
Nonblocking Concurrent Data Structures
with Condition Synchronization?

William N. Scherer III and Michael L. Scott

Department of Computer Science
University of Rochester

Rochester, NY 14627-0226
{scherer,scott }@cs.rochester.edu

Abstract. We apply the classic theory of linearizability to operations that must
wait for some other thread to establish a precondition. We model such an opera-
tion as arequestand afollow-up, each with its own linearization point. Lineariza-
tion of the request marks the point at which a thread’s wishes become visible to
its peers; linearization of the follow-up marks the point at which the request is ful-
filled and the operation takes effect. By placing both linearization points within
the purview of object semantics, we can specify not only the effects of operations,
but also the order in which pending requests should be fulfilled.
We use the termdual data structureto describe a concurrent object implementa-
tion that may hold both data andreservations(registered requests). By reasoning
separately about a request, its successful follow-up, and the period in-between,
we obtain meaningful definitions of nonblocking dual data structures. As concrete
examples, we present lock-freedualstacksanddualqueues, and experimentally
compare their performance with that of lock-based and nonblocking alternatives.

1 Introduction

Since its introduction nearly fifteen years ago, linearizability has become the standard
means of reasoning about the correctness of concurrent objects. Informally, linearizabil-
ity “provides the illusion that each operation. . . takes effect instantaneously at some
point between its invocation and its response” [3, abstract]. Linearizability is “non-
blocking” in the sense that it never requires a call to a total method (one whose pre-
condition is simplytrue) to wait for the execution of any other method. (Certain other
correctness criteria, such as serializability [10], may require blocking, e.g. to enforce
coherence across a multi-object system.) The fact that it is nonblocking makes lineariz-
ability particularly attractive for reasoning about nonblockingimplementationsof con-
current objects, which provide guarantees of various strength regarding the progress of
method calls in practice. In await-freeimplementation, every contending thread is guar-
anteed to complete its method call within a bounded number of its own time steps [4]. In
a lock-freeimplementation,somesome contending thread is guaranteed to complete its

? This work was supported in part by NSF grants numbers EIA-0080124, CCR-9988361, and
CCR-0204344, by DARPA/AFRL contract number F29601-00-K-0182, and by Sun Microsys-
tems Laboratories.

mls
DISC '04

method call within a bounded number of steps (from any thread’s point of view) [4]. In
anobstruction-freeimplementation, a thread is guaranteed to complete its method call
within a bounded number of steps in the absence of contention, i.e. if no other threads
execute competing methods concurrently [2].

These variousprogress conditionsall assume that every method is total. As Herlihy
puts it [4, p. 128]:

We restrict our attention to objects whose operations are total because it is unclear how
to interpret the wait-free condition for partial operations. For example, the most natural
way to define the effects of a partialdeqin a concurrent system is to have it wait until
the queue becomes nonempty, a specification that clearly does not admit a wait-free
implementation.

To avoid this problem the designers of nonblocking data structures typically “totalize”
their methods by returning an error flag whenever the current state of the object does
not admit the method’s intended behavior.

But partial methods are important! Many applications need adequeue , pop , or
deletemin operation that waits when its structure is empty; these and countless other
examples ofcondition synchronizationare fundamental to concurrent programming.

Given a nonblocking data structure with “totalized” methods, the obvious spin-
based strategy is to embed each call in a loop, and retry until it succeeds. This strategy
has two important drawbacks. First, it introduces unnecessary contention for memory
and communication bandwidth, which may significantly degrade performance, even
with careful backoff. Second, it provides no fairness guarantees.

Consider a total queue whosedequeue method waits until it can return success-
fully, and a sequence of calls by threadsA, B, C, andD:

C enqueues a 1
D enqueues a 2
A calls dequeue
A’s call returns the 2
B calls dequeue
B’s call returns the 1

This is clearly a “bad” execution history, because it returns results in the wrong (non-
FIFO) order; it implies an incorrect implementation. The following is clearly a “good”
history:

A calls dequeue
B calls dequeue
C enqueues a 1
D enqueues a 2
A’s call returns the 1
B’s call returns the 2

But what about the following:

A calls dequeue
B calls dequeue
C enqueues a 1
D enqueues a 2
B’s call returns the 1
A’s call returns the 2

If the first line is known to have occurred before the second (this may be the case,
for example, if waiting threads can be identified by querying the scheduler, examining
a thread control block, or reading an object-specific flag), then intuition suggests that
while this history returns results in the right order, it returns them to the wrong threads.
If we implement our queue by wrapping the nonblocking “totalized”dequeue in a
loop, then this third, questionable history may certainly occur.

In the following section we show how to apply the theory of linearizability in such
a way that object semantics can specify the order in which pending requests will be
fulfilled. We then propose that data structures implement those semantics by explicitly
representing the set of pending requests. Borrowing terminology from the BBN But-
terfly Parallel Processor of the early 1980s [1], we define adual data structure to be
one that may holdreservations(registered requests) instead of, or in addition to, data.
A nonblockingdual data structure is one in which (a) every operation either completes
or registers a request in a nonblocking fashion, (b) fulfilled requests complete in a non-
blocking fashion, and (c) threads that are waiting for their requests to be fulfilled do not
interfere with the progress of other threads.

As concrete examples, we introduce two lock-free dual data structures in Section 3:
a dualstackand adualqueue. The dualstack both returns results and fulfills requests
in LIFO order; the dualqueue does both in FIFO order. Both structures are attractive
candidates for “bag of tasks” programming on multiprocessor systems. The dualqueue
also subsumes scalable queue-based spin locks and semaphores, and can be used in
conjunction with a small-scale test-and-set lock to obtain alimited contentionspin lock
that embodies an explicit tradeoff between fairness and locality on distributed shared
memory machines. Preliminary performance results for dualstacks and dualqueues ap-
pear in section 4. We summarize our findings and suggest directions for future work in
Section 5.

2 Definitions

2.1 Linearizable Objects

Following Herlihy and Wing [3], ahistory of an object is a (potentially infinite) se-
quence of method invocation events〈m(args) t〉 and response (return) events〈r(val) t〉,
wherem is the name of a method,r is a return condition (usually “ok”), andt identifies
a thread. An invocationmatchesthe next response in the sequence that has the same
thread id. Together, an invocation and its matching response are called anoperation.
The invocation and response of operationo may also be denotedinv(o) andres(o),
respectively. If evente1 precedes evente2 in historyH, we writee1 <H e2.

A history issequentialif every response immediately follows its matching invoca-
tion. A non-sequential history isconcurrent. A thread subhistoryis the subsequence

of a history consisting of all events for a given thread. Two histories areequivalent
if all their thread subhistories are identical. We consider onlywell-formedconcurrent
histories, in which every thread subhistory is sequential, and begins with an invocation.

We assume that the semantics of an object (which we do not consider formally here)
uniquely determine a set oflegal sequential histories. In a queue, for example, items
must be inserted and removed in FIFO order. That is, thenth successfuldequeue in a
legal history must return the value inserted by thenth enqueue . Moreover at any given
point the number of priorenqueue s must equal or exceed the number of successful
dequeue s. To permitdequeue calls to occur at any time (i.e., to makedequeue
a total method—one whose precondition is simplytrue), one can allow unsuccessful
dequeue s [〈deq() t〉 〈no(⊥) t〉] to appear in the history whenever the number of prior
enqueue s equals the number of prior successful dequeues.

A (possibly concurrent) historyH induces a partial order≺H on operations:oi ≺H

oj if res(oi) <H inv(oj). H is linearizableif (a) it is equivalent to some legal sequen-
tial historyS, and (b)≺H ⊆≺S .

Departing slightly from Herlihy and Wing, we introduce the notion of anaugmented
historyof an object. A (well-formed) augmented historyH ′ is obtained from a history
H by inserting alinearization point〈m l(args, val) t〉 (also denotedlin(o)) somewhere
between each response and its previous matching invocation:inv(o) <H′ lin(o) <H′

res(o).
If H is equivalent to some legal sequential historyS and the linearization points

of H ′ appear in the same order as the corresponding operations inS, thenH ′ em-
bodies a linearization ofH: the order of the linearization points defines a total order
on operations that is consistent with the partial order induced byH. Put another way:
res(oi) <H inv(oj) ⇒ lin(oi) <H′ lin(oj). Given this notion of augmented histo-
ries, we can define legality without resort to equivalent sequential histories: we say that
an augmented history islegal if its sequence of linearization points is permitted by the
object semantics. Similarly,H is linearizableif it can be augmented to produce a legal
augmented historyH ′.

2.2 Implementations

We define animplementationof a concurrent object as a pair(E , I), where

1. E is a set of validexecutionsof some operational system, e.g. the possible inter-
leavings of machine instructions among threads executing a specified body of C
code on some commercial multiprocessor. Each execution takes the form of a se-
ries ofsteps(e.g., instructions), each of which is identified with a particular thread
and occurs atomically. Implementations of nonblocking concurrent objects on real
machines typically rely not only on atomic loads and stores, but on suchuniver-
salatomic primitives [4] ascompare and swap or load linked andstore
conditional , each of which completes in a single step.

2. I is aninterpretationthat maps each executionE ∈ E to some augmented object
historyH ′ = I(E) whose events (including the linearization points) are identified
with steps ofE in such a way that ife1 <H′ e2, thens(e1) ≤E s(e2), wheres(e)
for any evente is the step identified withe.

We say an implementation iscorrect if ∀E ∈ E , I(E) is a legal augmented history of
the concurrent object.

In practice, of course, steps in an execution have an observable order only if they
are executed by the same thread, or if there is a data dependence between them [7].
In particular, while we cannot in general observe thats(inv(oi)) <E s(inv(oj)),
whereoi andoj are performed by different threads, we can observe thats(res(oi)) <E

s(inv(oj)), becauseoi’s thread may write a value after its response that is read byoj ’s
thread before its invocation. The power of linearizability lies in its insistence that the
semantic order of operations on a concurrent object be consistent with such externally
observable orderings.

In addition to correctness, an implementation may have a variety of other properties
of interest, including bounds on time (steps), space, or remote memory accesses; the
suite of required atomic instructions; and variousprogress conditions. An implementa-
tion is wait-freeif we can bound, for all executionsE and invocationsinv(o) in I(E),
the number of steps between (the steps identified with)inv(o) andres(o). An imple-
mentation islock-freeif for all invocationsinv(oi) we can bound the number of steps
between (the steps identified with)inv(oi) and the (not necessarily matching) first sub-
sequent responseres(oj). An implementation isobstruction-freeif for all threadst and
invocationsinv(o) performed byt we can bound the number of consecutive steps per-
formed byt (with no intervening steps by any other thread) between (the steps identified
with) inv(o) andres(o). Note that the definitions of lock freedom and obstruction free-
dom permit executions in which an invocation has no matching response (i.e., in which
threads may starve).

2.3 Adaptation to Objects with Partial Methods

When an object has partial methods, we divide each such method into arequestmethod
and afollow-upmethod, each of which has its own invocations and responses. A total
queue, for example, would providedequeue request anddequeue followup
methods. By analogy with Lamport’s bakery algorithm [6], the request method returns
a ticket, which is then passed as an argument to the follow-up method. The follow-up,
for its part, returns either the desired result or, if the method’s precondition has not yet
been satisfied, an error indication.

The history of a concurrent object now consists not only of invocation and response
events〈m(args) t〉 and 〈ok(val) t〉 for total methodsm, but also request invocation
and response events〈preq(args) t〉 and〈ok(tik) t〉, and follow-up invocation and re-
sponse events〈pfol(tik) t〉 and〈r(val) t〉 for partial methodsp. A request invocation
and its matching response are called arequest operation; a follow-up invocation and
its matching response are called afollow-up operation. The request invocation and re-
sponse of operationo may be denotedinv(or) andres(or); the follow-up invocation
and response may be denotedinv(of) andres(of).

A follow-up with ticket argumentk matchesthe previous request that returnedk. A
follow-up operation is said to besuccessfulif its response event is〈ok(val) t〉; it is said
to beunsuccessfulits its response event is〈no(⊥) t〉. We consider only well-formed
histories, in which every thread subhistory is sequential, and is a prefix of some string

in the regular set(ru?s)?, wherer is a request,u is an unsuccessful follow-up that
matches the precedingr, ands is a successful follow-up that matches the precedingr.

Because it consists of a sequence of operations (beginning with a request and ending
with a successful response), a call to a partial methodp has a sequence of linearization
points, including aninitial linearization point〈pi(args) t〉 somewhere between the in-
vocation and the response of the request, and afinal linearization point〈pf(val) t〉
somewhere between the invocation and the response of the successful matching follow-
up. The initial and final linearization points forp may also be denotedin(p) andfin(p).

We say an augmented history islegal if its sequence of linearization points is
among those determined by the semantics of the object. This definition allows us to
capture partial methods in object semantics. In the previous section we suggested that
the semantics of a queue might require that (1) thenth successfuldequeue returns
the value inserted by thenth enqueue , and (2) the number of priorenqueue s at
any given point equals or exceeds the number of prior successfuldequeue s. We can
now instead require that (1′) the nth final linearization point fordequeue contains
the value from the linearization point of thenth enqueue , (2′) the number of prior
linearization points forenqueue equals or exceeds the number of prior final lin-
earization points fordequeue , and (3′) at the linearization point of an unsuccessful
dequeue followup , the number of prior linearization points forenqueue exactly
equals the number of prior final linearization points fordequeue (i.e., linearization
points for successfuldequeue followup s). These rules ensure not only that the
queue returns results in FIFO order, but also that pending requests for partial methods
(which are now permitted) are fulfilled in FIFO order.

As before, a historyH is linearizable if it can be augmented to produce a legal
augmented historyH ′, and an implementation(E , I) is correct if∀E ∈ E , I(E) is a
legal augmented history of the concurrent object.

Given the definition of well-formedness above, a threadt that wishes to execute a
partial methodp must first callp request and then callp followup in a loop until
it succeeds. This is very different from calling a traditional “totalized” method until
it succeeds: linearization of a distinguished request operation is the hook that allows
object semantics to address the order in which pending requests will be fulfilled.

As a practical matter, implementations may wish to provide ap demand method
that waits until it can return successfully, and/or a plainp method equivalent to
p demand(p request). The obvious implementation ofp demand contains a busy-
wait loop, but other implementations are possible. In particular, an implementation may
choose to use scheduler-based synchronization to putt to sleep on a semaphore that
will be signaled whenp’s precondition has been met, allowing the processor to be used
for other purposes in the interim. We require that it be possible to provide request and
follow-up methods, as defined herein, with no more than trivial modifications to any
given implementation. The algorithms we present in Section 3 provide only a plainp
interface, with internal busy-wait loops.

Progress ConditionsWhen reasoning about progress, we must deal with the fact that a
partial method may wait for an arbitrary amount of time (perform an arbitrary number of
unsuccessful follow-ups) before its precondition is satisfied. Clearly we wish to require

that requests and follow-ups are nonblocking. But this is not enough: we must also
prevent unsuccessful follow-ups from interfering with progress in other threads. We do
so by prohibiting such operations from accessing remote memory. On a cache-coherent
machine, an access by threadt within operationo is said to beremoteif it writes to
memory that may (in some execution) be read or written by threads other thant more
than a constant number of times betweeninv(or) andres(of), or if it reads memory
that may (in some execution) be written by threads other thant more than a constant
number of times betweeninv(or) andres(of). On a non-cache-coherent machine, an
access by threadt is also remote if it refers to memory thatt itself did not allocate.

2.4 Dual Data Structures

We define adual data structureD to be a concurrent object implementation that may
hold reservations(registered requests) instead of, or in addition to, data. Reservations
correspond to requests that cannot be fulfilled until the object satisfies some necessary
precondition. A reservation may be removed fromD, and a call to its follow-up method
may return, when some call by another thread makes the precondition true.D is a
nonblockingdual data structure if

1. It is a correct implementation of a linearizable concurrent object, as defined above.
2. All operations, including requests and follow-ups, are nonblocking.
3. Unsuccessful follow-ups perform no remote memory accesses.

Nonblocking dual data structures may be further classified as wait-free, lock-free,
or obstruction-free, depending on their guarantees with respect to condition (2) above.
In the following section we consider concrete lock-free implementations of a dualstack
and a dualqueue.

3 Example Data Structures

Space limitations preclude inclusion of pseudocode in the conference proceedings. Both
example data structures can be found on-line atwww.cs.rochester.edu/u/scott/synchron-
ization/pseudocode/duals.html. Both use a double-widthcompare and swap (CAS)
instruction (as provided, for example, on the Sparc) to create “counted pointers” that
avoid the ABA problem: each vulnerable pointer is paired with a serial number, which
is incremented every time the pointer is updated to a non-NULL value. We assume
that no thread can stall long enough to see a serial number repeat. On a machine with
(single-word)load linked /store conditional (LL/SC) instructions, the serial
numbers would not be needed.1

1 CAS takes an address, an expected value, and a new value as argument. If the expected value
is found at the given address, it is replaced with the new value, atomically; a Boolean return
value indicates whether the replacement occurred. The ABA problem [5] can arise in a system
in which memory is dynamically allocated, freed, and then reallocated: a thread that performs a
load followed by a CAS may succeed when it should not, if the value at the location in question
has changedand then changed backin-between. LL reads a memory location and makes a
note of having done so. SC stores a new value to the location accessed by the most recent LL,
provided that no other thread has modified the location in-between. Again, a Boolean return
value indicates whether the store occurred.

3.1 The Dualstack

The dualstack is based on the standard lock-free stack of Treiber [13]. So long as the
number of calls topop does not exceed the number of calls topush , the dualstack
behaves the same as its non-dual cousin.

When the stack is empty, or contains only reservations, thepop method pushes a
reservation, and then spins on thedata node field within it. A push method always
pushes a data node. If the previous top node was a reservation, however, the two adja-
cent nodes “annihilate each other”: any thread that finds a data node and an underlying
reservation at the top of the stack attempts to (a) write the address of the former into
thedata node field of the latter, and then (b) pop both nodes from the stack. At any
given time, the stack contains either all reservations, all data, or one datum (at the top)
followed by reservations.

Both the head pointer and thenext pointers in stack nodes aretaggedto indicate
whether the next node in the list is a reservation or a datum and, if the latter, whether
there is a reservation beneath it in the stack. We assume that nodes are word-aligned,
so that these tags can fit in the low-order bits of a pointer. For presentation purposes the
on-line pseudocode assumes that data values are integers, though this could obviously
be changed to any type (including a pointer) that will fit, together with a serial number,
in the target of a double-width CAS (or in a single word on a machine with LL/SC).
To differentiate between the cases where the topmost data node is present to fulfill a
request and where the stack contains all data, pushes for the former case set both the
data and reservation tags; pushes for the latter set only the data tag.

As mentioned in Section 2.3 our code provides a singlepop method that subsumes
the sequence of operations from apop request through its successful follow-up. The
initial linearization point inpop , like the linearization point inpush , is the CAS that
modifies the top-of-stack pointer. Forpops when the stack is non-empty, this CAS is
also the final linearization point. Forpops that have to spin, the final linearization point
is the CAS (in some other thread) that writes to thedata node field of the requester’s
reservation, terminating its spin.

The code forpush is lock-free, as is the code from the beginning ofpop to the
initial linearization point, and from the final linearization point (the read that terminates
the spin) to the end ofpop . Moreover the spin inpop (which would comprise the
body of an unsuccessful follow-up operation, if we provided it as a separate method),
is entirely local: it reads only the requester’s own reservation node, which the requester
allocated itself, and which no other thread will write except to terminate the spin. The
dualstack therefore satisfies conditions 2 and 3 of Section 2.4.

Though we do not offer a proof, inspection of the code confirms that the dualstack
satisfies the usual LIFO semantics for total methods: if the number of previous lin-
earization points forpush exceeds the number of previous initial linearization points
for pop , then a newpop operationp will succeed immediately, and will return the value
provided by the most recent previouspush operationh such that the numbers of pushes
and pops that linearized betweenh andp are equal. In a similar fashion, the dualstack
satisfies pending requests in LIFO order: if the number of previous initial linearization
points forpop exceeds the number of previous linearization points forpush , then a
push operationh will provide the value to be returned by the most recent previouspop

operationp such that the numbers of pushes and pops that linearized betweenp andh
are equal. This is condition 1 from Section 2.4.

The spin inpop is terminated by a CAS in some other thread (possibly the fulfilling
thread, possibly a helper) that updates thedata node field in the reservation. This
CAS is the final linearization point of the spinning thread. It is not, however, the final
linearization point of the fulfilling thread; that occurs earlier, when the fulfilling thread
successfully updates the top-of-stack pointer to point to the fulfilling datum. Once the
fulfilling push has linearized, no thread will be able to make progress until the spinning
pop reaches its final linearization point. It is possible, however, for the spinning thread
to perform an unbounded number of (local, spinning) steps in a legal execution before
this happens: hence the need to separate the linearization points of the fulfilling and
fulfilled operations.

It is tempting to consider a simpler implementation in which the fulfilling thread
pops a reservation from the stack and then writes the fulfilling datum directly into the
reservation. This implementation, however, is incorrect: it leaves the requester vulnera-
ble to a failure or stall in the fulfilling thread subsequent to the pop of the reservation but
prior to the write of the datum. Because the reservation would no longer be in the stack,
an arbitrary number of additionalpop operations (performed by other threads, and re-
turning subsequentlypush ed data) could linearize before the requester’s successful
follow-up.

One possible application of a dualstack is to implement a “bag of tasks” in a locality-
conscious parallel execution system. If newly created tasks share data with recently
completed tasks, it may make sense for a thread to execute a newly created task, rather
than one created long ago, when it next needs work to do. Similarly, if there is insuf-
ficient work for all threads, it may make sense for newly created tasks to be executed
by threads that became idle recently, rather than threads that have been idle for a long
time. In addition to enhancing locality, this could allow power-aware processors to enter
a low-power mode when running spinning threads, potentially saving significant energy.
The LIFO ordering of a dualstack will implement these policies.

3.2 The Dualqueue

The dualqueue is based on the M&S lock-free queue [9]. So long as the number of
calls todequeue does not exceed the number of calls topush , it behaves the same
as its non-dual cousin. It is initialized with a single “dummy” node; the first real datum
(or reservation) is always in the second node, if any. At any given time the second and
subsequent nodes will either all be reservations or all be data.

When the queue is empty, or contains only reservations, thedequeue method en-
queues a reservation, and then spins on therequest pointer field of the former tail
node. Theenqueue method, for its part, fulfills the request at the head of the queue, if
any, rather than enqueue a datum. To do so, the fulfilling thread uses a CAS to update
the reservation’srequest field with a pointer to a node (outside the queue) contain-
ing the provided data. This simultaneously fulfills the request and breaks the requester’s
spin. Any thread that finds a fulfilled request at the head of the queue removes and frees
it. (NB: acting on the head of the queue requires that we obtain aconsistent snapshot
of thehead , tail , andnext pointers. Extending the technique of the original M&S

queue, we use a two-stage check to ensure sufficient consistency to prevent untoward
race conditions.)

As in the dualstack, queue nodes are tagged as requests by setting a low-order bit in
pointers that point to them. We again assume, without loss of generality, that data values
are integers, and we provide a singledequeue method that subsumes the sequence of
operations from adequeue request through its successful follow-up.

The code forenqueue is lock-free, as is the code from the beginning ofdequeue
to the initial linearization point, and from the final linearization point (the read that
terminates the spin) to the end ofdequeue . The spin indequeue (which would
comprise the body of an unsuccessful follow-up) accesses a node that no other thread
will write except to terminate the spin. The dualqueue therefore satisfies conditions 2
and 3 of Section 2.4 on a cache-coherent machine. (On a non-cache-coherent machine
we would need to modify the code to provide an extra level of indirection; the spin in
dequeue reads a node that the requester did not allocate.)

Though we do not offer a proof, inspection of the code confirms that the dualqueue
satisfies the usual FIFO semantics for total methods: if the number of previous lineariza-
tion points forenqueue exceeds the number of previous initial linearization points for
dequeue , then a new,nth dequeue operation will return the value provided by the
nth enqueue . In a similar fashion, the dualqueue satisfies pending requests in FIFO
order: if the number of previous initial linearization points fordequeue exceeds the
number of previous linearization points forenqueue , then a new,nth enqueue op-
eration will provide a value to thenth dequeue . This is condition 1 from Section 2.4.

The spin indequeue is terminated by a CAS in another thread’senqueue method;
this CAS is the linearization point of theenqueue and the final linearization point of
the dequeue . Note again that a simpler algorithm, in which theenqueue method
could remove a request from the queue and then fulfill it, would not be correct: the
CAS operation used for removal would constitute the final linearization point of the
enqueue , but the correspondingdequeue could continue to spin for an arbitrary
amount of time if the thread performing theenqueue were to stall.

Dualqueue Applications Dualqueues are versatile. They can obviously be used as a
traditional “bag of tasks” or a producer–consumer buffer. They have several other uses
as well:

Mutual exclusion.A dualqueue that is initialized to hold a single datum is a previously
unknown variety of queue-based mutual exclusion lock. Unlike the widely used MCS
lock [8], a dualqueue lock has no spin in the release code: where the MCS lock updates
the tail pointer of the queue and then thenext pointer of the predecessor’s node, a
dualqueue lock updates thenext pointer first, and then swings the tail to cover it.

Semaphores.A dualqueue that is initialized withk data nodes constitutes a contention-
free spin-based semaphore. It can be used, for example, to allocatek interchangeable
resources among a set of competing threads.

Limited contention lock.As noted by Radovic and Hagersten [11], among others, the
strict fairness of queue-based locks may not be desirable on a non-uniform memory

access (distributed shared memory) multiprocessor. At the same time, a test-and-set
lock, which tends to grant requests to physically nearby threads, can be unacceptably
unfair (not to mention slow) when contention among threads is high: threads that are
physically distant may starve. An attractive compromise is to allow waiting threads to
bypass each other in line to a limited extent. A dualqueue paired with a test-and-set
lock provides a straightforward implementation of such a “limited contention” lock.
We initialize the dualqueue withk tokens, each of which grants permission to contend
for the test-and-set lock. The value ofk determines the balance between fairness and
locality. Theacquire operation first dequeues a token from the dualqueue and then
contends for the test-and-set lock. Therelease operation enqueues a token in the
dualqueue and releases the test-and-set lock. Starvation is still possible, though less
likely than with an ordinary test-and-set lock. We can eliminate it entirely, if desired,
by reducingk to one on a periodic basis.

4 Experimental Results

In this section we compare the performance of the dualstack and dualqueue to that
of Treiber’s lock-free stack [13], the M&S lock-free queue [9], and four lock-based
alternatives. With Treiber’s stack and the M&S queue we embed the calls topop and
dequeue , respectively, in a loop that repeats until the operations succeed. Two lock-
based alternatives, the “locked stack” and the “locked queue” employ similar loops. The
remaining two alternatives are lock-based dual data structures. Like the nonblocking
dualstack and dualqueue, the “dual locked stack” and “dual locked queue” can contain
either data or requests. All updates, however, are protected by a test-and-set lock.

Our experimental platform is a 16-processor SunFire 6800, a cache-coherent multi-
processor with 1.2Ghz UltraSPARC III processors. Our benchmark createsn+1 threads
for ann thread test. Thread 0 executes as follows:

while time has not expired
for i = 1 to 3

insert -1 into data structure
repeat

pause for about 50 µs
until data structure is empty
pause for about 50 µs

Other threads all run the following:

while time has not expired
remove val from data structure
if val == -1

for i = 1 to 32
insert i into data structure

pause for about 0.5 µs

These conventions arrange for a series of “rounds” in which the data structure alter-
nates between being full of requests and being full of data. Three threads, chosen more

or less at random, prime the structure for the next round, and then join their peers in
emptying it. We ran each test for two seconds, and report the minimum per-operation
run time across five trials. Spot checks of longer runs revealed no anomalies. Choosing
the minimum effectively discards the effects of periodic execution by kernel daemons.

Code for the various algorithms was written in C (with embedded assembly for
CAS), and was compiled withgcc version 3.3.2 and the-O3 level of optimization. We
use the fast local memory allocator from our 2002PODCpaper [12].

Stack results appear in Figure 1. For both lock-based and lock-free algorithms, dual-
ism yields a significant performance improvement: at 14 worker threads the dual locked
stack is about 9% faster than (takes 93% as much time as) the locked stack that retries
failedpop calls repeatedly; the nonblocking dualstack is about 20% faster than its non-
dual counterpart. In each case the lock-based stack is faster than the corresponding
lock-free stack due, we believe, to reduced contention for the top-of-stack pointer.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

4 5 6 7 8 9 10 11 12 13 14 15 16 18 20 22 24 26 28 30 32

Threads

n
s
/o
p
e
ra
ti
o
n

dualstack dual locked stack locked stack Trieber stack

Fig. 1.Benchmark time per operation for stack algorithms.

Queue results appear in Figure 2. Here dualism again yields significant improve-
ments: at 14 worker threads the dual locked queue is about 14% faster than the locked
queue that retries faileddequeue calls repeatedly; the nonblocking dualqueue is more
than 40% faster than its non-dual counterpart. Unlike the stacks, the nonblocking du-
alqueue outperforms the dual locked queue by a significant margin; we attribute this
difference to the potential concurrency between enqueues and dequeues. The M&S
queue is slightly faster than the locked queue at low thread counts, slightly slower for

12–15 threads, and significantly faster once the number of threads exceeds the number
of processors, and the lock-based algorithm begins to suffer from preemption in critical
sections. Performance of the nonblocking dualqueue is almost flat out to 16 threads (the
size of the machine), and reasonable well beyond that, despite an extremely high level
of contention in our benchmark; we can recommend this algorithm without reservation
on any cache-coherent machine.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

4 5 6 7 8 9 10 11 12 13 14 15 16 18 20 22 24 26 28 30 32

Threads

n
s
/o
p
e
ra
ti
o
n

dualqueue dual locked queue locked queue M&S queue

Fig. 2.Benchmark time per operation for queue algorithms.

5 Conclusions

Linearizability is central to the study of concurrent data structures. It has historically
been limited by its restriction to methods that are total. We have shown how to encom-
pass partial methods by introducing apair of linearization points, one for the registra-
tion of a request and the other for its later fulfillment. By reasoning separately about
a request, its successful follow-up, and the period in-between, we obtain meaningful
definitions of wait-free, lock-free, and obstruction-free implementations of concurrent
objects with condition synchronization.

We have presented concrete lock-free implementations of adualstackand adu-
alqueue. Performance results on a commercial multiprocessor suggest that dualism can
yield significant performance gains over naive retry on failure. The dualqueue, in par-

ticular, appears to be an eminently useful algorithm, outperforming the M&S queue in
our experiments by almost a factor of two for large thread counts.

Nonblocking dual data structures could undoubtedly be developed for double-ended
queues, priority queues, sets, dictionaries, and other abstractions. Each of these may in
turn have variants that embody different policies as to which of several pending requests
to fulfill when a matching operation makes a precondition true. One could imagine, for
example, a stack that grants pending requests in FIFO order, or (conceivably) a queue
that grants them in LIFO order. More plausibly, one could imagine an arbitrary system
of thread priorities, in which a matching operation fulfills the highest priority pending
request.

Further useful structures may be obtained by altering behavior between a request
and its subsequent successful follow-up. As noted in Section 2.3, one could deschedule
waiting threads, thereby effectively incorporating scheduler-based condition synchro-
nization into nonblocking data structures. For real-time or database systems, one might
combine dualism with timeout, allowing a spinning thread to remove its request from
the structure if it waits “too long”.

Acknowledgments

We are grateful to the anonymous referees for several helpful suggestions, and in partic-
ular to referee 4, who suggested that requests and follow-ups be full-fledged operations,
thereby significantly simplifying the description of progress conditions between initial
and final linearization points.

References

[1] BBN Laboratories. Butterfly Parallel Processor Overview. BBN Report #6148, Version 1,
Cambridge, MA, March 1986.

[2] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-Free Synchronization: Double-Ended
Queues as an Example. InProceedings of the Twenty-Third International Conference on
Distributed Computing Systems, Providence, RI, May, 2003.

[3] M. P. Herlihy and J. M. Wing. Linearizability: A Correctness Condition for Concurrent
Objects. ACM Transactions on Programming Languages and Systems, 12(3):463–492,
July 1990.

[4] M. Herlihy. Wait-Free Synchronization.ACM Transactions on Programming Languages
and Systems, 13(1):124–149, January 1991.

[5] System/370 Principles of Operation. IBM Corporation, 1983.
[6] L. Lamport. A New Solution of Dijkstra’s Concurrent Programming Problem.Communi-

cations of the ACM, 17(8):453–455, August 1974.
[7] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.Communi-

cations of the ACM, 21(7):558–565, July 1978.
[8] J. M. Mellor-Crummey and M. L. Scott. Algorithms for Scalable Synchronization on

Shared-Memory Multiprocessors.ACM Transactions on Computer Systems, 9(1):21–65,
February 1991.

[9] M. M. Michael and M. L. Scott. Simple, Fast, and Practical Non-Blocking and Block-
ing Concurrent Queue Algorithms. InProceedings of the Fifteenth ACM Symposium on
Principles of Distributed Computing, pages 267–275, Philadelphia, PA, May 1996.

[10] C. H. Papadimitriou. The Serializability of Concurrent Database Updates.Journal of the
ACM, 26(4):631–653, October 1979.

[11] Z. Radovic and E. Hagersten. Hierarchical Backoff Locks for Nonuniform Communica-
tion Architectures. InProc of the Ninth International Symposium on High Performance
Computer Architecture, pages 241–252, Anaheim, CA, February 2003.

[12] M. L. Scott. Non-blocking Timeout in Scalable Queue-based Spin Locks. InProceedings of
the Twenty-Second ACM Symposium on Principles of Distributed Computing, pages 31–40,
Monterey, CA, July 2002.

[13] R. K. Treiber. Systems Programming: Coping with Parallelism. RJ 5118, IBM Almaden
Research Center, April 1986.

