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Our paper [2] at the 2004 ACM PODC workshop
on Concurrency and Synchonization in Java Pro-
grams (CSJP’04) presented preliminary comparisons
of several out-of-band contention managers for the
Dynamic Software Transactional Memory (DSTM)
system of Herlihy et al. [1]. In the course of subse-
quent work (joint with Virendra J. Marathe) we have
identified several problems with the implementation
used to collect our results. Corrected, these change
the results of our experiments enough to merit dis-
semination of revised graphs and conclusions.

1 Implementation Problems
Missing contention management calls. Several

“hooks” for contention management were miss-
ing in our code, including the notification that an
object had been opened for write or visible read
access.

Inefficient visible reads. In the case of visible
reads, a reader was added to the beginning of the
reader list every time it opened an object, caus-
ing it to be listed multiple times if the same object
was opened more than once. This was not a cor-
rectness problem, but led to unnecessary overhead
for both the reader and any subsequent writer.

Incomplete early release. The early release oper-
ation needs to remove an object from two lists:
one containing all opened objects, the other con-
taining objects eligible for early release. Our code
removed the object from the latter but not the for-
mer, resulting in unnecessary validation overhead.
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Coarse-Grained Time Measurement. The im-
plementation ofThread.sleep() in our local
Java library accepts a nanosecond argument, but
incurs a minimum wait of several milliseconds.
The default wait of 100 ns, used in several poli-
cies, was implicitly greatly inflated.

To implement fine-grain waits we replaced calls
to Thread.sleep() with busy-wait loops that
call System.nanoTime (which does have high
accurracy and low overhead in our Java implemen-
tation). Subsequent trial-and-error experimentation
suggested a default wait of 1000 ns in the Eruption,
Karma, KillBlocked, Kindergarten, QueueOnBlock,
and Timestamp managers. Additional experimen-
tation with the Polite manager led to a new set of
parameters for exponential backoff: a minimum of
2
4 ns, rising to a maximum of226 ns over a maxi-

mum of 22 cycles of delay. Finally, we found that
the previous strategy of losing 50% of accumulated
priority upon each abort in the Eruption manager ac-
tually reduced throughput for all benchmarks. The
new version of the policy retains priority at aborts.

2 Revised Results
We are still experimenting with implementations of
early release, and are not yet confident of our ability
to separate implementation artifacts from the impact
of fewer conflicts. We have therefore left IntSetRe-
lease out of the results reported here. In its place
we report results for an IntSetUpgrade benchmark in
which we open all list nodes for read-only access,
then upgrade to write access for only those nodes that
actually need to be modified.
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As before, our results were obtained on a 16-
processor SunFire 6800 with 1.2Ghz UltraSPARC III
processors. Our test environment, however, is up-
graded to Sun’s Java 1.5 HotSpot VM. (We had pre-
viously used a beta version.) We ran each benchmark
with each of the contention management policies de-
scribed in the original paper (modified as described
above) for 10 seconds. We completed three passes of
this test regime for both visible and invisible read im-
plementations, varying the level of concurrency from
1 to 128 threads.

Figures 1–5 show averaged results for the counter
and LFUCache benchmarks, the read-black tree-
based integer set benchmark, and the two linked list-
based integer set benchmarks. Each graph is shown
both in total and zoomed in on the first 16 threads
(where multiprogramming does not occur).

3 Conclusions
As in the original paper, we find that different con-
tention management policies work better for differ-
ent benchmark applications, and that no single man-
ager provides all-around best results. However, the
group of managers that yield top performance nar-
rows considerably: Polite does well for many bench-
marks, but Karma, Eruption, and Kindergarten yield
good performance in each case where Polite does
less well. We therefore recommend choosing one
of these managers for any realistic application of
DSTM, though the exact conditions under which any
one manager outperforms the others remain unclear.

Choosing between visible and invisible reads,
however, is no longer as difficult a proposition as we
had previously reported. While visible reads yield far
better throughput than invisible reads with the IntSet
benchmarks, invisible reads only outperform visible
reads with very high levels of contention in the RB-
Tree benchmark. As a result, we recommend visible
reads as a general default strategy.
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Figure 1: Counter benchmark results
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Figure 2: LFUCache benchmark results
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Figure 3: RBTree benchmark results
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Figure 4: IntSet benchmark results

4



0
500

1000
1500
2000
2500
3000
3500
4000

20 40 60 80 100 120

threads

Tx/s (IntSetUpgrade) [Invisible Reads]

0
500

1000
1500
2000
2500
3000
3500
4000

2 4 6 8 10 12 14 16

threads

Tx/s (IntSetUpgrade) [Invisible Reads]

0
5000

10000
15000
20000
25000
30000
35000

20 40 60 80 100 120

threads

Tx/s (IntSetUpgrade) [Visible Reads]

KillBlocked
Aggressive

Polite
Randomized
Kindergarten

Eruption
Karma

Timestamp
QueueOnBlock

0
5000

10000
15000
20000
25000
30000
35000

2 4 6 8 10 12 14 16

threads

Tx/s (IntSetUpgrade) [Visible Reads]

KillBlocked
Aggressive

Polite
Randomized
Kindergarten

Eruption
Karma

Timestamp
QueueOnBlock

Figure 5: IntSetUpgrade benchmark results
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