelock, but that randomized backoff yields no in-
herent positive benefit.

1 Introduction
Although early software transactional memory sys-
tems (STMs) were primarily academic curiosities,
more modern STMs [1, 2, 3] have reduced runtime
overheads sufficiently to outperform coarse-grained
locks (with at least moderate contention). Dynamic
software transactional memory (DSTM) [3] is a prac-
tical STM system novel in its support for dynami-
cally allocated objects and transactions, and for its
use of modular contention managers to separate is-
sues of progress and correctness in data structures.

At its heart, contention management in DSTM is
the question: how do we mediate transactions’ con-
flicting needs to access a block of memory? In pre-
vious work [4], we have shown that the choice of
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contention management policies dramatically affects
overall system throughput and that the Karma man-
ager frequently gives top performance.

In the present work, we explore the impact of ran-
domization in contention manager design. We study
Karma as a top contention manager with many facets
that can be randomized.

2 Contention Management
The contention management interface for the
DSTM [4] includes notification methods for vari-
ous events that transpire during the processing of
transactions, plus two request methods that ask the
manager to make a decision. Notifications include
events such as beginning a transaction, success-
fully/unsuccessfully committing a transaction, at-
tempting to open a block, and successfully opening
a block. The request methods ask a contention man-
ager to decide whether a transaction should (re)start
and whether enemy transactions should be aborted.

Many researchers have found randomization to be
a powerful technique for breaking up repetitive pat-
terns of pathological behaviors that hinder perfor-
mance. We evaluate this potential by randomizing
facets of the Karma manager.

2.1 The basic Karma scheme
The Karma contention manager [4] tracks the cu-
mulative number of blocks opened by a transaction
as itspriority. It increments this priority with each
block opened, and resets it to zero when a transaction
commits. It does not reset priorities if the transac-
tion was aborted; this gives a boost to a transaction’s
next attempt to complete. Karma manages conflict
by aborting an enemy transaction when the number
of times a transaction has attempted to open a block
exceeds the difference in priorities between the en-
emy and itself. Between attempts, it backs off for a
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fixed period of time. Intuitively, Karma prefers not
to abort a transaction that will take a large amount of
effort to redo, but tries to maintain some ability for
short transactions to eventually gain enough priority
to finish even when competing with longer ones.

2.2 Randomized Backoff
The original Karma scheme backs off for a fixed pe-
riod of timeT between attempts to acquire an object.
Randomized, we instead sleep for a uniform random
amount of time between 0 and2T .

2.3 Randomized Abortion
In response to ashouldAbort query, the basic
Karma manager returnstrue when the difference∆
between the current and enemy transactions’ accu-
mulated priorities is less than the number of times
it has attempted to open a block. We randomize
this abortion decision with a sigmoid function that
returnstrue with probability biased to the higher-
priority transaction:(1 + e−

1
2
∆)−1.

2.4 Randomized Gain
The basic Karma manager gains one point of priority
with each object that it successfully opens. Random-
ized, we instead gain as priority an integer randomly
selected from the uniform interval0..200.

3 Methodology
All results were obtained on a SunFire 6800, a
cache-coherent multiprocessor with 16 1.2Ghz Ul-
traSPARC III processors. We tested in Sun’s Java
1.5 HotSpot JVM.

We present experimental results for six bench-
marks. IntSet, IntSetUpgrade, and RBTree are im-
plementations of a set of integers; LFUCache simu-
lates web caching [4]. Stack supports push and pop
transactions. ArrayCounter transactions either incre-
ment each shared counter 0..255 in an array or decre-
ment them in the opposite order; it is a “torture test”
that exacerbates any tendency towards livelock.

We implemented all eight combinations of ran-
domizing three facets of the Karma manager. We
crossed each variant and benchmark, running for a
total of 10 seconds. We display throughput results
for eight threads: previous experiments suggest that
eight threads is enough for inter-thread contention to
affect scalability in the benchmarks, yet few enough
that limited scalability of the benchmarks themselves

does not skew the results. Figure 1 displays through-
put results for the various benchmarks.

4 Analysis
In every benchmark, some combination of random-
ization improves throughput. In the ArrayCounter,
IntSetUpgrade, and IntSet benchmarks, randomiz-
ing just abortion decisions yields the best perfor-
mance. Randomizing both abortion and backoff
gives very poor performance in ArrayCounter and
RBTree; yet, it improves performance for LFUCache
and Stack. Randomizing gain improves performance
both alone, and in every combination with other
types of randomization, for LFUCache and RBTree.

4.1 Interpretation of results
Randomizing abortion is particularly helpful for
the ArrayCounter, IntSet, and IntSetUpgrade bench-
marks. Why is this the case? One possible expla-
nation is that randomizing abortion decisions is very
powerful for breaking up semi-deterministic livelock
patterns. Such livelocking patterns are particularly
visible in ArrayCounter: an increment and a decre-
ment that start at roughly the same time are very
likely to have similar or identical priorities when they
meet; they are thus prone to mutual abortion.

The combination of randomizing backoff and
abortion produces great variance in how long a
thread waits to abort an enemy transaction. In times
when this wait period is shortened, a longer enemy
transaction will have less of a chance to complete;
transactions in RBTree and ArrayCounter are par-
ticularly long. In times when this wait period is
lengthened, multiple shorter enemy transactions can
complete, competing with one fewer enemy. Indeed,
LFUCache and Stack transactions are very short; and
with higher thread counts (not shown due to space
limitations), this combination is less effective.

There is no obvious analogous deterministic
pathology associated with tranaction priority levels.
While backoff randomization helps in locking al-
gorithms that have multiple contenders (which can
get into simultaneous retry pathology), this problem
does not arise in the 2-transaction case. Instead,
one continues oblivious to the conflict and the other
backs off. This is why randomizing backoff yields
comparatively little direct benefit.
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RBTreeTMNodeStyle (8 threads, invisible reads)
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IntSetUpgrade (8 threads, invisible reads)
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IntSet (8 threads, invisible reads)
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LFUCache (8 threads, invisible reads)
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Stack (8 threads, invisible reads)
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Figure 1: Throughput results for 8 threads and each combination of randomizing backoff (B), abortion (A)
decisions, and/or gain (G) upon opening a block (ordered alphabetically)

4.2 Future work
As future work, we plan to analyse other random-
ized contention managers, more benchmarks, and
systems with greater variability in transaction type.
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