
Design Tradeoffs in Modern Software Transactional
Memory Systems?

Virendra J. Marathe, William N. Scherer III, and Michael L. Scott

Department of Computer Science
University of Rochester

Rochester, NY 14627-0226
{vmarathe, scherer, scott}@cs.rochester.edu

Abstract. Software Transactional Memory (STM) is a generic nonblocking syn-
chronization construct that enables automatic conversion of correct sequential
objects into correct concurrent objects. Because it is nonblocking, STM avoids
traditional performance and correctness problems due to thread failure, preemp-
tion, page faults, and priority inversion.
In this paper we compare and analyze two recent object-based STM systems, the
DSTM of Herlihy et al. and the FSTM of Fraser, both of which support dynamic
transactions, in which the set of objects to be modified is not known in advance.
We highlight aspects of these systems that lead to performance tradeoffs for var-
ious concurrent data structures. More specifically, we consider object ownership
acquisition semantics, concurrent object referencing style, the overhead of or-
dering and bookkeeping, contention management versus helping semantics, and
transaction validation. We demonstrate, for each system, simple benchmarks on
which it outperforms the other by a significant margin. This in turn provides us
with a preliminary characterization of the applications for which each system is
best suited.

1 Introduction

A concurrent object is a data object shared by multiple threads of control within a con-
current system. Classic lock-based implementations of concurrent objects suffer from
several important drawbacks, including deadlocks, priority inversion, convoying, and
lack of fault tolerance. Due to these drawbacks, the last two decades have seen an in-
creasing interest in nonblocking synchronization algorithms, in which the temporary
or permanent failure of a thread can never prevent the system from making forward
progress.

Software Transactional Memory (STM) [16] is a particularly attractive approach to
the construction of nonblocking objects, allowing highly concurrent (fine grain) imple-
mentations to be created in a purely mechanical way from correct sequential code. Use
of an STM system significantly simplifies the task of implementing concurrent objects.

? This work was supported in part by NSF grant numbers EIA-0080124, CCR-9988361, and
CCR-0204344, by DARPA/AFRL contract number F29601-00-K-0182, and by financial and
equipment grants from Sun Microsystems Laboratories.

mls
7th Wkshp. on Languages, Compilers, and Run-Time Supportfor Scalable Systems (LCR), Houston, TX, Oct. 2004

Those of us working in the field envision a day when STM mechanisms are embed-
ded in compilers for languages like Java and C#, providing nonblocking implementa-
tions of synchronized methods “for free”. There are several challenges involved in
achieving this vision, however, including simple (no-contention) overhead and arbitra-
tion among competing transactions when contention is high.

Transactional Memory was originally proposed by Herlihy and Moss as a novel ar-
chitectural support mechanism for nonblocking synchronization [10]. A similar mech-
anism was proposed concurrently by Stone et al. [17]. A transaction is defined as a
finite sequence of instructions (satisfying the linearizability [11] and atomicity prop-
erties) that is used to access and modify concurrent objects. Herlihy and Moss [10]
proposed implementing transactional memory via simple extensions to multiprocessor
cache coherence protocols. Their transactional memory provides an instruction set for
accessing shared memory locations by transactions. Several groups subsequently pro-
posed software-only mechanisms with similar semantics [1, 2, 3, 12, 16, 18]. Shavit and
Touitou [16] coined the term “software transactional memory”.

Early STM systems were essentially academic curiosities, with overheads too high
to be considered for real-world systems. More recent systems have brought the over-
head down to a level where it may be considered an acceptable price for automation,
fault tolerance, and clean semantics. The execution overhead of STM comes from the
bookkeeping required for transactions. In our experiments, the IntSet benchmark (to be
discussed later) runs a decimal order of magnitude slower than a version with a global
lock, in the absence of contention. At the same time, it scales much better with con-
tention. Herlihy et al. [9] and Fraser [5] show that their STMs are highly scalable, and
outperform coarse-grain locks for complex data structures like search trees.

This paper is a comparative analysis of two promising recent object-based real-
izations of STM: the DSTM [9] of Herlihy et al. and the FSTM [5] of Fraser. Our
comparison highlights the key design aspects that differ significantly in these systems,
and are mainly responsible for their differing performance on various benchmarks. In
Sections 2 and 3 we briefly describe the design of DSTM and FSTM respectively. Our
comparative evaluation appears in Section 4. We focus in particular on object ownership
acquisition semantics, concurrent object referencing style and its effects, the extra over-
head of ordering and bookkeeping, contention management versus helping semantics,
and transaction validation. The comparison uses experimental results from Java-based
implementations to quantify our findings. In Section 5 we present related work. We
conclude in Section 6.

2 DSTM

Dynamic Software Transactional Memory (DSTM) [9] supports obstruction-free [8]
transactions on dynamically selected sets of objects. Obstruction freedom simplifies
implementation by guaranteeing progress only in the absence of contention. Arbitra-
tion among competing transactions is handled “out of band” by a separate contention
management system [15]. To further reduce contention, DSTM also introduces the con-
cepts of early release, in which a transaction can drop a previously “opened” object
from its atomicity set, and invisible reads, which allow a transaction to access an object

in read mode without writing to shared memory (thus other transactions that access the
same object do not detect a conflict).

Figure 1 depicts the architecture of a Transactional Memory Object (TMObject) in
DSTM. The TMObject acts as a wrapper around a concurrent data object. It contains a
pointer to a locator object. The locator in turn stores a pointer to a descriptor of the most
recent transaction that tried to modify the TMObject, together with pointers to old and
new versions of the data object. A transaction descriptor pointed to by a locator may
be in any of the three states: ACTIVE, ABORTED, or COMMITTED. If the transaction is
COMMITTED, the new version referred to by the locator is the most recent valid version
of the concurrent object; otherwise the old version is the valid version.

 Start

 Old Locator

New Locator

CAS

Transaction

New Object

Old Object

Transaction

New Object

Old Object

Committed
Transaction

Shared Object −

Shared Object −

New Active
Transaction

Shared Object −
New Version

Copy
New Version

Old Version

TM Object

Fig. 1. Opening a TMObject recently modified by a committed transaction

A transaction must access a data object via its wrapper TMObject using the open
operation. A transaction may open a TMObject in read mode or write mode. If the
object is opened in write mode, the transaction first acquires that TMObject. To do so,
the transaction creates a new locator object that points to the transaction descriptor, the
most recent valid version of the data object, and a newly created copy of the most recent
valid version. The transaction then performs an atomic Compare and Swap (CAS) on
the TMObject’s pointer, to swing it to the new locator. A failure of this CAS implies
that some other transaction has opened (acquired) the TMObject in-between, in which
case the current transaction must retry the acquire. Figure 1 depicts the open operation
of a TMObject after a recent commit.

In the presence of contention, a transaction that wishes to acquire a given object may
find that the most recent previous transaction to do so (pointed to by the locator of the
TMObject) is stillACTIVE. The current transaction can then choose to wait, to abort, or
to force the competitor to abort. To make this decision it queries the contention manager.

Scherer and Scott have shown that the choice of contention management policy can have
a major effect on performance [15].

For read-only access to TMObjects, a full-fledged acquire operation would cause
unnecessary contention between transactions. To avoid this contention, each transac-
tion maintains a private list (the read-list) of objects it has opened in read-only mode.
Because these objects may be modified by other transactions, the current transaction
must re-check their validity before attempting to commit. If the use of stale data dur-
ing a not-yet-committed transaction may lead to incorrect behavior (addressing errors,
infinite loops, divide-by-zero, etc.), then a transaction may need to revalidate all open
read-only objects whenever it opens another object. The current version of the DSTM
performs this validation automatically as part of the open operation. The DSTM de-
signers are currently experimenting with a version of the DSTM in which reads are
visible to competing transactions. For visible reads, a TMObject typically contains a
reader transaction list as well. A reader needs to add itself in this list during the read
operation. The acquirer in turn has to traverse the reader list of the target TMObject for
resolving read-write conflicts. This version avoids the cost of revalidation, but increases
the overhead of the acquire operation; the read operation overhead also increases in that
readers have to add and remove themselves from the reader list.

Early release serves to shrink the window of time during which transactions may
be recognized as competitors. The consistency of transactions, however, must then be
guaranteed by the application programmer, based on object-specific semantics.

3 FSTM

The FSTM system, named after its author, was developed by Keir Fraser at the Uni-
versity of Cambridge as part of his doctoral research [5]. (In more recent work [6],
Fraser and Harris refer to the system as OSTM, for Object-based Software Transac-
tional Memory.) Unlike DSTM, FSTM is lock-free, meaning that it guarantees forward
progress (though not livelock freedom) for the system as a whole: within a bounded
number of steps, from any thread’s point of view, some thread is guaranteed to com-
plete a transaction. To make this guarantee, FSTM employs recursive helping. When a
transaction A detects a conflict with another transaction B, A uses B’s transaction de-
scriptor to make B’s updates on its behalf and then typically aborts and restarts itself.
Consequently, even if B’s owner thread terminates or stalls halfway through completion
of B, other threads may help complete transaction B.

Each concurrent object in FSTM is wrapped in an object header. A transaction
gains access to objects by opening their corresponding headers. Each transaction uses
a transaction descriptor to maintain a list of in-use objects. Along with a transaction
status flag, the transaction descriptor contains a read-only list for the objects opened in
read mode and a read-write list for the objects opened in write mode. Both lists contain
object handles. An object handle contains references to the object header, the object
itself, and a shadow copy of the object. The transaction performs all its updates on the
shadow copy, which is local to the transaction. In contrast to the conventions of DSTM,
multiple transactions may open the same object in write mode; each has its own shadow
copy.

A transaction may be in any of four states — UNDECIDED,ABORTED, COMMITTED,
or READ-CHECKING. A transaction always begins in the UNDECIDED state. Figure 2
depicts an example transaction descriptor used by a transaction to access an object in
write mode. The object header is a simple pointer to the concurrent object, through
which any other interested transaction would attempt to access the object. What is not
clear from the figure is that the object header may also point to a transaction descriptor
when the corresponding transaction acquires the object header.

UNDECIDEDstatus

read−only list

read−write list
ob

je
ct

 r
ef

ol
d

da
ta

ne
w

 d
at

a

ne
xt

 h
an

dl
e

Object Handles

Concurrent
Object

Shadow
Copy

Object Header

Transaction Descriptor

Fig. 2. The basic Transactional Memory Structure in FSTM

A transaction opens object headers while in the UNDECIDED state, creating object
handles and adding them to the read-only or read-write list, as appropriate. The fact
that the objects are open does not become visible to other transactions, however, until
the current transaction enters its commit phase. If a conflict is detected, the transaction
recursively helps the conflicting transaction.

A transaction in the commit phase first acquires all the objects it has opened in write
mode. It does so in some global total order (typically based on virtual address—this
requires a sorting step) using atomic CAS operations. Each CAS replaces the pointer in
the object header with a pointer to the acquiring transaction’s descriptor. Pointers are
tagged in a low-order bit1 to indicate whether they refer to an object or a transaction
descriptor. If an acquiring transaction discovers a conflict (the pointer it is attempting to
change already points to the descriptor of some competing transaction), the acquiring
transaction recursively helps the competitor. Global total ordering ensures that there
will be no helping cycles.

After a successful acquire phase, the transaction atomically switches (via CAS) to
the READ-CHECKING state and validates the objects in its read-only list. Validation
consists of verifying that the object header still refers to the version of the object that
it did when the object handle in the read-only list was created. If it refers to a different
version, the transaction must abort. If it refers to the descriptor of a competing trans-
action, the current transaction may again perform recursive helping. Recursive helping

1 Our Java implementation uses the instanceof operator to identify the pointer type.

proceeds only if the competitor transaction precedes the potential helper in some global
total order (e.g., based on thread and transaction IDs). Additionally, the competitor
must also be in its READ-CHECKING state. If the potential helper precedes the com-
petitor, the competitor is aborted. The current transaction then proceeds (even in the
case where the competitor is in UNDECIDED state) if the competitor’s old version of
the object was the same as the one in the current transaction’s object handle; otherwise
the current transaction must also abort.

After successful validation in the READ-CHECKING state, the transaction atomi-
cally switches to the COMMITTED state and releases the acquired objects by swinging
their object handles to refer to the new version of the data.

4 Comparative Evaluation

In the preceding two sections we have sketched the designs of the most recent object-
based STM systems, the DSTM and the FSTM. While both have significant constant
overhead, they are substantially simpler than previous approaches—enough to make
them serious candidates for practical use, particularly given the semantic and software
engineering advantages of nonblocking algorithms relative to lock-based alternatives.
In this section we highlight the design tradeoffs embodied by the two designs, and their
impact on the performance of various concurrent data structures. A more detailed but
qualitative comparison can be found in our earlier technical report [14].

Our experimental results were obtained on a 16-processor SunFire 6800, a cache-
coherent multiprocessor with 1.2GHz UltraSPARC III processors. The testing environ-
ment was Sun’s Java 1.5 beta 1 HotSpot JVM, augmented with a JSR166 update from
Doug Lea [13].

We report results for four simple benchmarks (a stack and three variants of a list-
based set) and one slightly more complex benchmark (a red-black tree). In the list and
red-black tree benchmarks, threads repeatedly but randomly insert or delete integers in
the range 0. . . 255 (keeping the range small increases the probability of contention).

We measured the total throughput over 10 seconds for each benchmark varying the
number of worker threads between 1 and 48. Results were averaged over a set of six
test runs. In all the experiments we have used the Polite contention manager for DSTM,
which performs reasonably well [15] on the benchmarks we have chosen. (Because it
is lock-free, FSTM does not require contention management for correctness.) Except
where stated otherwise, we perform incremental validation in both DSTM and FSTM,
rechecking the consistency of previously opened objects when opening something new.

4.1 Object Acquire Semantics

In DSTM, a transaction acquires exclusive (though abortable) access to an object when
opening it for write access. Because this strategy makes the transaction visible to po-
tential competitors early in its lifetime, we call it eager acquire. In FSTM, transactions
acquire exclusive access only when they enter their commit phase. This strategy makes
the transaction visible to potential competitors much later in its lifetime; we call it lazy

acquire. Eager acquire enables earlier detection and resolution of conflicts than lazy ac-
quire; lazy acquire may cause transactions to waste significant computational resources
on doomed transactions before detecting a conflict. Another advantage of eager acquire
is that unrelated threads can make progress faster if the thread detecting an early con-
flict decides to yield the processor. On the flip side, lazy acquire tends to minimize
the window during which transactions may be identified as competitors; if application
semantics allow both transactions to commit, lazy acquire may result in significantly
higher concurrency.

DSTM could in principle be modified to use lazy acquire. The open operation would
not contain a CAS, but the commit operation would require a heavyweight “multi-word
CAS” like that of FSTM. FSTM, however, could not be modified to use eager acquire
without abandoning the dynamic selection of objects to be modified. Lock freedom in
FSTM requires that objects be acquired in global total order, to avoid cyclic helping.
Only after all objects have been opened can a transaction in general know which objects
it will need; only then can it acquire them in order. In short, lazy acquire is necessary to
the lock-free semantics of dynamic transactions in FSTM; DSTM is able to use eager
acquire because it is merely obstruction-free.

We can see the direct impact of acquire semantics in the red-black tree benchmark
(RBTree). Red-black trees provide a beautiful illustration of STM’s software engineer-
ing benefits: using DSTM or FSTM we can construct a correct, highly concurrent red-
black tree via simple mechanical transformation of correct sequential source. A com-
parable implementation using explicit fine-grain locks is notoriously difficult to write.

0 4 8 12 16 20 24 28 32 36 40 44 48
0

1e+05

2e+05

3e+05

4e+05

5e+05

of Threads

T
x

/ s
ec

FSTM
DSTM

Fig. 3. RBTree Performance Results

Figure 3 plots throughput (in transactions/sec.) against concurrency for DSTM and
FSTM versions of RBTree. The higher performance of FSTM here is a direct result of

lazy acquire. As illustrated in Fig. 4, DSTM’s wider contention window significantly
increases the number of times that transactions are judged to be in conflict; this num-
ber climbs steadily with the level of true concurrency (recall that our machine has 16
processors).

0 4 8 12 16 20 24 28 32 36 40 44 48
0

1e+05

2e+05

3e+05

4e+05

5e+05

of Threads

C
on

te
nt

io
n

In
st

an
ce

s
/ s

ec

FSTM
DSTM

Fig. 4. RBTree – Number of Contention Instances

It is conceivable that a better contention manager would improve the performance
of DSTM, but Scherer and Scott report [15] that the Polite contention manager (used
in these experiments) is among the best performers on RBTree. As a cross check, we
tested other top contention managers (Karma and Kindergarten [15]), with similar re-
sults.

Fraser [5] also compared the performance of FSTM and DSTM on a red-black tree
benchmark. While he, too, found that FSTM provided higher throughput, the difference
remained more or less constant at all thread counts. We attribute the difference to the
implementations of FSTM and DSTM. Our versions are written in Java and rely on
automatic garbage collection, whose performance does not scale with the number of
threads. Fraser’s versions are written in C and use manual storage reclamation, which
parallelizes nicely.

4.2 Bookkeeping and Indirection

A comparison of Fig. 1 and 2 reveals an extra level of indirection in DSTM [5]: where
an FSTM object header points to the object data, a DSTM TMObject points to a Loca-
tor, which in turn points to the object data. In effect, FSTM maintains a locator (object
handle) only for objects being used by some transaction; it chains these off the trans-
action descriptor. The extra indirection of DSTM may result in slower reads and writes

of open objects—and thus slower transactions—when contention is low, particularly if
most transactions are read-only.

At the same time, indirection allows DSTM to commit with a single CAS on the
status field of the transaction’s descriptor. FSTM requires a substantially more complex
multi-word CAS. In the absence of contention, if a transaction updates N concurrent
objects, DSTM requires a total of N + 1 CAS operations; FSTM requires 2N + 2.
Indirection also eliminates the overhead of inserting object handles into transaction
descriptor chains. Transactions with a large number of writes may be faster in DSTM.
(Our implementation keeps the FSTM write list sorted, so insertion takes linear time,
but we use an auxiliary hash table for fast lookups.). Here, the eager acquire semantics
in DSTM serve as a foundation to exploit the benefits of the extra level of indirection
for faster writes. Lazy acquire semantics mandate extra bookkeeping as in FSTM.

We use the Stack, IntSet, and IntSetRelease benchmarks to illustrate the impact
of these overheads. Stack illustrates very high contention for a single word (the top-of-
stack pointer). As shown in Fig. 5, DSTM outperforms FSTM by a factor of more than
two. We attribute this difference to the extra bookkeeping, in FSTM, associated with
opening objects in write mode.

0 4 8 12 16 20 24 28 32 36 40 44 48
0

1e+05

2e+05

3e+05

4e+05

5e+05

6e+05

7e+05

of Threads

T
x

/ s
ec

FSTM
DSTM

Fig. 5. Stack Performance Results

IntSet maintains a sorted list. Every insert or delete operation opens all objects from
the beginning of the list in write mode. As a result, successful transactions are serialized.
Figure 6 shows an order of magnitude higher throughput for DSTM. FSTM suffers from
extra bookkeeping overhead, sorting overhead, and extra CASes, in decreasing order of
significance.

We initially suspected that incremental validation might account for much of the
performance difference in IntSet: FSTM must inspect the handle of every open object,

0 4 8 12 16 20 24 28 32 36 40 44 48
0

5000

10000

15000

20000

25000

30000

35000

40000

45000

of Threads

T
x

/ s
ec

FSTM
FSTM−NoVal
DSTM

Fig. 6. IntSet Performance Results

but in the absence of read-only objects, DSTM need only verify that the current trans-
action has not yet aborted. As it turns out, however, this extra overhead in FSTM is
dwarfed by tha of sorting and bookkeeping. The third curve in Fig. 6 reveals less than a
two-fold improvement in throughput when validation is removed from FSTM.

IntSetRelease is a variant of IntSet in which only the object to be modified is
opened in write mode; all other objects are opened temporarily in read mode and then
either released (when moving on to the next node in the list) or upgraded to write mode.
In this case results strongly favor FSTM: not only does it outperform DSTM by more
than a factor of two; overall throughput is also higher than that of DSTM in IntSet by
nearly a factor of four due to a higher degree of concurrency. The explanation appears
to lie with DSTM’s extra level of indirection overhead.

4.3 Contention Management and Helping

FSTM employs recursive helping to ensure lock freedom. Although lock freedom may
be desirable from a semantic point of view, obstruction freedom tends to simplify the
implementation of ad hoc concurrent objects, and may lead to better performance [8].
In particular, helping has been shown in some applications to lead to significant thrash-
ing of cache blocks. Contention management in obstruction-free algorithms, however,
requires nontrivial overhead (5–10% in our experiments), and must be carefully de-
signed to eliminate livelock. Careful evaluation of these tradeoffs is a subject for future
research. In particular, there may be value in providing helping as an option (in addition
to waiting and aborting) in a contention management system.

0 4 8 12 16 20 24 28 32 36 40 44 48
0

20000

40000

60000

80000

100000

120000

140000

160000

of Threads

T
x

/ s
ec

FSTM
DSTM

Fig. 7. IntSetRelease Performance Results

4.4 Transaction Validation

Invisible reads and (in the case of FSTM) lazy acquire may allow a transaction to enter
an inconsistent state during its execution. Inconsistency in turn may lead to memory
access violations, infinite loops, arithmetic faults, etc. In certain cases the programmer
may be able to reason that consistency is not a problem, but this is not a general-purpose
solution. Herlihy et al. [9] therefore perform incremental validation automatically at
open time in DSTM. As an alternative, Fraser proposes a mechanism based on excep-
tion handling [5] to catch problems when they arise, rather than prevent them. On a
memory access violation, the exception handler is designed to validate the transaction
that caused the exception. The responsibility of detecting other inconsistencies is left to
the application programmer.

We use the IntSet and IntSetUpgrade benchmarks to evaluate the cost of incre-
mental validation. We have already discussed IntSet. IntSetUpgrade, like IntSetRe-
lease, acquires a write lock on only the nodes that need to be changed. It does not,
however, perform an early release on nodes that have been passed. The fact that most
open nodes are read-only introduces some concurrency (if transactionA starts down the
list and then transaction B passes it, B can make a modification toward the end of the
list without causingA to abort). The invisibilityof reads in DSTM, however, means that
both DSTM and FSTM require validation overhead at open time linear in the number
of already open nodes—quadratic time overall.

Figure 8 depicts the performance of IntSetUpgrade under the two STM systems
with and without incremental validation. FSTM outperforms DSTM in both cases, by
roughly a factor of two, as a result of DSTM’s indirection costs. For both systems, how-
ever, the cost of validation is dramatic: throughput increases by roughly a factor of five
if we forgo validation. These results suggest substantial potential benefits from using

0 4 8 12 16 20 24 28 32 36 40 44 48
0

10000

20000

30000

40000

50000

60000

70000

of Threads

T
x

/ s
ec

FSTM
FSTM−NoVal
DSTM
DSTM−NoVal

Fig. 8. IntSetUpgrade Performance Results

application-specific reasoning to eliminate the need for (or at least the frequency of) in-
cremental validation. Unfortunately, the need for such reasoning is strongly counter to
the software engineering goals of STM. Moreover the IntSet benchmark illustrates that
simply removing incremental validation (if possible) may not yield as high throughput
as expected. In fact, since incremental validation is a tool for early detection of conflicts,
the performance of some benchmarks may degrade with the removal of incremental val-
idation.

5 Related Work

After a flurry of activity in the early to mid 1990s (cited in Section 1), STM research
went largely dormant until the last few years. We focus here on recent work.

Harris and Fraser [7] have proposed a word-based STM that hashes shared memory
words into ownership records. A transaction acquires these ownership records before
making any updates to the corresponding shared words. Contention is resolved by abort
the conflicting transaction, so the system as a whole is obstruction-free. (We conjecture
that one could introduce contention management mechanisms here to increase through-
put significantly [15].) Harris and Fraser also introduce a novel stealing mechanism
for corner cases to avoid the cache thrashing that might result from recursive helping.
Marathe and Scott [14] have proposed an alternative method of stealing and helping,
using the load-linked and store-conditional instructions, that reduces the complexity of
the word-based STM significantly. Their method also resolves a scalability issue of the
stealing mechanism proposed by Harris and Fraser.

Cole and Herlihy [4] propose an optimization to the DSTM to reduce the book-
keeping overhead for objects opened in read mode. We conjecture that this optimiza-

tion could be extended to FSTM as well. Scherer and Scott [15] focus on the contention
management problem in DSTM. They propose and evaluate several different contention
managers, and show that performance depends critically on choosing the right one for
a given application. Our work in this paper differs from these contributions in that we
focus on the higher level design decisions of DSTM and FSTM, showing their impact
on overall performance for various concurrent data structures.

6 Conclusions

In this paper we evaluated tradeoffs in the design of practical, object-based STM sys-
tems [5, 9]. DSTM tends to do better—potentially much better—for transactions that
open objects mostly in write mode, due to both the early detection of conflicts and the
avoidance of bookkeeping overhead. For transactions that open objects mostly in read-
only mode, both systems incur significant bookkeeping overhead, but FSTM does not
pay the ordering cost that it does with writes, while DSTM still has to pay for its extra
level of indirection. For the benchmarks we considered the result is a roughly two-fold
throughput advantage for FSTM. Our experiments were all conducted with invisible
reads. Using visible reads in DSTM [15] might significantly alter performance; this is a
topic for future research.

Acquire semantics play a key role in the relative performance of DSTM and FSTM.
Eager acquire tends to help in the early detection of conflicts, whereas lazy acquire
reduces the window in which transactions may be seen as competitors. Lazy acquire
also permits the use of ordering, allowing FSTM to offer lock-free semantics. Eager
acquire, on the other hand, helps reap the benefits of the extra level of indirection for
faster writes in DSTM.

Incremental validation relieves the programmer from the burden of ensuring intra-
transaction consistency, but incurs significant costs. Automatic techniques to reduce
the cost of validation seem eminently worth pursuing. Other topics of future interest
include experiments with additional data structures and applications, comparison to
lock-based implementations, and the development of compiler support for the automatic
construction of STM-based nonblocking objects.

Acknowledgment

We are grateful to the Scalable Synchronization Group at Sun Microsystems Labora-
tories, Boston, for donating the SunFire machine, and for providing us with a copy of
their DSTM system.

References

[1] J. H. Anderson and M. Moir. Universal Constructions for Large Objects. In Proceedings
of the 9th International Workshop on Distributed Algorithms, pages 168–182. Springer-
Verlag, 1995.

[2] J. H. Anderson and M. Moir. Universal Constructions for Multi-Object Operations. In
Proceedings of the 14th Annual ACM Symposium on Principles of Distributed Computing,
pages 184–193, 1995.

[3] G. Barnes. A Method for Implementing Lock-Free Shared Data Structures. In Proceedings
of the 5th Annual ACM Symposium on Parallel Algorithms and Architectures, pages 261–
270, 1993.

[4] C. Cole and M. P. Herlihy. Snapshots and Software Transactional Memory. In Proceedings
of Workshop on Concurrency and Synchronization in Java Programs, 2004.

[5] K. Fraser. Practical Lock-Freedom. Technical Report UCAM-CL-TR-579, Cambridge
University Computer Laboratory, February 2004.

[6] K. Fraser and T. Harris. Concurrent Programming without Locks. Submitted for publica-
tion.

[7] T. Harris and K. Fraser. Language Support for Lightweight Transactions. In Proceedings
of 18th Annual ACM Conference on Object-Oriented Programming, Systems, Languages,
and Applications, pages 388–402, 2003.

[8] M. P. Herlihy, V. Luchangco, and M. Moir. Obstruction Free Synchronization: Double-
Ended Queues as an Example. In Proceedings of 23rd International Conference on Dis-
tributed Computing Systems, pages 522–529, May 2003.

[9] M. P. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Software Transactional Mem-
ory for Dynamic-sized Data Structures. In Proceedings of 22nd Annual ACM Symposium
on Principles of Distributed Computing, July 2003.

[10] M. P. Herlihy and J. E. B. Moss. Transactional Memory: Architectural Support for Lock-
Free Data Structures. In Proceedings of the 20th Annual International Symposium on Com-
puter Architecture, pages 289–300, May 1993.

[11] M. P. Herlihy and J. M. Wing. Linearizability: a Correctness Condition for Concurrent
Objects. ACM Transactions on Programming Languages and Systems, 12(3):463–492,
1990.

[12] A. Israeli and L. Rappoport. Disjoint-Access-Parallel Implementations of Strong Shared
Memory Primitives. In Proceedings of the 13th Annual ACM Symposium on Principles of
Distributed Computing, pages 151–160, 1994.

[13] D. Lea. Concurrency JSR-166 Interest Site. http://gee.cs.oswego.edu/dl/concurrency-
interest/.

[14] V. J. Marathe and M. L. Scott. A Qualitative Survey of Modern Software Transactional
Memory Systems. Technical Report TR 839, Department of Computer Science, University
of Rochester, June 2004.

[15] W. N. Scherer III and M. L. Scott. Contention Management in Dynamic Software Transac-
tional Memory. In Proceedings of Workshop on Concurrency and Synchronization in Java
Programs, pages 70–79, 2004.

[16] N. Shavit and D. Touitou. Software Transactional Memory. In Proceedings of 14th Annual
ACM Symposium on Principles of Distributed Computing, pages 204–213, 1995.

[17] J. M. Stone, H. S. Stone, P. Heidelberger, and J. Turek. Multiple Reservations and the Ok-
lahoma Update. IEEE Parallel and Distributed Technology, 1(4):58–71, November 1993.

[18] J. Turek, D. Shasha, and S. Prakash. Locking without Blocking: Making Lock Based Con-
current Data Structure Algorithms Nonblocking. In Proceedings of the 11th ACM Sympo-
sium on Principles of Database Systems, pages 212–222, 1992.

