
Using LL/SC to Simplify Word-based
Software Transactional Memory∗

Virendra J. Marathe and Michael L. Scott

Department of Computer Science
University of Rochester

Rochester, NY 14627-0226
{vmarathe, scott}@cs.rochester.edu

February 2005

Abstract
While compare-and-swap (CAS) and load-linked /
store-conditional (LL/SC) are equally powerful in
principle, there are circumstances in which one or the
other is significantly easier to use. We highlight one
example in this paper. Specifically, we use LL/SC
to significantly simplify the “stealing” and “merg-
ing” mechanism used to ensure correct nonblocking
behavior in Harris and Fraser’s word-based software
transactional memory system (WSTM). Our simpli-
fication exploits the observation that LL/SC, as con-
ventionally implemented, provides a natural atomic
implementation of a restricted form of k-compare-
single-swap.

1 Introduction
An atomic k-compare-single-swap (KCSS) [3, 5]
atomically verifies k memory locations and updates
one of them (call it t). KCSS is useful for nonblock-
ing implementations of concurrent data structures
whose atomic updates require consistent snapshots.
If the locations involved in the snapshot are always
updated in an appropriate order, then ideal LL/SC
provides a natural implementation of a restricted
form of KCSS: t is load-linked, the remaining loca-
tions are read and, if the values satisfy some appro-
priate predicate, t is updated using store-conditional
(SC). The restriction is that whenever the k loca-
tions satisfy the predicate, the application must re-
frain from modifying locations other than t until t

itself has been updated.

∗This work was supported in part by NSF grants numbers
EIA-0080124, CCR-0204344, and CNS-0411127, and by finan-
cial and equipment grants from Sun Microsystems Laboratories.

Real implementations of LL/SC impose addi-
tional restrictions: most specify that SC can fail spu-
riously under certain circumstances (e.g. hardware
interrupts), in which case software must retry the
atomic sequence. More significantly, some allow SC
to fail deterministically if the instructions between
the LL and the SC attempt to access a location that
maps to the same cache set as t.

While deterministic failure limits the generality
of the technique, LL/SC-based restricted KCSS can
still be highly useful if we can guarantee that t lies
in a different cache set from the k− 1 other loca-
tions. In particular, LL/SC-based 2CSS can be used
to good effect in the word-based software transaction
memory system (WSTM) of Harris and Fraser [1, 2].
We describe the original WSTM in Section 2, draw-
ing attention to a potentially significant scalabil-
ity problem that can arise when contention is high.
In Section 3 we present a modification to WSTM
that significantly simplifies the design and eliminates
the scalability issue, at the expense of one addi-
tional atomic instruction on the low-contention criti-
cal path. Empirical evaluation of our modification is
in progress.

2 Word-based STM
Software Transactional Memory refers to a family
of general purpose constructions that can be used to
mechanically transform correct sequential code into
nonblocking concurrent code. STM systems gener-
ally attempt to maximize concurrency by allowing
threads to access disjoint sets of blocks concurrently.
The WSTM of Harris and Fraser [1, 2] makes each
memory word a separate block. The API for WSTM

mls
PODC '05 poster abstract

7a1
a2
a3

a4

100 version 15

 Application Heap Ownership Records Transaction Descriptor

a2: (100,7) −> (300,8)
status: ACTIVE

a1: (7,15) −> (7,15)

Figure 1: WSTM Heap Structure

has six main entry points: STMStart() begins a new
transaction. STMRead(addr a) and STMWrite(addr
a, stm word w) are used to read and write shared
memory words. STMCommit() and STMAbort() are
used to finalize an ACTIVE transaction. STMVali-
date() verifies that the transaction is still able to com-
mit, which implies that all read locations are mutu-
ally consistent.

Figure 2 illustrates the design of WSTM. The
Application Heap is the shared memory region that
holds the actual data. The structure in the middle
of the figure is a hash table of Ownership Records
(orecs). Each orec stores ownership (permission-to-
modify) information for all memory words that hash
to its index in the table. Each unacquired orec stores
a version number. A transaction has to acquire an
orec before modifying any corresponding memory
words. Acquiring consists of atomically replacing
the orec version number with a pointer to the acquir-
ing transaction’s descriptor.

A transaction descriptor contains a list of transac-
tion entries, one for each shared word in the applica-
tion heap accessed by the transaction. Each transac-
tion entry in turn has five fields: the address of the
shared word, the original contents of that word, the
version number of the corresponding orec, the new
contents of the memory word (to be written back at
commit time), and the new version number (to be
stored in the orec).

A transaction may be ACTIVE, ABORTED, or
COMMITTED. An STMRead or STMWrite creates
a transaction entry (corresponding to the accessed
memory location) if one does not already exist in
the transaction descriptor. To maintain consistency,
a transaction descriptor must either contain at most
one entry corresponding to an orec, or all the entries

corresponding to an orec must have the same old and
new version numbers. The STMCommit operation at-
tempts to acquire all orecs named in the transaction
descriptor. If successful it uses an atomic primitive
(the linearization point of the transaction) to switch
to COMMITTED state. It then updates the shared
heap and releases all acquired orecs by swapping in
their new version numbers.

An STMRead or STMWrite to a previously unac-
cessed location inspects the corresponding orec. It
the orec points to an ACTIVE transaction, the con-
tender is immediately aborted (this uniform aggres-
siveness raises the possibility of livelock, making
WSTM obstruction-free [4]). The current transac-
tion creates a transaction entry using the appropri-
ate orec version number (old if ABORTED, new if
COMMITTED) found in the contender’s descriptor.

An STMCommit that discovers a conflict also
aborts the contender if it is still ACTIVE. It then
merges transaction entries (corresponding to the orec
under conflict) from the contender’s descriptor into
its own. Merging allows the current transaction, once
it finalizes, to appropriately update any locations for
which the contender was responsible, even if the
contender is preempted or otherwise inactive. After
merging, the current transaction steals the orec from
its contender by using an atomic primitive to flip the
pointer over to its own transaction descriptor.

Use of stealing leads to the problem of stale up-
dates, where a transaction that is a victim of steal-
ing may update words in the heap after the stealer
has already done so. A victim realizes this potential
problem when it tries to release the stolen orec and
its CAS or SC fails. The victim then chases the orec
pointer to its stealer’s descriptor and redoes all up-
dates made by the stealer for the stolen orec. No orec
is released until it is guaranteed that the orec is not
referenced by any other transaction. This is enforced
by the use of a reference count for each orec. An orec
is released by a transaction only when the orec refer-
ence count goes down to zero. Atomic update to the
orec and its reference count requires a double-wide
CAS or LL/SC.

Bounded Memory Blow-up
WSTM uses stealing to ensure nonblocking seman-
tics. Stealing entails merging, which in turn leads to
potentially long merge chains of transaction entries

due to false sharing. Let the ratio of the application
heap size to the orec hash table size be M : 1. If
hashing is uniform, each orec covers approximately
M different shared memory words. In the worst-case
scenario, for each memory location that a transaction
may access, it may end up possessing M −1 extra
transaction entries. If a transaction needs to acquire
N orecs, it may end up possessing N×M transaction
entries in the process. Memory blow-up may be sig-
nificant if M is large. Responsibility for extra mem-
ory words also increases the worst-case overhead of
write back by a factor of M, and introduces the over-
head of redos, which may cause severe interconnect
contention as cache lines bounce among processors.
Although the worst case scenario may rarely occur,
its likelihood increases with increasing contention.

3 An Alternative Stealing Approach
WSTM’s stealing mechanism leads to the bounded
memory blow-up problem and potentially slower
transactions. It also introduces significant complex-
ity, and requires a double-wide atomic primitive (not
currently available on 64-bit processors) to update
version number / pointer pairs. We propose an al-
ternative mechanism that uses helping during steal-
ing instead of merge-redo. On detecting a conflict,
a potential stealer transaction first scans through its
victim’s descriptor looking for the transaction en-
tries corresponding to the orec under conflict. For
each such entry, the stealer updates the correspond-
ing shared memory location using LL/SC to imple-
ment a restricted 2-compare-single-swap: the stealer
LLs the heap location, verifies that the orec is the
same as the one in the transaction entry, and then
stores the right value with SC. After the stealer has
scanned through its victim’s descriptor, it steals the
orec under conflict as before. The victim will con-
tinue with its release phase normally (without updat-
ing memory words corresponding to the stolen orec)
even when it sees that some of its orecs have been
stolen.

The intuition behind our approach is as follows:
If the orec changes after an LL, it is guaranteed that
some other stealer has successfully stolen the orec af-
ter making correct updates to the heap. The transac-
tion will have to chase the new stealer to resolve the
new conflict with its new contender. If the orec is still

valid, but the SC fails non-spuriously, it is guaranteed
that some other potential stealer has made a correct
update to the target memory location. Spurious fail-
ures are handled by a retry loop. Stale updates are
avoided by verifying the orec contents in between the
LL and SC. With our approach the bounded memory
blow-up problem is eliminated since no merging of
transaction entries happens. The commit operation
for a transaction is also simplified considerably. Fi-
nally, no reference counts or double-wide atomic op-
erations are required. To avoid deterministic SC fail-
ures, we need only ensure that a heap location and
its orec never map to the same set in the cache. This
is easily achieved, for all reasonable cache line and
page sizes, and for both virtually and physically in-
dexed caches, by selecting an appropriate hash func-
tion.

Our modification has a downside: a transaction
updating N memory words requires N + 2M + 1

LL/SC operations (where M is the number of orecs
acquired by the transaction), versus 2M+1 CASes in
the original WSTM. Experimental evaluation of this
tradeoff is currently in progress.

References
[1] K. Fraser and T. Harris. Concurrent Programming

without Locks. Submitted for publication, 2004.

[2] T. Harris and K. Fraser. Language Support for
Lightweight Transactions. In Proceedings of 18th An-
nual ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pages
388–402, October 2003.

[3] T. L. Harris, K. Fraser, and I. A. Pratt. A Practical
Multi-word Compare-and-Swap Operation. In Pro-
ceedings of the 16th International Conference on Dis-
tributed Computing, pages 265–279. Springer-Verlag,
2002.

[4] M. P. Herlihy, V. Luchangco, and M. Moir. Obstruc-
tion Free Synchronization: Double-Ended Queues as
an Example. In Proceedings of 23rd International
Conference on Distributed Computing Systems, pages
522–529, May 2003.

[5] V. Luchangco, M. Moir, and N. Shavit. Nonblocking
k-compare-single-swap. In Proceedings of the 15th
Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 314–323, June 2003.

