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Abstract. Software Transactional Memory (STM) is a generic synchronization

construct that enables automatic conversion of correct sequential objects into cor-

rect nonblocking concurrent objects. Recent STM systems, though significantly

more practical than their predecessors, display inconsistent performance: differ-

ing design decisions cause different systems to perform best in different circum-

stances, often by dramatic margins. In this paper we consider four dimensions of

the STM design space: (i) when concurrent objects are acquired by transactions

for modification; (ii) how they are acquired; (iii) what they look like when not

acquired; and (iv) the non-blocking semantics for transactions (lock-freedom vs.

obstruction-freedom). In this 4-dimensional space we highlight the locations of

two leading STM systems: the DSTM of Herlihy et al. and the OSTM of Fraser

and Harris. Drawing motivation from the performance of a series of application

benchmarks, we then present a new Adaptive STM (ASTM) system that adjusts

to the offered workload, allowing it to match the performance of the best known

existing system on every tested workload.

1 Introduction

Traditional lock-based concurrent systems are prone to several important problems in-

cluding deadlock, priority inversion, convoying, and lack of fault tolerance. Coarse

grain locks are not scalable, and algorithms based on fine grain locks are notoriously

difficult to write. Ad-hoc nonblocking implementations of concurrent objects avoid the

semantic problems of locks and can match or exceed the performance of fine grain

locking, but are at least as difficult to write.

Ideally, one would like a mechanism that provides the convenience of coarse grain

locks without their semantic or performance problems. Toward this end, Herlihy [6]

was the first to suggest automatically converting sequential code to correct nonblocking

concurrent code. Inspired in part by hardware proposals for multiword atomic primi-

tives [9, 20], subsequent researchers developed more sophisticated constructions [1, 11,

15, 19, 21], but these suffer from various practical problems: Most impose time or space

overheads too high for real-world systems. Some require unrealistic atomic primitives.

Many support only static collections of objects and/or static transactions (in which the

set of objects to be accessed is known in advance).
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Recent software transactional memory (STM) systems have overcome most of these

problems [2, 3, 5, 8]: They employ atomic primitives like compare-and-swap (CAS) and

load-linked/store-conditional (LL/SC), which are widely supported by current multipro-

cessors. They support dynamic collections of objects and dynamic transactions. Their

space overheads are modest. Finally, their performance overheads are low enough to

outperform coarse-grain locks in important cases, and to provide an attractive alterna-

tive to even well-tuned fine-grain locks when convenience, fault tolerance, and clean

semantics are considered. Those of us working in the field envision a day when STM

mechanisms are embedded in compilers for languages like Java and C#, providing non-

blocking implementations of synchronized methods “for free”.

STM systems may be either word- or object-based, depending on the granularity at

which data is modified. We focus on the latter, which appear particularly well suited to

object-oriented languages such as Java and C#. The two leading object-based STMs are

currently the DSTM of Herlihy et al. [8] and the OSTM of Fraser and Harris [2, 3]. In

prior work [13], we undertook a preliminary comparison of these systems. Among other

things, we found that DSTM outperforms OSTM by as much as an order of magnitude

on write-dominated workloads, while OSTM outperforms DSTM by as much as a factor

of two on read-dominated workloads. We attribute much of the difference to the choice

of acquire semantics (discussed in Sections 2 and 3.1) and to indirect object access in

DSTM, which imposes an extra cache miss on the typical read access.

In the current paper we discuss four principal design decisions for object-based

STM, encompassing (i) when concurrent objects are acquired by transactions for modi-

fication (eager vs. lazy acquire); (ii) how they are acquired (per-object or per-transaction

metadata); (iii) what they look like to readers when not currently acquired (level of indi-

rection); and (iv) the type of nonblocking semantics (lock-free vs. obstruction-free). Our

taxonomy enhances previous [3, 13] understandings of DSTM and OSTM performance

by locating these systems within the four-dimensional design space. By clarifying the

performance implications of design dimensions, the taxonomy has also allowed us to

develop an Adaptive STM system (ASTM) that automatically adapts its behavior to

the offered workload, allowing it to closely approximate the performance of the best

existing system in every scenario we have tested.

As background, Section 2 outlines a common usage pattern and API for object-

based STM. Section 3 presents our characterization of the STM design space and lo-

cates DSTM and OSTM within it. Section 4 describes three variants of ASTM, all of

which revisit design decisions at run time based on the offered workload. The first two

variants adapt along dimensions (ii) and (iii) above; the third adds simultaneous adap-

tation along dimension (i). Experimental results, presented in Section 5, show ASTM

to be competitive with the better of OSTM and DSTM across all execution scenarios,

making it highly attractive for general-purpose use.

2 STM Usage

STM transactions provide nonblocking concurrent access to one or more shared trans-

actional objects. Transactions typically proceed through the following four phases with

respect to any given object:
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Open: makes the object available to the transaction. A transaction cannot access an

unopened object, but objects may be concurrently opened by multiple transactions.

Acquire: asserts the transaction’s ownership of the object. An object can be acquired

by only one transaction at a time. Any other transaction that subsequently attempts

to acquire the object must detect and resolve the conflict. The conflict resolution

method determines whether the STM is lock-free [2, 3] or obstruction-free [5, 8].

Acquire is not typically a separate operation. DSTM [8] implements it as part of the

open operation (eager acquire). OSTM [2, 3] implements it as part of the commit

operation (lazy acquire).

Commit: attempts to atomically effect all changes to acquired objects made by the

current transaction. Typically, this is done by using a compare-and-swap (CAS) or

store-conditional instruction to update the status field in a transaction descriptor

accessible to all competing transactions. (Without loss of generality we assume the

use of CAS in the remainder of this paper.) This CAS serves as the linearization

point [10] of the transaction.

Release: cleans up metadata associated with a transaction after it commits or aborts.

DSTM introduced the concept of early release [8], which allows a transaction to re-

linquish an accessed object prior to committing. Early release reduces the window

of contention in which multiple transactions are transiently dependent on a particu-

lar object, but it requires the programmer to exploit application-specific knowledge

to ensure that transactions are consistent and linearizable.

In our STM experiments (Section 5) we employ a uniform API for beginning, vali-

dating, committing, and aborting transactions; and for accessing objects in read-only or

read-write modes. Details can be found in the technical report version of this paper [14].

3 STM Design Space

In this section we discuss four key dimensions in the STM design space. We also present

a brief comparison of DSTM and OSTM in light of them.

3.1 Eager vs. Lazy Acquire

Transactions acquire objects when first accessed under eager acquire semantics, but at

commit time under lazy acquire semantics. Eager acquire allows a transaction to de-

tect contention earlier; this enables a doomed transaction to abort instead of performing

useless work. Eager acquire also makes it easier to ensure consistency: If every conflict

is resolved when first detected, then an unaborted transaction can be sure that its ob-

jects are mutually consistent as of the most recent open operation. With lazy acquire, by

contrast, the obvious approach requires a transaction to maintain a private list of opened

objects, and to re-verify the entire list when opening another. This approach imposes

total overhead quadratic in the number of opened objects. An alternative is to “sand-

box” transactional code to catch and recover from memory and arithmetic faults, and to

impose a limit on execution time as heuristic protection against infinite loops. In some

cases it may be safe to execute with inconsistent data, in which case no verification

overhead is required, but this requires application-specific knowledge.
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On the other side of the tradeoff, lazy acquire can greatly shrink the window wherein

transactions see each other as contenders and may be unnecessarily aborted or delayed.

In particular, with lazy acquire transaction A will never be aborted by transaction B if

B itself aborts before A attempts to commit.

3.2 Metadata Structure

A transactional object typically wraps an underlying data object; i.e. it contains a pointer

through which the data object can be referenced. Two different means of acquiring

such an object appear in current object-based STM systems: (i) an acquirer makes the

transactional object point to the transaction descriptor; and (ii) the acquirer makes the

transactional object point to an indirection object that contains pointers to the transac-

tion descriptor and to old and new versions of the data object. Option (i) allows con-

flicting transactions to see all of their competitors’ metadata, but makes object release

expensive: A released object cannot be left in an acquired state (where it points to a de-

scriptor), because subsequent accesses would have to search the descriptor’s write list

to find a current version. Additionally, maintaining descriptors for previous committed

and aborted transactions would constitute potential space overhead quadratic in the to-

tal number of objects. Instead, a cleanup operation must update transactional objects to

point directly to the current data object, at the cost of an extra CAS per object.

Cleanup can be omitted entirely with per-object metadata, at the cost of 2× over-

head in space. Alternatively, a lightweight cleanup phase might “zero out” pointers to

obsolete data objects, making them available for garbage collection. An attractive inter-

mediate option is to omit the cleanup phase, but allow readers to clean up obsolete data

objects incrementally.

3.3 Indirection in Object Referencing

As noted in the previous subsection, cleanup is essential with per-transaction metadata.

It is optional with per-object metadata. If performed, it provides readers with direct ac-

cess to the data objects of currently unacquired transactional objects. If not performed,

it will tend to induce an extra cache miss for every object opened in read-only mode.

The consequent slower reads have a significant impact on overall throughput for read-

dominated workloads [13].

3.4 Lock-Freedom vs. Obstruction-Freedom

Lock-free concurrent objects guarantee that at least one thread makes progress in a

bounded number of time steps. Obstruction-freedom [7] admits the possibility of live-

lock, but tends to lead to substantially simpler code: Lock-free STM systems typically

arrange to acquire objects in some global total order. They also perform recursive help-

ing, in which transaction A performs transaction B’s operations on its behalf when A
detects a conflict with B. Lock-freedom is most naturally implemented with lazy ac-

quire and sorting; without them a transaction might discover the need to open an object

that precedes some other already-opened object in the global total order.
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Arbitration among competing transactions in an obstruction-free system is handled

“out of band” by a separate contention manager [8]. With the right manager, one can

obtain high probabilistic—or even strict—guarantees of progress [4, 17, 18].

3.5 Placing DSTM and OSTM

DSTM is obstruction-free, whereas OSTM is lock-free. Transactional objects in DSTM

point to an indirection locator object, which in turn contains pointers to the most recent

acquirer’s transaction descriptor and to old and new versions of the data. The acquirer’s

status determines which version of an object is valid: the new version is valid only when

the acquirer has COMMITTED. An unacquired transactional object in OSTM points di-

rectly to the appropriate version of the data. As we shall see, this difference in object

referencing results in poor performance for DSTM in read-dominated workloads.

OSTM is lock-free; hence, it uses lazy acquire. DSTM uses eager acquire. For write

access, DSTM acquires objects by swapping in a new locator; OSTM acquires objects

by making them point directly to the transaction descriptor. Neither DSTM nor OSTM

acquires objects accessed in read-only mode. Rather, both systems maintain a private

read list, which they revalidate on every open operation. OSTM must also validate its

write list on every open. These bookkeeping, sorting, validation, and cleanup overheads

cause OSTM to perform poorly in write-dominated workloads. DSTM has no cleanup

phase, but it arranges for readers, at open time, to “zero out” fields in locators that point

to obsolete data objects, thus making them available to the garbage collector.

In our STM design space, DSTM can be summarized as the point 〈eager acquire,

per-object metadata, indirect object referencing, obstruction-free〉; OSTM maps to 〈lazy

acquire, per-transaction metadata, direct object referencing, lock-free〉. In the following

section we describe our ASTM system. It adapts across dimensions (i) and (iii) of the

design space: 〈eager OR lazy acquire, per-object metadata, direct OR indirect object

referencing, obstruction-free〉.

4 Adaptive Software Transactional Memory

As noted in Section 3, and as demonstrated in preliminary experiments [13], the location

of an STM system in the design space plays a key role in its algorithmic complexity and

performance. The fact that different systems perform best in different circumstances

raises the question: Is it possible to adapt among multiple design points to obtain a

“best-of-both-worlds” STM system that performs well in all scenarios? We address this

question with our ASTM design.

4.1 Basic ASTM Design

In our experiments to date we have yet to identify a workload in which lock freedom

provides a performance advantage over obstruction freedom. Given the design flexibil-

ity and algorithmic simplifications enabled by obstruction freedom, together with the

success of practical contention managers in avoiding livelock problems [18], we have

adopted obstruction freedom for ASTM.
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Figure 1 depicts a Transactional Memory Object (TMObject, borrowed from DSTM

terminology) in ASTM. By default, TMObjects point directly to data objects. A reader

transaction does not acquire a TMObject. Instead, it maintains a private read list and

guarantees transaction consistency by re-validating the objects on that list at each new

open operation. Reads by a transaction are thus invisible to other transactions in the

system. A writer transaction, on the other hand, acquires a TMObject by installing an

indirection object. Borrowing again from DSTM, we refer to this indirection object as

a locator. Figure 1 illustrates the object acquisition process. ASTM locators, like those

of DSTM, contain three pointers: one for the acquirer’s transaction descriptor, and one

each for old and new versions of the data object. Before acquiring an object a writer

instantiates a new locator and a new version of the data object, which it copies from

the most recently committed version, found in the current TMObject. The writer then

acquires the target TMObject by using an atomic CAS to swing it to the new locator.

 Start

CAS

Copy

TM Object

Transaction

New Object

Old Object

New Locator

New Active
Transaction

New Version
Data Object −

Data Object

Fig. 1. Acquiring a previously unacquired object

A transaction may be in any of three states: ACTIVE, ABORTED, or COMMIT-

TED. With contention, a writer’s acquire attempt may fail, or it may find an ACTIVE

transaction’s locator in the TMObject. The contention manager is invoked to determine

which transaction should proceed. If the contention manager indicates that transaction

A should abort its competitor B, A attempts to do so by CASing B’s descriptor’s state

from ACTIVE to ABORTED. Otherwise the current transaction retries the acquire (pos-

sibly after waiting for some time to let its competitor complete execution). Once all

operations for a transaction are complete, it is committed upon successfully changing

the descriptor state from ACTIVE to COMMITTED. Immediately prior to committing, a

transaction must perform one final validation of objects on its private read list.

A TMObject that points directly to a data object is said to be in the unacquired state;

a TMObject that points to a locator is in the acquired state. If TMObjects were to re-

main in the acquired state after a writer completes, then subsequent reads would suffer

indirection overhead, as described in Section 3.3. To spread the overhead of cleanup

over time, and to avoid it entirely when the subsequent access is a write, we leave

the work to readers. A reader that finds an object in the acquired state with a transac-

tion that is either COMMITTED or ABORTED first converts the object to the unacquired
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      Old Locator

CAS

Transaction

Committed

Transaction

Old Object
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New Version

Old Version
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Data Object −
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Fig. 2. Cleanup while opening an acquired object in read mode

state. Figure 2 illustrates this conversion. A reader detects contention when an acquired

TMObject’s locator refers to an ACTIVE transaction.

In workloads dominated by reads, ASTM objects will tend to stay in the unacquired

state, improving performance through lack of indirection. In workloads dominated by

writes, objects will tend to stay in the acquired state, avoiding the overhead of cleanup.

Additionally, ASTM uses eager acquire by default for objects opened in writable mode.

ASTM thus seems positioned to perform well for a variety of workloads. Our experi-

mental results (Section 5) confirm this expectation.

4.2 Workload Effect: Readers vs. Writers

As in DSTM, an ASTM transaction that opens N objects in write mode requires N +1
CASes: N to acquire the objects, and one to commit. However, subsequent readers may

perform up to N CASes to return the objects to an unacquired state. For write-dominated

workloads, these cleanup CASes are rare.

With a roughly uniform mix of reads and writes, transactions that include reads are

likely to perform several cleanup CASes. In this case, TMObjects could repeatedly flip

between acquired and unacquired states. Readers would become slower, due both to the

extra level of indirection in acquired TMObjects and to the extra CASes needed to revert

objects from the acquired to unacquired states. These CASes could also interfere with

writers, slowing them down as well. As the results in Section 5 will show, however,

overall system throughput for ASTM is always competitive with the better existing

STM. We attribute this primarily to the division of labor between reads and writes, and

to the use of eager acquire: Compared to DSTM, we avoid an extra level of indirection

for unacquired objects; compared to OSTM, the benefits of eager acquire significantly

outweigh the performance lost from flipping transactional object states.

In the best case, an individual transaction may find all its objects unacquired and

incur no indirection overhead. In the worst case, it may find all its objects acquired. In

addition to indirection overhead, it would then incur the costs of cleanup for objects

opened in read mode plus contention-induced slowdown for writes. In Section 5, we as-

sess benchmarks with transactions that fall in several points on the read-write spectrum.

We intend to continue exploring reader-writer tradeoffs as future research.
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4.3 Lazy ASTM

As described so far, ASTM uses eager acquire for objects opened in write mode. Sup-

pose that transaction A detects a conflict with B when attempting to open some object

of mutual interest. If A is doomed to fail, detecting the conflict early may allow it to

abort, and avoid unnecessary work. Similarly, if B is doomed to fail, A has the oppor-

tunity to kill it right away. As noted in Section 3, however, the tradeoff can go the other

way. We cannot in general be sure which transaction(s) might eventually succeed. In an

obstruction-free system like ASTM, the contention manager simply makes an informed

guess. If A waits for—or aborts itself in favor of—B, and B fails to commit, we have

incurred a significant cost. Similarly, if A aborts B but then itself fails to commit, the

work of B was wasted. Either way, this cost could have been avoided if A had delayed

its acquire. Even if A rightly kills B, it is possible that B would have detected an incon-

sistency and aborted itself soon after, suggesting that we may have wasted the overhead

of contention management.

To evaluate these tradeoffs, we have developed a lazy variant of ASTM that ac-

quires no objects until commit time. Like the default Eager ASTM, Lazy ASTM uses

contention management; both are obstruction-free. Lazy acquire reduces the window in

which transactions may see each other as competitors.

As in Eager ASTM, each TMObject in Lazy ASTM can be in the acquired or unac-

quired state. Readers perform cleanup as necessary. Writers, on the other hand, do not

eagerly acquire target TMObjects. Instead, a transaction maintains a private write list in

its descriptor, in addition to the read list. This write list is revalidated (as is the read list)

when opening each new transactional object. Essentially, a transaction remains invisible

to other transactions until commit time. As a result, several transactions may open the

same object in write mode at the same time. At commit time, a transaction attempts to

acquire the TMObjects in its write list by swapping in pointers (using CAS) to newly

created locators, each corresponding to the respective TMObject. The CAS will fail if

any other transaction has modified the object in-between. But where OSTM sorts ob-

jects and uses recursive helping to guarantee lock-freedom, ASTM traverses the write

list unsorted and relies on the contention manager to arbitrate conflicts.

4.4 Adapting to Acquire Semantics

Transactions that are doomed to fail tend to detect contention late in their lifetime with

lazy acquire, after doing a lot of wasted work. On the other hand, with eager acquire,

doomed transactions can interfere with other transactions, delaying or aborting them.

Unfortunately there is no way in general to distinguish between these scenarios. In fact,

our experiments so far seem to suggest that the tradeoffs largely “cancel out”: Though

eager acquire is usually a little faster, neither dramatically outperforms the other in most

cases. This suggests to us that eager acquire is usually preferable, in order to avoid the

bookkeeping complexity of maintaining write lists.

In one specific case, however, our experimental results (Section 5) reveal a signif-

icant advantage for lazy acquire: transactions that access a large number of objects in

read-only mode, that perform early release on many of these (thereby reducing the win-

dow of contention with other potentially conflicting transactions), and that access only
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a few objects in write mode. A common example is a reader transaction that uses early

release incrementally while following a linked path through a data structure. Such a

transaction may suffer delays if it encounters objects eagerly acquired by writers. Lazy

acquire significantly reduces contention windows for this workload.

The next logical step in our quest for adaptivity in ASTM is to dynamically select

an object acquisition strategy. From our observations on the synergy between lazy ac-

quire and early release, we invoke a history-based heuristic for a transaction to adapt to

the better acquire strategy (eager or lazy) based on observations made by past transac-

tions. The final version of our system (“Full ASTM”) defaults to eager acquire, since

this provides the best performance in most cases (details in Section 5). We main-

tain rolling averages for percentages of writes and of early releases that follow at

least one write across transactions executed by a thread. So long as the percentage

of writes is below a threshold w and the percentage of early releases exceeds an-

other threshold r, subsequent transactions use lazy acquire; otherwise they use eager

acquire.

Our heuristic assumes that transactions will tend to behave similarly to those re-

cently completed. It also reflects the quadratic cost of incremental validation: Even a

modest number of writes will result in overhead significant enough to overcome the

benefits from reduced contention windows in lazy acquire / early release. In our exper-

iments, we have set the early release threshold r at 50% and the write access threshold

w at 25%. Limited experimentation with other values suggests that results are largely

insensitive to the exact percentage used.

As in Eager ASTM, readers clean up transactional objects if necessary, and writers

use indirection objects (DSTM-style locators). Full ASTM remains obstruction-free; it

requires contention management.

5 Experimental Results

In this section we provide a detailed empirical analysis of the main aspects of the STM

system design space addressed in this paper: acquire semantics, acquire methodology,

object referencing style, and progress guarantees. We present experimental results for a

variety of concurrent data structures to assess the extent to which ASTM successfully

adapts to the offered workload. We use DSTM and OSTM as a baseline against which

to compare our results.

Experiments were conducted on a 16-processor SunFire 6800, a cache-coherent

multiprocessor with 1.2GHz UltraSPARC III processors. The testing environment was

Sun’s Java 1.5 beta 1 HotSpot JVM, augmented with a JSR166 update from Doug

Lea [12]. We measured throughput over a period of 10 seconds for each benchmark,

varying the number of worker threads from 1 to 48. Results were averaged over a set of

six test runs. In all experiments, we use the Polka contention manager [18] for DSTM

and for all three variants of ASTM (Eager, Lazy, Full); Scherer and Scott report this

manager to be both fast and stable. We perform incremental revalidation in all sys-

tems for all benchmarks, rechecking the consistency of previously opened objects when

opening anything new.
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5.1 Write-Dominated Workloads

In DSTM and Eager ASTM, objects opened in write mode are immediately acquired,

and the transaction is free to forget the original transactional objects. Validation, more-

over, is trivial: If the transaction descriptor is still ACTIVE, all objects opened in write

mode are consistent. Because they acquire objects lazily, OSTM and Lazy ASTM must

maintain a write list in addition to the read list, and must revalidate objects on both lists

incrementally. ASTM defaults to eager acquire mode, but when it switches to lazy ac-

quire mode, it incurs the same write list maintenance and validation overhead as OSTM

and Lazy ASTM.
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Fig. 3. IntSet performance results

In write-dominated workloads, OSTM and Lazy ASTM suffer significantly from the

bookkeeping and incremental validation overhead for maintaining write lists for trans-

actions. DSTM and Eager ASTM, however, do not incur these overheads. Our strategy

of having ASTM acquire objects eagerly by default enables ASTM to remain in ea-

ger acquire mode for write-dominated transactions. To assess the impact of this design

choice, Figure 3 shows STM performance results on the IntSet benchmark. IntSet main-

tains a sorted list of integers ranging between 0. . . 255 (the range has been restricted in

all benchmarks to deliberately increase contention). Concurrent threads continuously

insert and delete nodes in the list. A transaction opens all visited nodes in write mode.

DSTM, Eager ASTM and ASTM all perform comparably: an order of magnitude bet-

ter than OSTM and Lazy ASTM. Experiments with modified versions of the code (not

shown here) reveal that most of the overhead in OSTM and Lazy ASTM comes from

extra bookkeeping; the remainder comes from incremental validation and sorting (in

OSTM). Notice that Lazy ASTM livelocks (drops from low throughput to essentially

none) when we move from one to two processors.

Figure 4 shows performance results for the LFUCache benchmark [17]. This pro-

gram uses a priority queue heap to simulate cache replacement in an HTTP web proxy
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via the least-frequently used (LFU) algorithm [16]. The LFU replacement policy as-

sumes that the most frequently accessed pages are most likely to be accessed next. A

transaction typically reads a page, increments its frequency count, and rearranges the

heap (if necessary).
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Fig. 4. LFUCache performance results

To approximate the demand on a real web cache, we pick pages randomly from a

Zipf distribution. As a result, a small set of pages is accessed most frequently; transac-

tions are essentially write-dominated (for page i, the cumulative probability of selection

is pc(i) ∝
∑

0<j≤i 1/j2). DSTM, Eager ASTM and ASTM perform comparably. Lazy

ASTM suffers from bookkeeping overhead; OSTM additionally incurs overhead from

sorting and recursive helping.

5.2 Read-Dominated Workloads

As discussed in Section 3, the style in which unacquired objects are referenced has a

considerable impact on read performance. DSTM uses indirection objects (locators),

while OSTM arranges for unacquired transactional objects to point to data objects di-

rectly. All three ASTM variants adapt their object referencing style to the underlying

workload. We illustrate this facet of ASTM’s performance relative to OSTM and DSTM

using two read-dominated benchmarks: IntSetRelease (another sorted list of integers),

and RBTree (a concurrent red-black tree).

IntSetRelease is a highly concurrent IntSet variant in which transactions open ob-

jects in read mode and release them, early, while moving down the list. Once found,

the nodes to be updated are upgraded to write mode. DSTM performs the worst due to

indirection overhead. ASTM and Eager ASTM perform the best, with Lazy ASTM and

OSTM incurring minor overheads from bookkeeping (both) and sorting (OSTM). Even

though most objects are typically released early, writes always occur at the very end of

a transaction. For this reason, ASTM tends to remain in eager acquire mode.
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Fig. 5. IntSetRelease performance results
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Fig. 6. RBTree performance results

RBTree is a concurrent red-black (balanced) search tree. As in the linked-list bench-

marks, threads repeatedly perform randomized insertions and deletions. A transaction

typically opens objects in read mode as it searches down the tree for the right place to

perform an insertion or deletion. Subsequently, it upgrades to write mode only those

nodes that are needed to rebalance the tree. Performance results appear in Figure 6.

All the ASTMs and OSTM perform comparably well. Since no early releases are in-

volved in transactions, ASTM remains in eager acquire mode. Since most nodes are

never upgraded to write mode, DSTM yields the lowest throughput.

5.3 Conflict Window

Although lazy object acquisition leads to bookkeeping and validation overheads, it

helps reduce the window of contention between transactions. As per our discussion in
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Fig. 7. RandomGraphList performance results

Section 4.3, early release can lead to a situation in which lazy acquire might be expected

to significantly outperform eager acquire. We see this situation in the RandomGraphList

benchmark.

RandomGraphList represents a random undirected graph as a sorted linked list in

which each node points to a separate sorted neighbor list. To increase contention, we

restrict the graph size to 256 nodes, numbered 0. . . 255. Transactions randomly insert

or delete a node. For insertions, transactions additionally select a small randomized

neighbor set for the target node. Transactions traverse the adjacency list (using read and

early release as in IntSetRelease) to find the target node. They then read and update that

node’s neighbor list, together with the neighbor list of each of its new neighbors.

Transactions are very long in RandomGraphList. With eager acquire, the window of

conflict is very large. Figure 7 shows STM throughputs for RandomGraphList. Lazy ac-

quire is a clear winner, with throughput more than a factor of five higher than that of ea-

ger acquire. With eager acquire, reader transactions encounter unnecessary contention

with writer transactions (for objects that would be released early anyway), leading to

virtually serialized access to the main node list. DSTM bears the additional indirection

overhead and hence performs the worst. Here, synergy between lazy acquire and early

release significantly reduces the number of read-write conflicts. Eager ASTM performs

a little better than DSTM, but significantly worse than Lazy ASTM. Lazy ASTM lags a

little behind OSTM up to 16 threads; since data access patterns are random (due to ran-

dom neighbor sets), transactions in Lazy ASTM apparently livelock on each other for

a while before someone makes progress. OSTM, being lock-free, does not suffer from

this delay. After 16 threads though, the overhead of recursive helping in OSTM causes

reduction in its throughput. ASTM follows Lazy ASTM’s performance curve, and is

more or less competitive with both OSTM and Lazy ASTM. Because ASTM defaults

to eager acquire mode, the first few transactions use eager acquire and are consequently

very slow. Thereafter, ASTM switches to lazy acquire mode and starts catching up with

Lazy ASTM and OSTM.
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6 Concluding Remarks

The possibility of automatically converting sequential code to concurrent code has made

STM an attractive topic of research, and recent work [2, 3, 5, 8] has brought it to the

verge of practical utility. Much will now depend on the constants: Is the overhead rel-

ative to lock-based code small enough to be outweighed by the (clear and compelling)

semantic and software engineering benefits?

In this paper we have presented a detailed analysis of the design space of modern

STMs, identifying four key dimensions of STM system design. Various choices in this

space lead to varied performance tradeoffs. Consequently no single STM performs the

best (or comparably) in all possible scenarios. Our analysis has led us to create a new

STM system that adapts to the offered workload, yielding throughput comparable to the

best existing system in all scenarios we have tested. The object acquisition methodol-

ogy, adaptive object referencing style, and obstruction-free nature of ASTM have been

carefully selected to give maximum throughput in all cases. We have also demonstrated

the feasibility of adapting acquire semantics via simple history-based heuristics.

Although our analysis of the STM design space is fairly exhaustive, another design

dimension remains unexplored: tradeoffs in visible vs. invisible reads [17, 18]. Pre-

liminary results from our exploration of read strategies (not shown here) suggest that

adapting between the two may improve performance. We also forsee future work in

greater exploration of execution scenarios that favor eager or lazy acquire semantics.

Finally, we will strive to find ever better adaptation heuristics.
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