
Characterizing Phases in Service-Oriented Applications

Xipeng Shen Chen Ding Sandhya Dwarkadas Michael L. Scott

Computer Science Department
University of Rochester

{xshen,cding,sandhya,scott}@cs.rochester.edu

ABSTRACT
The behavior of service-oriented programs depends strongly on the
input. A compiler, for example, behaves differently when compil-
ing different functions. Similar input dependences can be seen in
interpreters, compression and encoding utilities, databases, and dy-
namic content servers. Because their behavior is hard to predict,
these programs pose a special challenge for dynamic adaptation
mechanisms, which attempt to enhance performance by modifying
hardware or software to fit application needs.

We present a new technique to detect phases—periods of dis-
tinctive behavior—in service-oriented programs. We begin by us-
ing special inputs to induce a repeating pattern of behavior. We
then employ frequency-based filtering on basic block traces to de-
tect both top-level and second-level repetitions, which we mark via
binary rewriting. When the instrumented program runs, on arbi-
trary input, the inserted markers divide execution into phases of
varying length. Experiments with service-oriented programs from
the Spec95 and Spec2K benchmark suites indicate that program
behavior within phases is surprisingly predictable in many (though
not all) cases. This in turn suggests that dynamic adaptation, either
in hardware or in software, may be applicable to a wider class of
programs than previously believed.

1. INTRODUCTION
Program and hardware adaptation to take advantage of dynamic

changes in behavior is becoming increasingly important as a re-
sult of technological trends, including increases in clock frequency,
pipeline complexity, the processor–memory speed gap, the depth of
the memory hierarchy, and processor and system power density. A
number of recent techniques divide an execution into phases and
adapt hardware and/or the program on a per-phase basis. The ben-
efit of the adaptation depends on the accuracy of phase partitioning
and behavior prediction.

In this paper, we consider a class of dynamic programs whose
behavior depends strongly on their input. An example is a com-
piler, in which behavior varies not only from one input to another
but also across sections of the same input. Other examples include
interpreters, compression and transcoding utilities, databases, and
web servers. These applications share the common feature that they
provide some sort of service: they accept, or can be configured to
accept, a sequence of requests, each of which is processed more-
or-less independently of the others. Because they are so heavily de-
pendent on their input, service-oriented applications display much
less regular behavior than does the typical scientific program. The
question naturally arises: do they have any behavior sufficiently
regular to make run-time adaptation worthwhile?

To address this question we introduce a new technique called
active profiling, which exploits the following observation: if we

provide a service-oriented application with an artificially regular
input, then its behavior is likely to be regular as well. If this reg-
ularity allows us to identify behavior phases and mark them in the
program executable, then we may be able to delimit phases during
normal operation as well, when irregular inputs make frequency-
based phase detection infeasible. More specifically, active profil-
ing uses a sequence of identical requests to induce behavior that
is both representative of normal usage and sufficiently regular to
identify outermost phases. It then uses different real requests to
capture common sub-phases and to verify the representativeness of
the constructed input. In programs with a deep phase hierarchy, the
analysis can be repeated to find sub-sub-phases, etc. Active pro-
filing differs from traditional profiling in that its input is specially
designed to expose desired behavior in the program. It requires ac-
cess to the program binary only; no knowledge of loop or function
structure is required. All basic blocks are considered as possible
phase change points.

In a recent study, Shen et al. [15] used wavelet analysis on the
program’s data reuse distance to identify and mark phases in regular
applications. Because instances of a given phase within a single ex-
ecution were nearly identical in length and behavior, early instances
could be used to predict the length and behavior of later instances
with high accuracy. In comparison, when execution was divided
into intervals of uniform length, without regard to phase structure,
behavior was much less predictable, because a given interval might
contain pieces of more than one phase. Using knowledge of phases,
Shen et al. were able to apply dynamic adaptation of cache size and
memory layout to obtain significant improvements in application
performance.

Unfortunately, the methodology of Shen et al. does not work for
service-oriented programs, for two reasons. First, wavelet analysis
depends on temporal regularity, which service-oriented programs
do not display, due to irregular inputs. Second, Shen et al. pre-
dict the same behavior for all instances of a given program phase.
This assumption does not hold in service-oriented programs. In
a compiler, for example, compilation of a top-level function may
constitute an outermost phase, but the length and behavior of the
phase may depend on the length and semantic complexity of the
function being compiled.

In this paper, we use active profiling and a simpler phase analysis
technique to mark phase transitions in service-oriented programs.
We then measure the extent to which instances of a given phase dis-
play similar behavior. We test our techniques on service-oriented
applications from the Spec95 and Spec2K benchmark suites [1].
We measure the behavior similarity of instances of the same pro-
gram phase when running on irregular production inputs, and com-
pare this similarity to that of temporal intervals chosen without re-
gard to phase boundaries, both in terms of phase length and as in

mls
Tech. Rep. 848, Nov. 2004

terms of phase behavior. Though less regular than scientific pro-
grams, we find that service-oriented programs often display a sur-
prising degree of predictability, suggesting that dynamic adaptation
techniques may be applicable to a significantly broader class of ap-
plications than has previously been believed.

2. ACTIVE PROFILING AND PHASE
DETECTION

This section describes how we construct regular inputs and detect
phases through profiling.

2.1 Constructing regular inputs
The behavior of service-oriented programs is highly input de-

pendent due to the varying nature of the input requests, resulting in
program phases of variable length and behavior. Input dependence
is a challenge because we cannot pre-determine program behavior
without knowledge of the program input. The key idea behind the
detection of variable-length phases is to force repeatable behavior
in the program by feeding it regular inputs that contain repeating
requests. An example is GCC from the SPEC95/2K benchmark
suite. The speed, measured in instructions per cycle (IPC), varies
with the program being compiled. Figure 1 (a) shows the IPC curve
for a reference input. However, we can induce regular behavior in
GCC by letting it compile a sequence of identical functions. Fig-
ure 1 (b) shows the IPC curve on such a regular input. Solid and
broken vertical lines indicate outer and inner phase boundaries. The
fact that the program behavior repeats for a known number of times
is critical to the phase detection described in the next section. The
rest of this section discusses ways to construct regular inputs for
service-oriented programs.

A service-oriented program provides an interface for specifying
incoming requests. A request consists of data and requested op-
erations. The interface can be viewed as a mini-language. It can
be as simple as a tuple. For example, a file compression program
accepts a sequence of input files, together with such arguments as
the level of compression and the name of the output file. The in-
terface language can also be a full-fledged programming language.
Examples are interpreters for Java or program simulators such as
SimpleScalar [6].

Each request to a service-oriented program can be thought of as
a mini-program written in the language specified by the service in-
terface. To produce a sequence of repeating requests, we can often
just repeat a request. This repetition is easy when the service is
stateless, that is, the processing of a request does not change the
internals of the server program. File compression, for example, is
uniformly applied to every input file; the compression applied to
later files is generally unaffected by the earlier ones. Repetition is
more difficult when the service stores information about requests.
A compiler generally requires that all input functions in a file have
unique names; a database changes state as a result of insertions
and deletions. For the stateful case, we need to consider these
constraints when generating regular requests. For a compiler, we
replicate the same function but give each a different name. For a
database, we balance insertions and deletions or use inputs contain-
ing only lookups.

We use five benchmarks in our experiments. Two stateless pro-
grams are Compress, the Unix file compression utility from Spec95,
and Parser, an English language parser from Spec2K. As dis-
tributed by SPEC, Compress is programmed to compress and de-
compress the same data 25 times, which is a regular input. We
get an irregular input by applying it to different data of a random
length. Parser takes a sequence of natural language sentences as its

input and parses them one by one. For regular input we created a
file containing multiple copies of a single sentence.

The three other programs store a different degree of information
when processing requests. GCC, from SPEC2K, is a version of
the GNU C Compiler. As noted above, its regular input contains
copies of identical functions with different names. The function
itself contains multiple copies of a loop to simplify phase discov-
ery. LI is a Lisp interpreter from SPEC95. It interprets expression
by expression. For its regular input we provide multiple copies of
an expression that calculates the sum of many copies of the same
simple sub-expression. Vortex is an object-oriented database from
SPEC2K. Its outer-level loop extends the database, then performs
random lookup, deletion, and insertion operations. The input file to
Vortex contains the initial database and the parameters controlling
the number of various operations. To make its behavior regular, we
comment out the delete and insertion operation and change the ran-
dom generator such that the program does the same lookups on the
same data every time.

Phase analysis and detection does not require a long execution
of the program. We use 4 identical functions for GCC, 6 identical
expressions for LI, 6 identical sentences for Parser.

Once a regular input is constructed, we measure such run-time
statistics as IPC, and compare them with typical inputs. The goal
is to ensure that behavior on the artificial input does not deviate
significantly from behavior on real inputs. Our first regular in-
put for GCC included repeated functions whose body contained
a large number of copies of the statement “a=0”. The IPC curve
was mostly flat, lacking the variations seen in the IPC curve of typ-
ical inputs. We subsequently constructed an input with repeated
instances of a function copied from real input. The IPC curve then
looked like that obtained from real, irregular inputs. While both
inputs have the same number of top-level phases, the phases in the
first input are hard to distinguish due to their uniform behavior. The
higher variation in behavior within the phases in the second input
allows easier determination of significant phases in typical execu-
tions.

The appropriate selection of regular inputs is important not only
for capturing typical program behavior; it also allows targeted anal-
ysis for subcomponents of a program. For example, in GCC, if we
are especially interested in the compilation of loops, we can con-
struct a regular input with repeated functions that have nothing but
a sequence of identical loops. Phase detection can then identify the
sub-phases devoted to loop compilation. By constructing special
inputs, not only do we isolate the behavior of a sub-component of
a service, we can also link the behavior to the content of a request.

2.2 Detecting and marking phases via
frequency-based filtering

When run with a regular input, a service-oriented program should
generate a series of mostly repeating phases. Phase detection exam-
ines the frequency of instructions being executed to identify candi-
dates for inserting phase markers. It first determines the outermost
phase and then the inner phases. As the marker for a given phase,
we choose a basic block that is always executed at the beginning of
that phase, and never otherwise.

2.2.1 Outermost phase detection
The instruction trace of an execution is recorded at the granular-

ity of basic blocks. The result is a basic-block trace, where each
element is the address of a basic block. Let f be the number of re-
quests in the regular input. Then a block that marks the outermost
phase should appear exactly f times in the trace. We therefore fil-
ter out all blocks that appear k 6= f times. What remains is a

candidate trace. Many integer programs have a large number of
small blocks, so the candidate trace may still contain thousands of
different blocks. Although the remaining blocks should exhibit a
repeating pattern, variations may occur due to initialization, final-
ization, and in some programs garbage collection. To separate the
phase behavior, we check for the regularity of the appearances.

For each instance bi of a block b, other than the first, we de-
fine the recur-distance rbi

of bi to be the number of dynamic in-
structions between bi and the previous appearance of the block,
bi−1. We average across all instances of b to obtain the average
and the standard deviation, rb and σrb

. Then we calculate the
average across all non-initial instances of all blocks to get r and
σr . Finally, we calculate σr , the standard deviation of r across all
blocks. Our experiments confirm that the probability is small that
an initialization, finalization or garbage collection block will ap-
pear exactly as many times as there are requests in the input. Such
a block is therefore likely to be a statistical outlier: it will have a
very short average recur-distance (all instances occur during ini-
tialization, finalization, or a single GC pass), or it will show wide
variation in recur-distance (because it is not tied to requests). Put
another way, a block b that does represent a phase boundary should
satisfy rb ≈ r, and σrb

≈ σr . Using three standard deviations as
a threshold, we filter out blocks for which r − rb > 3 σr or for
which |σr − σrb

| > 3 σr . We search the trace in reverse order and
choose the first block satisfying both conditions as the outermost
phase end marker.

2.2.2 Inner phase detection
The outermost phase corresponds to the entire processing of a re-

quest. Many programs have sub-phases. For example, the compila-
tion of a function may comprise many stages: parsing and semantic
analysis, data flow analysis, register allocation, instruction schedul-
ing. In contrast to the previous step, where we were interested in
identical behavior, in this step we are interested in the common
sub-phases of all behavior. Instead of using a regular input, we use
irregular input to find these common sub-phases.

During the outermost phase detection, we obtain a trace in which
each candidate block occurs the same number of times as the num-
ber of regular requests. After choosing one block as the phase-end
marker, and instrumenting it via binary rewriting, we re-run the ap-
plication on irregular input. During this run we record the blocks
that appear exactly once in most instances of the outermost phase
(90% in our experiments). These constitute the candidate blocks
for inner-phase boundaries.

Figure 2 shows a trace of GCC. Each circle on the graph rep-
resents an instance of a inner-phase candidate block. The x-axis
represents logical time (number of instructions executed); the y-
axis shows the identifier (serial number) of the executed block. We
calculate the logical time between every two consecutive circles:
the horizontal gaps in Figure 2. From among these gaps we select
the outliers, whose width is over m+3∗d, where m is the average
gap width and d is the standard deviation. We then define the basic
block to the right of each such outlier to be an inner-phase bound-
ary. In Figure 2, the boundaries are shown by vertical broken lines
with inner-phase candidates shown as circles. Intuitively, the inner
phases are large gaps in the graph.

The interface language for a service-oriented program may have
a nested structure. For example, the body of a function in the input
to a compiler may contain nested statements at multiple levels. This
nesting may give rise to “sub-sub-phases” or program execution,
which our framework can be extended to identify, using a sequence
of identical sub-structures in the input. In the case of the compiler,
we can construct a function with a sequence of identical loop state-

0 1 2 3 4 5 6 7

x 10
9

0

1

2

3

4

5

6

7

8

9
x 10

4

Number of instructions

B
as

ic
 b

lo
ck

 ID

Figure 2: GCC inner-phase candidates with inner-phase
boundaries

ments, and then mark the portions of each sub-phase (compilation
stage) devoted to individual loops, using the same process that we
used to identify outermost phases in the original step of the analy-
sis.

2.2.3 Marking phases for evaluation
Phase marking requires binary instrumentation. At present we

rely on ATOM [17], running on Digital Alpha machines. We also
collect measurements on a faster machine: a 1.3GHz IBM POWER4
pSeries. For these latter measurements we insert phase markers by
hand, with help from debugging tools. Applications are first com-
piled with the “-g” debug option on the Alpha machines. ATOM is
then used to determine the program counter of phase marker basic
blocks. A simple manual search through the assembly code gives
us the line number of the corresponding source code and the name
of the source file, where we insert a phase marker. Sometimes a
statement maps to multiple basic blocks and a marking basic block
may not be the starting or ending basic block. A statement may
call a subroutine, for example, with parameters that are themselves
subroutine calls. The marking basic block may be between the
two subroutine calls. This requires decomposing the statement into
multiple simpler statements. While these issues are resolved by
hand in our POWER4 experiments, it should be emphasized that
the entire process can easily be automated on a machine with an
ATOM-like tool, with no access required to source code, assembly
code, or debugger symbol tables.

3. EVALUATION
In this section, we measure phase behavior in five programs,

shown in Table 3, from the SPEC95 and SPEC2K benchmark suites:
a file compression utility, a compiler, an interpreter, a natural lan-
guage parser, and an object-oriented database. Three other ser-
vice oriented programs—two more compression utilities and an-
other interpreter—exist in these two suites. We have not yet exper-
imented with them because they do not contribute a new application
type. All test programs are written in C.

Expanding on the description in Section 2.1, we construct regu-

0 2 4 6 8 10

x 10
4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(miliseconds)

IP
C

(a)

0 0.5 1 1.5 2 2.5 3

x 10
4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(miliseconds)

IP
C

(b)

Figure 1: (a) IPC curve of GCC on a ref input scilab. (b) IPC curve of GCC on a regular input with top-level (solid vertical lines) and
inner-level (broken vertical lines) phase boundaries.

Table 1: Benchmarks

Benchmark Description Source
Compress common UNIX compression utility SPEC95Int
GCC GNU C compiler 2.5.3 SPEC2KInt
LI Xlisp interpreter SPEC95Int
Parser natural language parser SPEC2KInt
Vortex object oriented database SPEC2KInt

lar inputs as follows. For GCC we use a file containing 4 identical
functions, each with the same sequence of 119 loops. For Com-
press, which is written to compress and decompresses the same in-
put 25 times, we provide a file that is 1% of the size of the reference
input. For LI we provide 6 identical expressions, each of which
contains 34945 identical sub-expressions. For Parser we provide
6 copies of the sentence “John is more likely that Joe died than it
is that Fred died.” (That admittedly nonsensical sentence is drawn
from the reference input, and not surprisingly takes an unusually
long time to parse.) The regular input for Vortex is a database and
three iterations of lookups. Since the input is part of the program,
we modify the code so that it performs only lookups but neither
insertions nor deletions in each iteration.

We use ATOM [17] to instrument programs for the phase anal-
ysis on a decade old Digital Alpha machine, but measure program
behavior on a modern IBM POWER4 machine. Due to the lack of
a binary rewriting tool on the IBM machine, we insert phase mark-
ers into the Alpha binary, manually identify their location, insert
the same markers at the source level, and then compile and run the
marked program on the IBM platform.

We use IBM hardware performance monitoring facilities to record
program behavior. POWER4 machines have a set of hardware
events. The AIX 5.1 operating system provides a programming
interface library—pmapi—to access those counters.By instrument-
ing the program with the library function calls, one can determine
the count of the hardware events specified by the user at the instru-
mentation point. The instrumentation is also set to automatically
generate an interrupt every 10ms so that the hardware counters are
read at the 10ms granularity. We use a single run to avoid pertur-

bation from OS behavior. Not all hardware events can be measured
simultaneously. We collect cache miss rates and IPCs at the bound-
aries of program phases and, within phases, at 10ms intervals.

The phase detection technique finds phases for all 5 benchmarks.
GCC is the most complex program and shows the most interesting
behavior. We describe it in the next section, and return to the re-
maining programs in a later section.

3.1 GCC
GCC comprises 120 files and 222182 lines of C code. The phase

detection technique successfully finds its outermost phase, which
begins at the compilation of an input function. Furthermore, the
technique finds 8 inner phases inside the outermost phase through
analysis at the binary level. We map the automatically inserted
markers back to the source code and find that the 8 markers separate
different compilation stages.

The first marker is at the end of function “loop optimize”, which
performs loop optimization on the current function. The second
one is at a middle point of function “rest of compilation”, where
the second CSE pass (Common sub-expression elimination) just
completes. The third and fourth markers are both in function “life
analysis”, which determines the set of live registers at the start of
each basic block and propagates the life information inside the ba-
sic block. The two markers are separated by an analysis pass,
which examines each basic block, deletes dead stores, generates
auto-increment addressing, and records the frequency at which a
register is defined, used, and redefined. The fifth marker is in func-
tion “schedule insns”, which schedules instructions block by block.
The sixth marker is at the end of function “global alloc”, which al-
locates pseudo-registers. The seventh marker is in the same func-
tion as the fifth marker, “schedule insns”. However, the two mark-
ers are in different branches, and each invocation triggers one sub-
phase but not the other. The two sub-phases are executed through
two calls to this function (only two calls per compilation of a func-
tion), separated by the sixth marker in “global alloc” among other
function calls. The last marker is in a middle point of function
“dbr schedule”, which places instructions into delay slots. The
marker happens after the filling of delay slots. These automati-
cally detected markers separate the compilation into 8 major stages.
Given the complexity of the code, manual phase marking would be

extremely difficult for someone who does not know the program
well. Even for an expert in GCC, it may not be easy to identify
sub-phases that occupies a significant portion of the execution time.

GCC behavior varies with its input. Figure 1(a) shows the IPC
curve of GCC on reference input scilab.i. Each point on the graph
shows the average IPC of a 10ms interval. The points have been
connected to form a continuous curve. The presence of a regular
pattern is not obvious from visual inspection.

However, regularity emerges when we cut the execution into
phase instances. Figure 3(a) shows the same curve marked with
the boundaries of the outermost and inner phases, represented by
solid and broken vertical lines respectively. For clarity, Figure 3(b)
shows an enlarged part of the curve, in which there are three large
phase instances and several tiny ones. Although they have a dif-
ferent width and height, they show a similar signal shape—with
two high peaks in the middle and a declining tail. A related shape
composes the IPC curves of GCC on other inputs, shown in Fig-
ure 3(c)(d)(e)(f). This shows that GCC has a consistent program
pattern—the same complex compilation stages are performed on
each function in each input file. The phase and sub-phase markers
accurately capture the variation and repetition of program behav-
ior, even when the shape of the curve is not exactly identical from
function to function or from input to input. The phase marking is
done off-line and requires no on-line measurement.

Figure 4(a) shows a distribution graph of IPC and cache hit rates
for phase instances of GCC. Instances of different sub-phases are
represented by different symbols. GCC has 57 instances of the out-
ermost phase in the reference input. Each instance is divided into
8 inner phases. We have a total of 456 points in Figure 4(a). The
456 points cluster into 5 rough groups. The top group is the cluster
of phase 3. It corresponds to the highest peak in the IPC curve, and
is separated from the other phase instances. The cluster of phase 4
overlaps with the top of the cluster of phase 6, but separates from its
major body. Phase 4 corresponds to the highland in the IPC curve,
and phase 5 corresponds to the second highest peak with some low
transition parts. The cluster of phase 8 corresponds to a short seg-
ment in IPC curve with low IPC and high cache hit rate. It separates
from the other clusters well. The remaining large cluster contains
the instances of phases 1, 2, 5 and 7. These four phases correspond
to the 4 lowest IPC segments. They are close to each other but still
separate mostly. Phase 2 has the highest cluster, phase 7 the lowest,
with phase 1 in the middle. Phase 5 has the rightmost cluster with
highest cache hit rate. Most of the 8 groups are very tight except
for the values from phase 2. Even for this group, most points have
almost the same IPC, and cache hit rates that vary by less than 0.2.

To quantify consistency, we measure the average value, the stan-
dard deviation, and the coefficient of variance (CV) of the behavior
of phase instances. The CV, calculated as the standard deviation
divided by the mean times 100%, shows the tightness of the nor-
malized distribution. Assuming a normal distribution, a standard
deviation of d means that 68% values fall in the range [m−d, m+d]
and 95% fall in [m − 2d, m + 2d].

The measures we consider include cache hit rate, IPC, and the
relative length of a sub-phase (percentage of its enclosing phase in-
stance). Small standard deviations and co-variances imply a highly
clustered distribution and precise phase-based behavior prediction.
The first part of Table 2 shows the behavior variation of the 8 sub-
phases and their average.

The sub-phases have different behavior. The average hit rate
ranges from 82% in the 1st sub-phase to 100% in the 4th sub-phase.
The average IPC ranges from 0.64 in the 7th sub-phase to 1.49 in
the 3rd sub-phase. The distribution is very tight. The CV is 0 for
three sub-phases and 4.4% on average, meaning that 95% of the

values are within 15% of the average. The relative phase length
ranges from 4% to 41% of the total length, showing they are sig-
nificant parts of the phase behavior. The CV is high, showing that
the relative length is not as highly predictable as the hit rate or the
IPC.

These measures of consistency compare favorably to those ob-
tained without knowledge of phase structure. The last three rows
in the GCC section of Table 2 measure the behavior distributions
of all sub-phase instances (as opposed to instances of the same
phase), plus coarse-grain and fine-grain fixed-length temporal in-
tervals. The length of the coarse-grain interval is the total execution
length divided by the number of phase instances, so it has the same
granularity as the average phase instance. The fine-grain interval
is 10ms in length, which is the smallest interval from the hardware
counter.

Without information about the sub-phase identity, the average
hit rate is 91% with 9.6% CV, IPC 0.93 with 36% CV, and relative
length 12% with 102% CV. The distribution is much wider because
different behavior from sub-phases is included in one group. The
distribution of the interval behavior is worse. The CV of the IPC
is 35% for coarse-grain intervals and 44% for fine-grain intervals,
showing that 68% of the values may vary by at least one third of the
average. The results imply that analysis without knowing the phase
boundaries would find significant variation but little consistency in
program behavior.

From these results, we conclude that the program has very con-
sistent phase behavior, with significant behavior variation across
sub-phases. The high degree of consistency among corresponding
sub-phases suggests that the hit rate, IPC, and relative sub-phase
length could be predicted fairly accurately by off-line phase profil-
ing and on-line behavior monitoring. It seems reasonable to ex-
pect that other behaviors—and in particular those that might be
exploited by hardware or software adaptation—will show strong
phase consistency as well.

3.2 Compress, Vortex, LI, and Parser
Compress has two inner phases and shows even more regular

sub-phase behavior than GCC did. Figure 5(a) shows the IPC curve
with the phase and sub-phase markers in solid and broken vertical
lines. All phase instances have two sub-phases even though differ-
ent instances have different length, determined by the size of the
file being compressed. Figure 4(b) shows that the behavior of the
two sub-phases is highly consistent, with almost identical hit rate
and IPC. Table 2 gives quantitative results. The same sub-phase
always has the same hit rate, 88% and 90% respectively. The first
sub-phase always has the same IPC, 0.49. 95% of the instances of
the second sub-phase have an IPC between 0.96 and 1.02. The first
sub-phase always takes 88% of the length of the outermost phase,
the second sub-phase takes the remaining 12%. The behavior of
the intervals shows a relatively tight distribution of the hit rate but
greater variations in IPC, with the CV ranging from 26% to 41%.
The CV for the relative length is 77%. Therefore, the behavior of
Compress is precisely predictable with the sub-phase information;
otherwise, IPC cannot be predicted accurately.

Vortex shows consistent but varying IPC among the instances
of the outermost phase, as shown in Figure 5(b). Our detection
method also finds two levels of sub-phases, shown by broken and
dotted vertical lines. The overall phase behavior is consistent, shown
by the tight cluster in Figure 4(c). Quantitatively, the hit rate is 97%
on average with no variation, and the IPC is between 0.96 and 1.02
in 95% of the cases. Without phase information, the behavior of
coarse-grain intervals is as consistent, although the fine-grain in-
tervals have a much higher variation, as shown in Table 2. In this

0 2 4 6 8

x 10
4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(miliseconds)

IP
C

(a) scilab

4.45 4.5 4.55 4.6

x 10
4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(miliseconds)

IP
C

(b) scilab enlarged

0 5000 10000 15000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(miliseconds)

IP
C

(c) expr

0 5000 10000 15000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(miliseconds)

IP
C

(d) integrate

0 1 2 3 4 5 6

x 10
4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(miliseconds)

IP
C

(e) 166

0 5 10 15

x 10
4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time(miliseconds)

IP
C

(f) 200

Figure 3: IPC curves of GCC on SPEC2K reference inputs with phase markers

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

Cache Hit Rate

IP
C

1st
2nd
3rd
4th
5th
6th
7th
8th

(a) GCC on all ref input: 456 instances of 8 phases

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

Cache Hit Rate

IP
C

1st
2nd

(b) Compress: 50 instances of 2 phases

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

Cache Hit Rate

IP
C

1st
2nd
3rd

(c) Vortex: 36 instances of 3 phases

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

Cache Miss Rate

IP
C

(d) Li: 271 instances of 1 phase

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

Cache Miss Rate

IP
C

(e) Parser: 703 instances of 1 phase

Figure 4: IPC and cache hit rate distribution graphs.

Table 2: The behavior distribution of phases, sub-phases, and intervals

program phase measurement cache hit rate IPC length ratio
(sub-phases) unit mean std. CV mean std. CV mean std. CV

GCC 1st sub-phases 0.82 0.08 9.8 0.67 0.06 9.0 0.41 0.11 27.8
2nd with IDs 0.80 0.09 11.2 0.78 0.03 3.8 0.08 0.03 38.6
3rd 0.91 0.03 3.3 1.49 0.06 4.0 0.04 0.02 50.2
4th 1.00 0.00 0.0 1.39 0.06 4.3 0.08 0.04 47.6
5th 0.92 0.04 4.3 0.68 0.02 2.9 0.15 0.03 21.1
6th 0.99 0.00 0.0 1.14 0.11 9.6 0.07 0.02 22.4
7th 0.87 0.07 8.0 0.64 0.03 4.7 0.12 0.03 24.3
8th 0.99 0.00 0.0 0.70 0.06 8.6 0.04 0.02 40.8
avg. 0.91 0.04 4.4 0.93 0.06 6.5 0.13 0.04 28.5
avg. sub-phases 0.91 0.09 9.6 0.93 0.33 36.0 0.12 0.1219 101.6

without IDs
avg. coarse-grain 0.85 0.14 16.1 0.86 0.30 35.2 ∗ ∗ ∗

intervals
avg. 10ms 0.85 0.16 18.9 0.83 0.37 44.4 ∗ ∗ ∗

intervals

Compress 1st sub-phases 0.88 0.00 0.0 0.49 0.00 0.0 0.88 0.00 0.0
2nd with IDs 0.90 0.00 0.0 0.99 0.01 1.0 0.12 0.00 0.0
avg. 0.89 0.00 0.0 0.74 0.01 1.4 0.50 0.00 0.4
avg. sub-phases 0.89 0.01 1.2 0.74 0.25 34.4 0.50 0.3866 77.3

without IDs
avg. coarse-grain 0.89 0.02 1.7 0.55 0.14 26.3 ∗ ∗ ∗

intervals
avg. 10ms 0.89 0.03 3.4 0.56 0.23 40.7 ∗ ∗ ∗

intervals

Vortex 1st sub-phases 0.98 0.01 1.0 1.00 0.06 6.0 0.34 0.06 17.6
2nd with IDs 0.97 0.01 1.0 0.99 0.04 4.0 0.32 0.08 25.0
3rd 0.97 0.01 1.0 1.01 0.05 5.0 0.34 0.09 26.5
avg. 0.97 0.01 1.0 1.00 0.05 5.0 0.33 0.08 23.0
avg. sub-phases 0.97 0.01 1.2 0.99 0.05 5.1 0.33 0.13 39.4

without IDs
avg. coarse-grain 0.97 0.01 1.1 0.98 0.05 5.0 ∗ ∗ ∗

intervals
avg. 10ms 0.97 0.03 2.9 0.98 0.08 8.5 ∗ ∗ ∗

intervals

LI avg. phases 0.94 0.03 3.2 0.72 0.14 19.4 ∗ ∗ ∗
avg. coarse-grain 0.98 0.01 0.5 0.96 0.04 4.4 ∗ ∗ ∗

intervals
avg. 10ms 0.98 0.01 1.3 0.95 0.08 8.1 ∗ ∗ ∗

intervals

Parser avg. phases 0.97 0.03 3.1 0.71 0.10 14.1 ∗ ∗ ∗
avg. coarse-grain 0.98 0.01 1.4 0.75 0.07 9.0 ∗ ∗ ∗

intervals
avg. 10ms 0.97 0.03 3.2 0.71 0.12 16.8 ∗ ∗ ∗

intervals

0 5000 10000 15000
0.2

0.4

0.6

0.8

1

1.2

Time(miliseconds)

IP
C

(a) Compress

0 5000 10000 15000

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Time(miliseconds)

IP
C

(b) Vortex

0 1 2 3 4 5 6

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Time(miliseconds)

IP
C

(c) Li

0 2000 4000 6000 8000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(miliseconds)

IP
C

(d) Parser

Figure 5: IPC curves of Compress, Vortex, Li and Parser with phase markers

Table 3: Correlation among metrics

cache-IPC cache-length IPC-length
correlation 37.9 -41.1 -43.0
coef. of mean
correlation 14.9 30.4 52.6
coef. of CV

case, the phase information is less critical. A carefully picked in-
terval length may capture a similar stable behavior. However, a
phase-based method still has the advantage of not needing to pick
an interval length.

LI shows three stages in the execution with a relatively constant
performance at each stage, shown by Figure 5(c). The distribution
of the hit rate and IPC shows a belt stretching along the diagonal
direction, shown by Figure 4(d). Most points in the plot are in three
clusters corresponding to the three stages of the execution. Though
the program has 271 instances of the outermost phase, there is no
specific correlation in the behavior between phases. The behavior
of the present is closer to the behavior of the recent past than it
is to an earlier phase. The quantitative measures in Table 2 are
worse for phase instances because many instances are very small,
and their behavior is not accurately measured by the 10ms intervals,
the basic unit of the hardware counter.

Parser shows results similar to those of LI. Phase information
does not lead to better characterization of program behavior. The
IPC curve is shown in Figure 5(d), and the IPC/hit rate distribution
in Figure 4(e). Most points fall into three clusters. One cluster has
significantly less variation in the miss rate than the IPC; another
has the reverse. The quantitative measures in Table 2 are worse
for phase instances than for coarse-grain intervals because of the
most of the 703 phase instances are small and tend to exhibit more
variation when measured by a coarse timer. However, the phase
behavior is more consistent than the fine-grain intervals.

3.3 Correlation among metrics
Table 3 shows the correlation coefficients of the three metrics for

our phases. The first row shows the results obtained on the mean
values of phases, i.e. columns 4, 7 and 10 of Table 2. Less data
access delay explains the positive correlation coefficient between
cache hit rate and IPC. A shorter phase likely accesses fewer data,
thus likely has higher cache hit rate, which explains the negative
correlation coefficients between cache hit rate and phase length.
Since higher cache hit rate likely happens with higher IPC, the IPC
and phase length have negative correlation. The all positive cor-
relation coefficients of the CVs show that if one metric of a phase
varies much, the other two metrics likely vary much too. But the
relation is weak between cache hit rate and IPC—only 15%. IPC
and length ratio have the strongest relation, 53%. Cache hit rate has
a 30% correlation coefficient with length ratio.

3.4 The temporal similarity of program phases
In the above sections we evaluated behavior similarity using the

average cache hit rate, IPC and length of phase instances. Here
we use two ad-hoc measures to compare the similarity of the tem-
poral shape of the IPC curve of phase instances. The first is ver-
tical similarity. For the IPC sequence of a phase instance, we di-
vide the range of IPC into k equal segments, count the number of
elements—10 ms intervals—whose IPCs fall in each range, and put
the results in a k-cell vector. Then we divide the size of each vector
cell with the total size. Each cell then represents the percentage

Table 4: Similarity of phase instances

Benchmarks Vertical Horizontal similarity
Similarity Horizontal Phase Time (%)

similarity coverage coverage

Compress 96.8 97.1 24/25 99.8
GCC 87.0 71.2 57/57 100
LI 65.6 90.2 20/271 99.9
Parser 65.8 87.5 10/850 24.1
Vortex 78.7 99.1 30/30 100
Average 78.8 89.0 28/247 84.8

of the phase execution whose IPC falls in the given range. Since
the last interval of a phase instance may be less than 10ms long,
the elements are weighted by the interval length. After comput-
ing the vector for all phase instances, we calculate their average,
weighted by the length of the instance. The difference between the
vector of an instance and the average vector is the Manhattan dis-
tance between them, that is, the sum of the absolute difference of
each cell. The average difference is the weighted average for all in-
stances. The average vertical similarity, which we report in Table 4,
is 1 − E/2, where E is the average difference.

The vertical similarity shows, on average, how a phase instance
differs from all other phase instances of the same subphase. It is a
number between 0 and 1. The probability is αk−1 for two random
vectors to have at least 1 − α similarity, where k is the dimension
of the vector [9]. In our experiment, k is chosen to be 5. As an ex-
ample, Compress has a vertical similarity of 87%. The probability
of two random vectors achieving such a similarity is 0.0003.

The similarity ranges, as shown in Table 4, from 66% to 97%
across all programs. It is over 87% for Compress and GCC, 79%
for Vortex, but only 66% for Parser and LI. The average is 79%.
The results of GCC are for phase instances larger than 1 second
across all program inputs. For LI we also consider all its refer-
ence inputs. A major reason for the sometimes low and often vary-
ing similarity is the effect of short phase instances. Because their
length is close to the interval length of 10ms, the behavior variation
is skewed when measured by intervals. Although LI has low ver-
tical similarity, its IPC curve shows a very similar shape—namely,
flat—across all phase instances. This reveals a problem of vertical
similarity: when a signal has very small vertical variations, noise
could have a large effect on the similarity value. Therefore, we also
present horizontal similarity.

We measure horizontal similarity by dividing the length of each
phase instance into k equal ranges, taking the average IPC for each
range, and making a k-cell vector. Next we compute the relative
vector, the average, the average difference, and the average hori-
zontal similarity in the same way as we compute the vertical sim-
ilarity. Not all phase instances are considered by this calculation
because it needs at least k 10 ms intervals for the horizontal divi-
sion. Table 4 gives the number of sufficient large phase instances
and the number of all instances in the column marked as “Phase
coverage”. These instances account for on average about 85% of
the execution time, shown in the final column. Parser is the out-
lier, at 24%. This is because the top-level requests to Parser are
small sentences, most of which require very little processing time.
Excluding Parser, the average coverage becomes 99.9%.

Horizontal similarity is shown in the third column of Table 4,
again for k = 5. It is over 97% for Compress and Vortex, and over
87% for LI and Parser. GCC’s similarity is the lowest, at 71%. This
shows that large phase instances account for most of the execution

time, and they exhibit a very similar behavior pattern despite the
difference in their length.

If we let k = 10 instead of 5, the vertical similarity numbers
become lower, because of the finer partition. The horizontal sim-
ilarity number becomes higher, because it excludes more smaller
phases, and the benefit outweighs the loss of similarity due to the
finer partition.

The temporal similarity measures confirm our previous observa-
tions. GCC and Compress have highly consistent phase behavior.
LI and Parser have the least consistency. Vortex is between the two
groups in terms of the behavior consistency.

4. RELATED WORK
Locality phases Early phase analysis, owing to its root in virtual-

memory management, was intertwined with locality analysis. In
1976, Batson and Madison defined a phase as a period of execu-
tion accessing a subset of program data [5]. Later studies used
time or reuse distance as well as predictors such as Markov mod-
els to improve virtual memory management. Recently, Shen et al.
used reuse distance to model program behavior as a signal, applied
wavelet filtering, and marked recurring phases in programs [15].
For this technique to work, the programs must exhibit repeating
behavior. By using active profiling, we are able to target service-
oriented programs, which typically do not have repeating behavior.

Program phases Allen and Cocke pioneered interval analysis
to model a program as a hierarchy of regions [2]. For scientific
programs, most computation and data accesses are in loop nests. A
number of studies showed that inter-procedural array-section anal-
ysis accurately summarizes program data behavior. Recent work by
Hsu and Kremer used program regions to control processor volt-
ages to save energy. Their regions may span loops and functions
and are guaranteed to be an atomic unit of execution under all pro-
gram inputs [11]. For general purpose architectures, Balasubramo-
nian et al. [3], Huang et al. [12, 13], and Magklis et al. [14] selected
as program phases procedures, loops, and code blocks whose num-
ber of instructions exceeds a threshold either during execution or
in a profiling run. In comparison, our work does not rely on static
program structure. It uses trace-based analysis to find the phase
boundaries, which may occur anywhere and not just at region, loop,
or procedure boundaries.

Interval phases Interval methods divide an execution into fixed-
size windows, classify past intervals using machine or code-based
metrics, and predict future intervals using last value, Markov, or
table-driven predictors [3, 4, 7, 8, 10, 16]. Balasubramonian et
al. searched for the best interval size at run time [4]. These studies
showed benefits from interval-based adaptation for service-oriented
programs. By accurately identifying phase boundaries, our work
has the potential to improve prediction in service-oriented programs
with varying but similar behavior across instances of different pro-
gram phases.

5. CONCLUSIONS
This paper has presented a technique for marking program phases

in service-oriented programs. By using a regular input, it induces
repeating behavior. It then uses frequency-based filtering to iden-
tify phase boundaries and binary rewriting to insert phase markers.
The markers divide a program execution into a sequence of dy-
namic phases.

Using our technique, we examined five representative service-
oriented applications. Although phase lengths vary greatly even
within a single execution, we find a high degree of correlation
among corresponding phases on such time-adjusted metrics as IPC

and cache miss rate. In addition, phase lengths themselves are pre-
dictable with reasonable accuracy, allowing informed tradeoffs be-
tween optimization gains and adaptation overheads. These results
suggest that program phases may provide valuable information for
behavior prediction in service-oriented programs, extending the po-
tential benefits of hardware and software adaptation to a signifi-
cantly larger class of applications.

6. ACKNOWLEDGMENT
This work was supported in part by National Science Founda-

tion grants (EIA-0080124, CCR-0204344, CCR-0219848, ECS-
0225413, CCR-0238176, and CNS-0411127,) Department of En-
ergy grant (DE-FG02-02ER25525,) and equipment or financial grants
from IBM, Intel, and Sun.

7. REFERENCES
[1] http://www.specbench.org/.
[2] F. Allen and J. Cocke. A program data flow analysis

procedure. Communications of the ACM, 19:137–147, 1976.
[3] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and

S. Dwarkadas. Memory hierarchy reconfiguration for energy
and performance in general-purpose processor architectures.
In Proceedings of the 33rd International Symposium on
Microarchitecture, Monterey, California, December 2000.

[4] R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi.
Dynamically managing the communication-parallelism
trade-off in future clustered processors. In Proceedings of
International Symposium on Computer Architecture, San
Diego, CA, June 2003.

[5] A. P. Batson and A. W. Madison. Measurements of major
locality phases in symbolic reference strings. In Proceedings
of the ACM SIGMETRICS Conference on Measurement &
Modeling Computer Systems, Cambridge, MA, March 1976.

[6] D. Burger and T. Austin. The simplescalar tool set, version
2.0. Technical Report 1342, Dept. of Computer Science,
Universtiy of Wisconsin-Madison, June 1997.

[7] A. S. Dhodapkar and J. E. Smith. Managing
multi-configuration hardware via dynamic working-set
analysis. In Proceedings of International Symposium on
Computer Architecture, Anchorage, Alaska, June 2002.

[8] A. S. Dhodapkar and J. E. Smith. Comparing program phase
detection techniques. In Proceedings of International
Symposium on Microarchitecture, December 2003.

[9] C. Ding and Y. Zhong. Predicting whole-program locality
with reuse distance analysis. In Proceedings of ACM
SIGPLAN Conference on Programming Language Design
and Implementation, San Diego, CA, June 2003.

[10] E. Duesterwald, C. Cascaval, and S. Dwarkadas.
Characterizing and predicting program behavior and its
variability. In Proceedings of International Conference on
Parallel Architectures and Compilation Techniques, New
Orleans, Louisiana, September 2003.

[11] C.-H. Hsu and U. Kermer. The design, implementation and
evaluation of a compiler algorithm for CPU energy
reduction. In Proceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementation, San
Diego, CA, June 2003.

[12] W. Liu and M. Huang. Expert: Expedited simulation
exploiting program behavior repetition. In Proceedings of
International Conference on Supercomputing, June 2004.

[13] M. Huang and J. Renau and J. Torrellas. Positional
adaptation of processors: application to energy reduction. In

Proceedings of the International Symposium on Computer
Architecture, San Diego, CA, June 2003.

[14] G. Magklis, M. L. Scott, G. Semeraro, D. H. Albonesi, , and
S. Dropsho. Profile-based dynamic voltage and frequency
scaling for a multiple clock domain microprocessor. In
Proceedings of the International Symposium on Computer
Architecture, San Diego, CA, June 2003.

[15] X. Shen, Y. Zhong, and C. Ding. Locality phase prediction.
In Proceedings of the Eleventh International Conference on
Architect ural Support for Programming Languages and
Operating Systems (ASPLOS XI), Boston, MA, 2004.

[16] T. Sherwood, S. Sair, and B. Calder. Phase tracking and
prediction. In Proceedings of International Symposium on
Computer Architecture, San Diego, CA, June 2003.

[17] A. Srivastava and A. Eustace. ATOM: A system for building
customized program analysis tools. In Proceedings of ACM
SIGPLAN Conference on Programming Language Design
and Implementation, Orlando, Florida, June 1994.

