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ABSTRACT
The obstruction-free Dynamic Software Transactional Memory
(DSTM) system of Herlihy et al. allows only one transaction at
a time to acquire an object for writing. Should a second require
an object currently in use, acontention managermust determine
which may proceed and which must wait or abort.

We analyze both new and existing policies for thiscontention
managementproblem, using experimental results from a 16-pro-
cessor SunFire machine. We consider bothvisible and invisible
versions of read access, and benchmarks that vary in complexity,
level of contention, tendency toward circular dependence, and mix
of reads and writes. We present fair proportional-share prioritized
versions of several policies, and identify a candidate default pol-
icy: one that provides, for the first time, good performance in every
case we test. The tradeoff between visible and invisible reads re-
mains application-specific: visible reads reduce the overhead for
incremental validation when opening new objects, but the requisite
bookkeeping exacerbates contention for the memory interconnect.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel Programming

General Terms
algorithms, performance, experimentation, management

Keywords
synchronization, transactional memory, contention management,
obstruction-freedom
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1. INTRODUCTION
Non-blocking algorithms are notoriously difficult to design and

implement. Although this difficulty is partially inherent to asyn-
chronous interleavings due to concurrency, it may also be ascribed
to the many different concerns that must be addressed in the design
process. With lock-free synchronization, for example, one must not
only ensure that the algorithm functions correctly, but also guard
against livelock. With wait-free synchronization one must addition-
ally ensure that every thread makes progress in bounded time; in
general this requires that one “help” conflicting transactions rather
than aborting them.

Obstruction-free concurrent algorithms [6] lighten the burden by
separating progress from correctness, allowing programmers to ad-
dress progress as an out-of-band, orthogonal concern. The core
of an obstruction-free algorithm only needs to guarantee progress
when one single thread is running (though other threads may be in
arbitrary states).

An alternative to creating ad-hoc implementations of each data
structure is to use a general purposeuniversal constructionthat al-
lows them to be created mechanically. The termsoftware trans-
actional memory(STM) was coined by Shavit and Touitou [13]
as a software-only implementation of a hardware-based scheme
proposed by Herlihy and Moss [8]. Although early STM systems
were primarily academic curiosities, more modern systems [3, 4, 7]
have reduced runtime overheads sufficiently to outperform coarse-
grained locks when several threads are active.

STM-based algorithms can generally be expected to be slower
than either ad-hoc non-blocking algorithms or fine-grained lock-
based code. At the same time, they are as easy to use as coarse-
grain locks: one simply brackets the code that needs to be atomic.
In fact, STM systems allow correct sequential code to be con-
verted, mechanically, into highly concurrent correct nonblocking
code. Because they are non-blocking, STM-based algorithms also
avoid problems commonly associated with locks: deadlock, prior-
ity inversion, convoying, and preemption and fault vulnerability.

The dynamic software transactional memory (DSTM) of Herlihy
et al. [7] is a practical obstruction-free STM system that relies on
modular contention managers to separate issues of progress from
the correctness of a given data structure. (Our more recent Adap-
tive STM [ASTM] [10] employs the same modular interface.) The
central goal of a good contention manager is to mediate transac-
tions’ conflicting needs to access data objects.

At one extreme, a policy that never aborts an “enemy” trans-
action1 can lead to deadlock in the event of priority inversion or

1In earlier work [12], we identified requirements for a policy to en-
sure obstruction-freedom; never aborting an enemy violates them,
though it is useful to consider for illustrative purposes.
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mutual blocking, to starvation if a transaction deterministically en-
counters enemies, and to a major loss of performance in the face
of page faults and preemptive scheduling. At the other extreme, a
policy that always aborts an enemy may also lead to starvation, or
to livelock if transactions repeatedly restart and then at the same
step encounter and abort each other. A good contention manager
must lie somewhere in between, aborting enemy transactions often
enough to tolerate page faults and preemption, yet seldom enough
to make starvation unlikely in practice. We take the position that
policies must also be provably deadlock free. The contention man-
ager’s duty is to ensure progress; we say that it does so out-of-band
because its code is orthogonal to that of the transactions it manages,
and contributes nothing to their conceptual complexity.

We begin with a brief overview of DSTM in Section 2, then de-
scribe several new and existing contention management policies,
including proportional-share prioritized policies, in Section 3. Sec-
tion 4 evaluates the performance of these policies on a suite of
benchmark applications. We summarize our conclusions in Sec-
tion 5.

2. DYNAMIC STM
DSTM transactions operate on blocks of memory that corre-

spond to Java objects. Each transaction performs a standard se-
quence of steps: initialize (start) the transaction;accessone or
more objects (possibly choosing later objects based on data in ear-
lier objects) andacquireobjects to which the transaction will make
updates; attempt tocommit; retry if committing fails.

Objects can be accessed for full read-write access, read-only ac-
cess, or temporary access (where interest in the object can later
be dropped if changes to it by other transactions won’t affect cor-
rectness). An object must beacquiredbefore updates to the data
contained within it can be effected. Typically, objects intended for
read-only access are not acquired; this allows other transactions to
access them concurrently.

Internally, the transactionDescriptordata structure consists of a
read setto track objects that have been accessed in read-only mode
and a word that reflects the transaction’s current status:aborted ,
active , or committed .

Each transactable object is represented by aTMObjectthat con-
sists of a pointer to aLocatorobject. Locators point to the Descrip-
tor for the transaction that created them as well as old and new data
object pointers (Figure 1).

When a transaction attempts to access an object, we first read
the Locator pointer in the TMObject. We then read the status word
for the Locator’s transaction Descriptor to determine whether the
old or the new data object pointer is current: if the status word
is committed the new object is current; otherwise the old one
is. Finally, we store pointers to the Locator and its corresponding
TMObject in our Descriptor’s read set.

To acquire an accessed object, we build a new Locator that points
to our Descriptor and has the current version of the data as its old

object. We instantiate a new object with a copy of the target object’s
data and then atomically update the TMObject to point to our new
Locator.

We validate the viability of a transaction by verifying that each
Locator in the read set is still current for the appropriate TMObject.
Validating already-accessed objects with each new object accessed
or acquired ensures that a transaction never sees mutually inconsis-
tent data; hence, programming transactions for DSTM is equivalent
to sequential programming from the user’s perspective.

To commit a transaction, we atomically update its Descriptor’s
status word fromactive to committed . If successful, this up-
date signals that all of the transaction’s updated TMObjects are now
current.

With this implementation, only one transaction at a time can
open a object for write access because a TMObject can point to
only one transaction’s Locator. If another transaction wishes to
access an already-acquired object, it must first abort the “enemy”
transaction by atomically updating its transaction’s status field from
active to aborted . We invoke acontention managerto decide
whether to abort the enemy transaction or delay our own.

2.1 Visible and Invisible Reads
In the original version of the DSTM, read-only access to objects

is achieved by storing TMObject→Locator mappings in a private
read set. At validation time, a conflict is detected if the current and
stored Locators do not match. We dub this implementationinvis-
ible because it associates no artifact from the reading transaction
with the object. A competing transaction attempting to acquire the
object for write access cannot tell that readers exist, so there is no
“hook” through which contention management can address a po-
tential conflict.

Alternatively, read-only accesses can be made visible by adding
the Descriptor to a linked list of readers associated with the TMOb-
ject. This implementation adds overhead to both read and write
operations: a writer that wishes to acquire the object must explic-
itly abort each reader in the list. In exchange, we gain the abil-
ity to explicitly manage conflicts between readers and writers, to
abort doomed readers early, and to skip incremental validation of
accessed objects when accessing or acquiring a new object.

3. CONTENTION MANAGEMENT
As discussed in Section 1, obstruction-free algorithms allow pro-

grammers to address progress as an out-of-band concern orthogo-
nal to correctness. Progress is guaranteed when only one thread is
active; in other circumstances it depends upon heuristics. Essen-
tially, then, a contention manager is a collection of heuristics that
aim to maximize system throughput at some reasonable level of
fairness, by balancing the quality of decisions against the complex-
ity and overhead incurred.

Any obstruction-free algorithm can be augmented with a vari-
ety of contention management policies. For example, our recent
Adaptive STM [10] implements the same contention management
interface as DSTM, so it can use the same managers. Other al-
gorithms, such as the obstruction-free deque of Herlihy et al. [6]
are more restricted: because individual operations do not create
any visible interim state, threads cannot identify the peers with
which they are competing. This precludes use of some of the more
context-sensitive policies detailed below, but other options remain
viable: no special information about competitors is required, for
example, to employ exponential backoff on each failed attempt to
complete an operation. DSTM includes a particularly rich set of
information-providing “hooks”, yielding a rich design space for
contention management policies.



3.1 Contention Management and DSTM
The contention management interface for DSTM [12] comprises

notification methods (“hooks”) for various events that transpire dur-
ing the processing of transactions, plus two request methods that
ask the manager to make a decision. Notifications include begin-
ning a transaction, successfully/unsuccessfully committing a trans-
action, attempting to access or acquire an object, and succeeding
at that access or acquisition. The request methods ask a con-
tention manager to decide whether a transaction should (re)start
and whether enemy transactions should be aborted.

Each thread has its own contention manager object; contention
management is distributed rather than centralized. By tracking the
notification messages that occur in the processing of a transaction,
the contention manager for a thread assembles information to help
it heuristically decide whether aborting a competing transaction
will improve overall throughput.

As illustrated by the managers presented here and in our previ-
ous work [7, 12], the design space for contention managers is quite
large. In this work, we analyze previous high-performance con-
tention managers to create a single default policy, and we examine
prioritized contention management.

3.2 Basic Contention Managers
In previous work [12], we created several ad-hoc managers by

adapting policies used in a variety of related problem domains. In
this subsection, we describe some of the better performing of these
managers.

Polite: The Polite manager uses exponential backoff to resolve
conflicts by spinning for a randomized amount of time with mean
2n+kns, wheren is the number of times conflict has been encoun-
tered so far for an object andk is an architectural tuning constant.
After a maximum ofm rounds of spinning while trying to access
the same object, the Polite manager aborts any enemies encoun-
tered. Empirical testing shows〈k = 4, m = 22〉 to work well for
our machine.

Karma: The Karma manager attempts to judge the amount of
work that a transaction has done so far when deciding whether to
abort it. Although it is hard to estimate the amount of work that a
transaction performs on the data contained in an object, the number
of objects the transaction has opened (accessed or acquired) may be
viewed as a rough indication of investment. For system throughput,
aborting a transaction that has just started is preferable to aborting
one that is in the final stages of an update spanning tens (or hun-
dreds) of objects.

Karma tracks the cumulative number of objects opened by a
transaction as its priority. It increments this priority with each ob-
ject opened, and resets it to zero when a transaction commits. It
does not reset priorities if the transaction aborts; this gives a boost
to a transaction’s next attempt to complete. Intuitively, this priority-
accumulation mechanism allows shorter transactions to build up
priority over time and eventually complete in favor of longer ones.

Karma manages conflict by aborting an enemy transaction when
the number of times a transaction has attempted to open an object
exceeds the difference in priorities between the enemy and itself.
When the number of open attempts does not exceed the difference
in priorities, Karma declines permission to abort the enemy and
backs off for a fixed period of time.

Eruption: Eruption is a Karma variant that also uses the num-
ber of opened objects as a rough measure of energy investment.
Eruption adds a blocked transaction’s priority to the enemy behind
which it is blocked. This speeds the enemy’s completion, allowing
the blocked transaction to resume.

Intuitively, a transaction blocking resources critical to many
other transactions will gain all of their priority in addition to its own
and thus be much more likely to finish quickly. Hence, resources
critical to many transactions will be held (ideally) for short periods
of time. Note that while a transaction is blocked, other transac-
tions can accumulate behind it and increase its priority enough to
outweigh the transaction blocking it.

In addition to the Karma manager, Eruption draws inspiration
from Tune et al.’sQOldDep andQCons techniques for marking
instructions in the issue queue of a superscalar out-of-order micro-
processor to predict instructions most likely to lie on the critical
path of execution [14].

Kindergarten: Based loosely on the conflict resolution rule in
Chandy and Misra’ Drinking Philosophers problem [2], the Kinder-
garten manager encourages transactions to take turns accessing an
object by maintaining ahit list (initially empty) of enemy transac-
tions in favor of which a thread has previously aborted. At conflict
time, the Kindergarten manager aborts an enemy transaction if the
enemy is already in its hit list. Otherwise, the manager adds the
enemy to its hit list and backs off for a limited number of fixed
intervals to give the other transaction a chance to complete. If
the transaction is still blocked afterward, the manager aborts its
own transaction, forcing a restart. This process doesn’t loop for-
ever against a stalled enemy transaction because that enemy will be
present in the hit list when next encountered.

Timestamp: The Timestamp manager is an attempt to be as fair
as possible to transactions. It records the current system time at
the beginning of each transaction. The manager aborts any enemy
with a newer timestamp. Otherwise, it waits for a series of fixed
intervals, flagging the enemy as potentially defunct and then killing
it if the flag is still set at the end of the intervals. Active transactions
clear their flag whenever they notice that it is set.

3.3 New Contention Managers
PublishedTimestamp:A major disadvantage of the Timestamp

protocol is that it requires a long period of time to abort an inac-
tive (usually preempted) transaction. To remedy this, we leverage
a heuristic we’ve recently developed [5] that provides a high qual-
ity estimate of whether a thread is currently active. Adapting the
heuristic to this setting, transactions update a “recency” timestamp
with every notification event or query message. A thread is pre-
sumed active unless its recency timestamp lags the global system
time by some threshold.

PublishedTimestamp aborts an enemy transactionE whose re-
cency timestamp is old enough to exceedE’s inactivity thresh-
old. This inactivity threshold is reset to an initial value (1µs) each
time a thread’s transaction commits successfully. When an aborted
transaction restarts, we double its threshold (up to a maximum of
215µs).

Just as in the initial Timestamp manager, a transaction will abort
any transaction it meets whose base timestamp is newer than its
own. The base timestamp is reset to the system time iff the previous
transaction committed successfully.

Polka: In our previous work [12], we found that Karma and
Polite were frequently among the best performing contention man-
agers, though neither gave reasonable performance on all bench-
marks. To create a combination manager that merges their best fea-
tures, we have combined Polite’s randomized exponential backoff
with Karma’s priority accumulation mechanism. The result, Polka
(named for the managers it joins), backs off for a number of in-
tervals equal to the difference in priorities between the transaction
and its enemy. Unlike Karma, however, the length of these backoff
intervals increases exponentially.



As we will note in Section 4.3, our results suggest that writes
are considerably more important than reads for many of our bench-
marks. Accordingly, the Polka manager unconditionally aborts a
group of (visible) readers that hold an object needed for read-write
access.

3.4 Prioritized Contention Management
In this subsection we introduce theprioritized contention man-

agement problem, wherein each thread has abase priorityBP
that ranks its overall importance relative to other threads. Follow-
ing Waldspurger and Weihl [15], we aim forproportional-share
management, where each thread’s cumulative throughput is pro-
portional to its base priority: a thread with base priority 3 should
ideally complete 50% more work over any given period of time
than one with base priority 2.

There is in general no clear way to add priorities to lock-free
algorithms: the desire to guarantee progress of at least one thread
and the desire to enable a higher-priority thread to “push” lower-
priority threads out of its way are difficult at best to reconcile. By
comparison, prioritization is a natural fit for obstruction-freedom
and DSTM; prioritizing these contention managers was relatively
straightforward. The modularity and fine-grained control offered
by the contention management interface are an inherent benefit of
DSTM and obstruction freedom.

Karma, Eruption, and Polka: Prioritized variants of these
managers addBP (instead of 1) to a transaction’s priority when
they open an object. This adjusts the rate at which the transaction
“catches up” to a competitor by the ratio of base priorities for the
two transactions.

Timestamp variants: Prioritized versions of these managers re-
tain their transaction’s timestamp throughBP committed transac-
tions. Essentially, they are allowed to act as the oldest extant trans-
action several times in a row.

Kindergarten: To prioritize the Kindergarten manager, we ran-
domize updates to the list of transactions in favor of which a thread
has aborted to probabilityBPt/(BPt + BPe) for a transaction
with base priorityBPt and an enemy with base priorityBPe. In-
tuitively, rather than “taking turns” equally for an object, this ran-
domization biases turns in favor of the higher-priority transaction.

4. EXPERIMENTAL RESULTS

4.1 Benchmarks
We present experimental results for six benchmarks. Three

implementations of an integer set (IntSet, IntSetUpgrade, RB-
TreeTMNodeStyle) are drawn from the original DSTM paper [7].
These three repeatedly but randomly insert or delete integers in the
range 0..255 (small ranges increase the probability of contention).
The first implementation uses a sorted linked list in which every ob-
ject is acquired for write access; the second and third use a sorted
linked list and a red-black tree, respectively, in which objects are
initially accessed for read-only access, but acquired for read/write
access as needed.

The fourth benchmark (Stack) is a concurrent stack that supports
push and pop transactions. Transactions in the fifth benchmark
(ArrayCounter) consist of either ordered increments or decrements
in an array of 256 counters. Increment transactions update each
counter from 0 to 255 in ascending order before committing; decre-
ments reverse the order. We designed ArrayCounter as a “torture
test” to stress contention managers’ ability to avoid livelock.

Our final benchmark (LFUCache [12]) uses a priority queue heap
to simulate cache replacement in an HTTP web proxy via the least-
frequently used (LFU) algorithm [11]. It is based on the assumption

that frequency (rather than recency) of access best predicts whether
a web page will be accessed soon again.

The simulation uses a two-part data structure to emulate the
cache. The first part is a lookup table of 2048 integers, each
of which represents the hash code for an individual HTML page.
These are stored as a single array ofTMObject s. Each contains
the key value for the object (an integer in the simulation) and a
pointer to the page’s location in the main portion of the cache. The
pointers are null if the page is not currently cached.

The second, main part of the cache consists of a fixed size pri-
ority queue heap of 255 entries (a binary tree, 8 layers deep), with
lower frequency values near the root. Each priority queue heap
node contains a frequency (total number of times the cached page
has been accessed) and a page hash code (effectively, a backpointer
to the lookup table).

Transactions in the LFUCache benchmark consist of increment-
ing the access count for a web page, and updating the cache, re-
heapifying as needed. In order to induce hysteresis and give pages
a chance to accumulate cache hits, we perform a modified reheapifi-
cation in which the new node switches place with any children that
have thesamefrequency count (of one). To simulate the demand on
a real web cache, we pick pages from a Zipf distribution: for page
i, the cumulative probability of selection ispc(i) ∝

∑
0<j≤i j−2.

4.2 Methodology
All results were obtained on a SunFire 6800, a cache-coherent

multiprocessor with 16 1.2Ghz UltraSPARC III processors. We
tested in Sun’s Java 1.5 beta 1 HotSpot JVM, augmented with a
JSR 166 update jar file from Doug Lea’s web site [9].

For simple performance experiments, we ran each benchmark–
manager pairing with both visible and invisible read implementa-
tions. For each combination, we vary the level of concurrency from
1 to 48 threads, running individual tests for 10 seconds. We present
results averaged across three test runs.

For our fairness experiments, we ran the same combinations of
benchmarks, managers, and read implementations for 16 seconds.
We present results for a single typical test run, showing the individ-
ual cumulative throughput for each of 4 or 8 threads as a function
of elapsed time. We graph results for two configurations: 8 threads
at different priorities from 1..8, and 4 threads initially at priorities
1..4, but inverting to priorities 4..1 midway through the test. For
these tests, the ideal result would be to have throughput “fan out”
keeping the gaps between adjacent threads the same and keeping all
threads in priority order. In the 4-thread cases, after the midpoint,
the change in priorities should ideally make the curves “fan in” and
meet at a single point at the end of the test run.

Figures 2 and 3 display throughput for the various benchmarks.
For the benchmarks that acquire all objects for read-write access
(Figure 2), differences in overhead for supporting the two types of
reads are minimal; we show only invisible reads for space reasons.
Figure 4 shows results for the effectiveness of our prioritization
adaptations on the IntSet benchmark. Figure 5 shows selected re-
sults for prioritized contention managers with other benchmarks.

4.3 Analysis of Throughput Results
The throughput graphs illustrate that the choice of contention

manager is crucial. Except with invisible reads in the IntSet-
Upgrade benchmark, the difference between a top-performing and
a bottom-performing manager is at least a factor of 4.

4.3.1 Write-Dominated Benchmarks
For each of the write-access benchmarks (Figure 2), every pair

of transactions conflict, so the best possible result is to achieve flat
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Figure 2: Benchmarks with only write accesses: throughput by
thread count

throughput irrespective of the number of threads. As is clearly vis-
ible, the Polka manager comes very close to achieving this goal for
Stack and IntSet, and delivers by far the best performance for the
ArrayCounter benchmark.

For these benchmarks, good performance requires one transac-
tion to dominate the others long enough to finish. Karma and Erup-
tion perform well precisely because of their priority accumulation
mechanisms. However, good performance also requires transac-
tions to avoid memory interconnect contention caused by repeated
writes to a cache line. Polka’s increasing backoff periods effect this
second requirement in a manner analogous to the way that test-and-
test and set spin locks with exponential backoff outperform
those without [1].

We confirm this hypothesis by comparing Polka to an equiva-
lent manager (Karmexp, not shown) in which the backoff periods
are fixed, but the number of them needed to “overtake” an enemy
transaction increases exponentially as a function of the difference

in priorities. Even though the same length of time overall must
elapse before a transaction is able to abort its enemy, and all other
management behavior is identical, Karmexp livelocks on the Ar-
rayCounter benchmark.

4.3.2 LFUCache Throughput
Great disparity between managers can be found in the LFU-

Cache benchmark. In this benchmark, the vast majority of trans-
actions consist of reading a pointer then incrementing a counter for
a leaf node in the priority queue heap. As such, LFUCache is heav-
ily write-dominated, and yields results similar to the write-access
benchmarks. The results show greater “spread” however, because
LFUCache offers more concurrency than the purely write-access
benchmarks. The second-place finish of Kindergarten may be at-
tributed to its strong ability to force threads to take turns accessing
the leaf nodes. The difference between visible and invisible reads
is very small, yielding further evidence that write performance is
the dominant concern in this benchmark.

4.3.3 Red-Black Tree Throughput
A typical transaction in the RBTree benchmark consists of ac-

cessing objects in read-only mode from the root of the tree down
to an insertion/deletion point, then performing fix-ups that restore
balance to the tree, working upward toward the root and acquir-
ing objects as needed. Hence, any transaction acquiring objects is
nearly done: the writes are much more important than the reads.
Further, when a writer aborts a reader, it is likely to re-encounter
that reader on its way back toward the root unless it finishes quickly.

Individual tree nodes tend to become localized hot-spots of con-
tention as a transaction coming up from one child node meets an-
other that came up from the other child or a reader working its
way down the tree. This is why the Eruption manager performs
so well here: not only does it have a strong mechanism for select-
ing one transaction over the others, but its priority transfer mecha-
nism gives a boost to the winner for any subsequent conflicts with
the loser. By comparison, Karma’s priority retention allows two
similarly-weighted transactions to repeatedly fight each time they
meet. The Timestamp manager performs similarly to Eruption be-
cause its resolution mechanism ensures that conflict between any
pair of transactions is always resolved the same way.

Comparing read implementations, we observe that up through 4
threads, throughput is far stronger with visible than invisible reads.
We attribute this to validation overhead: with invisible reads, each
time a transaction accesses or acquires a new object, it must first
re-validate each object it had previously accessed for read-only ac-
cess. Hence, validation overhead is quadratic in the number of read
objects (V = O(R(R + W )) for R read-access objects andW
read-write access objects). By comparison, visible reads reduce
this overhead toO(R). Beyond 4 threads, contention increases
enough that validation overhead pales in comparison .

Considering specific managers, the preeminence of writes
greatly hurts the Timestamp manager in particular: with visible
reads, a transaction that is nearly complete must wait behind a
reader even if it needs only one final object in write mode. We
confirmed this by creating a Timestamp variant that uncondition-
ally aborts readers; it yields top-notch performance on the RBTree
benchmark.

4.3.4 IntSetUpgrade Throughput
In the IntSetUpgrade benchmark, as in the red-black tree, trans-

actions consist of a series of reads followed by a limited number
(1) of writes. Once again, we see that validation overhead incurs a
large throughput penalty for invisible reads.
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Figure 3: LFUCache, RBTree, IntSetUpgrade throughput results: invisible (left) and visible (right) reads. Note that Y-axis scales
differ considerably for the RBTreeTMNodeStyle and IntSetUpgrade benchmarks.

With invisible reads, transactions are only aware of other trans-
actions when they attempt to open an object that the other has ac-
quired for read-write access. Here, virtually any delay, such as that
inherent to the function-call overhead of checking to see whether
the other transaction should be aborted, is sufficient to allow it to
finish. As expected, the difference in throughput between managers
is minimal.

With visible reads, the Karma and Eruption managers allow a
long transaction (e.g., one that makes a change near the end of
a list) to acquire enough priority that writers are likely to wait
before aborting them. This allows both transactions to complete
without restarting. If shorter transactions were to complete first,
longer transactions would have to restart. In summary, Karma and
Eruption gain a small edge by helping to ensure that transactions
complete in reverse size order, and the Timestamp variants suffer
greatly from the randomness of which transaction happens to be
older. Polite, Polka, and Kindergarten, meanwhile, back off for

long enough to give longer transactions a better chance to com-
plete, but do not directly ensure this ordering.

4.3.5 Throughput Results Summary
No single manager outperforms all others in every benchmark,

but Polka achieves good throughput even in the cases where it is
outperformed. As the first manager we have seen that does so, it
embodies a good choice for a default contention manager.

As we see from the RBTree and IntSetUpgrade benchmarks,
the tradeoff between visible and visible reads remains somewhat
application-specific: visible reads greatly reduce the validation
overhead when accessing or acquiring new objects, but they require
bookkeeping updates to the object that can exacerbate contention
for the memory interconnect.



0
5000

10000
15000
20000
25000

2 4 6 8 10 12 14 16

seconds

Cumulative Tx by thread (IntSet/Eruption)

0
10000
20000
30000
40000

2 4 6 8 10 12 14 16

seconds

Cumulative Tx by thread (IntSet/Eruption)

0
5000

10000
15000
20000
25000

2 4 6 8 10 12 14 16

seconds

Cumulative Tx by thread (IntSet/Karma)

0
10000
20000
30000
40000

2 4 6 8 10 12 14 16

seconds

Cumulative Tx by thread (IntSet/Karma)

0

10000

20000

30000

2 4 6 8 10 12 14 16

seconds

Cumulative Tx by thread (IntSet/Kindergarten)

0
10000
20000
30000
40000
50000

2 4 6 8 10 12 14 16

seconds

Cumulative Tx by thread (IntSet/Kindergarten)

0
20000
40000
60000
80000

2 4 6 8 10 12 14 16

seconds

Cumulative Tx by thread (IntSet/Polka)

0
40000
80000

120000

2 4 6 8 10 12 14 16

seconds

Cumulative Tx by thread (IntSet/Polka)

0
5000

10000
15000
20000
25000

2 4 6 8 10 12 14 16

seconds

Cumulative Tx by thread (IntSet/PublishedTimestamp)

0
10000
20000
30000

2 4 6 8 10 12 14 16

seconds

Cumulative Tx by thread (IntSet/PublishedTimestamp)

0

10000
20000
30000

2 4 6 8 10 12 14 16

seconds

Cumulative Tx by thread (IntSet/Timestamp)

Thread 7 (priority 8)
Thread 6 (priority 7)
Thread 5 (priority 6)
Thread 4 (priority 5)
Thread 3 (priority 4)
Thread 2 (priority 3)
Thread 1 (priority 2)
Thread 0 (priority 1)

0
15000
30000
45000

2 4 6 8 10 12 14 16

seconds

Cumulative Tx by thread (IntSet/Timestamp)

Thread 3 (priority 4)
Thread 2 (priority 3)
Thread 1 (priority 2)
Thread 0 (priority 1)

Figure 4: Prioritization of the IntSet benchmark: thread throughput by time. Left: 8 threads with priorities 1..8. Right: 4 threads
with priorities 1..4, inverted to 4..1 halfway through.
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Figure 5: Prioritized contention management: thread throughput by time. Left: 8 threads with priorities 1..8. Right: 4 threads with
priorities 1..4, inverted to 4..1 halfway through.

4.4 Fairness
Examining Figure 4, we see that the absolute prioritization of

the Timestamp protocols yields almost perfect fairness. Eruption,
Karma, and Kindergarten however, only effect their priorities when
they directly interact with other threads; consequently, they are de-
pendent on the sequence of transactions that they happen to en-
counter. Yet all of these managers do very well at prioritization
in comparison to Polka. Ironically, the same ability to separate
transactions temporally that gives Polka its strong performance on
many of the benchmarks limits the extent to which transactions
encounter (and thus can influence) each other. This manifests as
smaller spread but much higher throughput with Polka: note the
difference in Y-axis scale.

We present selected prioritization results in Figure 5. A funda-
mental limitation to our techniques for prioritization is that by rely-
ing on contention management to effect priorities, we have no abil-
ity to discriminate between transactions that do not encounter each
other. Hence, it makes sense that the results for IntSetUpgrade and

RBTree (which have an inherently higher level of concurrency than
the IntSet benchmark) do not show the same spreading of through-
put, though individual thread priority trends are somewhat appar-
ent. The behavior of the Polite manager with RBTree is typical of
reasonably fair, but unprioritized managers. We speculate that us-
ing priorities to control when a transaction may begin its attempt
might improve priority adherence.

For the LFUCache and Stack benchmarks, individual transac-
tions can be so short that lower-priority transactions may complete
in the time it takes for a higher-priority transaction to notice and
decide to abort them. This tendency manifests as a large deviation
from the desired priorities.

5. CONCLUSIONS
In this paper we continued our study of contention management

policies. We examined several managers previously found to be
top performers, and leveraged this analysis to create a single de-
fault contention management scheme, Polka, that gives top or near-



top performance across a wide variety of benchmarks. We also in-
troduced the study of fairness and demonstrated simple techniques
that enable proportional-share variants of previous contention man-
agers.

From our analysis of the behavior of contention managers with
various benchmarks, we conclude that visible reads yield a large
performance benefit due to the lower cost of read-object validation
when write contention is low. With sufficiently high write con-
tention, however, the writes to shared memory cache lines needed
to add a transaction to a object’s readers list degrade performance
by introducing memory interconnect contention, and invisible reads
become desirable.

Several questions remain for future work. In no particular order,
we wonder whether “universal” contention management schemes
(that give best-of-class performance in all environments) exist;
whether other benchmarks might display characteristics dramati-
cally different from those we’ve seen thus far; whether better priori-
tization can be effected for transactions; how a more heterogeneous
workload might affect overall throughput with different managers;
and to what extent and with what level of overhead contention man-
agers can be made to adapt between multiple policies.
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