
Improving Application Performance by Dynamically
Balancing Speed and Complexity in a GALS

Microprocessor ∗

1 Dept. of Computer Engg.
Rochester Institute of

Technology
Rochester, NY 14623

gpseec@ce.rit.edu

Greg Semeraro1, David Albonesi2, Steven Dropsho3, Grigorios Magklis3, and Michael L. Scott3

2 Dept. of Electrical and
Computer Engineering
University of Rochester
Rochester, NY 14627

albonesi@ece.rochester.edu

3 Dept. of Computer Science
University of Rochester
Rochester, NY 14627

{dropsho, maglis, scott}
@cs.rochester.edu

ABSTRACT
Microprocessors are traditionally designed to provide “best
overall” performance across a wide range of applications
and operating environments. Several groups have proposed
hardware techniques that save energy by “downsizing” hard-
ware resources that are underutilized by particular applica-
tions. We explore the converse: “upsizing” hardware re-
sources in order to improve performance relative to an ag-
gressively clocked baseline processor. Our proposal depends
critically on the ability to change frequencies independently
in separate domains of a globally asynchronous, locally syn-
chronous (GALS) microprocessor.

We use a variant of our multiple clock domain (MCD)
processor, with four independently clocked domains. Each
domain is streamlined with modest hardware structures for
very high clock frequency. Key structures can then be up-
sized on demand to exploit more distant parallelism, im-
prove branch prediction, or increase cache capacity. Al-
though doing so requires decreasing the associated domain
frequency, other domain frequencies are unaffected. Mea-
suring across a broad suite of application benchmarks, we
find that configuring just once per application increases per-
formance by an average of 17.6% compared to the best fully
synchronous design. When adapting to application phases,
performance improves by over 20%.

1. INTRODUCTION

∗This work was supported in part by NSF grants CCR-
9701915, CCR-9811929, CCR-9988361, EIA-0080124, and
CCR-0204344; by DARPA/ITO under AFRL contract
F29601-00-K-0182; by an IBM Faculty Partnership Award;
and by equipment grants from IBM and Intel.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Workshop on Application Specific ProcessorsSan Diego, CA USA
.

Microprocessor design traditionally embodies a tradeoff
between processor frequency and the hardware complexity
required to exploit instruction-level parallelism (ILP). Any
particular design is typically a compromise, because the
tradeoff is highly application dependent. Optimal pipeline
depth, for example, tends to vary across classes of appli-
cations, e.g. SPEC versus transaction processing [13, 19,
28]. Studies have even demonstrated significant variability
in hardware requirements among the different phases of a
given application [8, 27, 30]. Any processor designed for
“best overall” performance inevitably makes inefficient use
of its hardware resources when running a varied workload.
This observation suggests the possibility of dynamically op-
timizing the tradeoff between clock rate and IPC (instruc-
tions per cycle) [1].

The simplest approach is to “downsize” underutilized struc-
tures in order to save energy. Proposals to date include
adaptive cache hierarchies [2, 8, 23], adaptive issue queues [5,
11], and combinations including caches, issue queues, regis-
ter files, and the reorder buffer [9, 22].

A downsized structure often operates at a higher speed.
For instance, Buyuktosunoglu [5] demonstrated a 70% re-
duction in issue queue access time when downsizing from 32
entries to eight. Unfortunately, critical paths elsewhere in
the chip typically prevent this speedup from translating into
an overall increase in clock speed.

If one aims to improve performance, an alternative strat-
egy [1] is to decrease global frequency when one or more
structures are upsized. This strategy preserves the correct-
ness of critical paths, but succeeds only when the perfor-
mance gained by upsizing some subset of the chip’s hard-
ware resources (e.g., the data cache hierarchy) exceeds the
performance lost by slowing down everything else, and this
is seldom the case.

Globally-Asynchronous, Locally-Synchronous (GALS) mi-
croprocessors [15, 20, 26] offer a new opportunity to dy-
namically trade speed for complexity within a subset of the
processor. In our Multiple Clock Domain (MCD) GALS
design [26], the chip is broken down into separate domains
for front-end fetch / rename, integer execution, floating point
execution, and load / store (L1 data cache and L2 cache).
Clock frequency can be varied in each domain independent
of the others; synchronization circuits are used on all cross-

domain paths. By varying voltage with frequency, we been
able to save significant energy with only a modest loss in
performance [17, 25, 26]. We use a similar architecture in
the current paper in a quest to improve performance.

We begin with a baseline MCD processor in which each
domain is optimized for high frequency, with relatively low
hardware complexity. Dynamic upsizing of key hardware
structures (with an accompanying decrease in domain fre-
quency) then offers per-application tailoring of the speed /
complexity tradeoff. In effect, we trade speed for com-
plexity whenever an increase in potential ILP provides IPC
benefits that override the frequency loss in that one do-
main. Our baseline processor has a higher branch mis-
predict penalty than found in a fully synchronous design,
due to pipeline inefficiencies at lower frequencies. It also
suffers a modest frequency penalty due to the ability to
adapt. Despite these handicaps, we demonstrate overall
performance improvements of 17.6% with respect to the
best fully synchronous design using only profile-based whole-
program adaptation of the instruction cache, branch pre-
dictor, integer issue queue, floating-point issue queue, and
data /L2 caches. When we add an adaptation algorithm
that automatically detects phases of program behavior and
sizes structures appropriately for each phase, average per-
formance improvement reaches 20.4%. These results reflect
an exhaustive exploration of the space of synchronous and
whole-program adaptive processor configurations, embody-
ing approximately 300 CPU months of simulation time.

2. MCD MICROARCHITECTURE
Our MCD architecture has four independent clock do-

mains, comprising the front end (L1 instruction cache, branch
prediction, rename, reorder buffer and dispatch); integer
processing core (issue queue, register file and execution units);
floating-point processing core (issue queue, register file and
execution units); and load / store unit (load / store queue,
L1 data cache and unified L2 cache). The main memory
can be thought of as a separate fifth domain, but is fixed at
a base frequency and hence non-adaptive. Further details,
including a description of the inter-domain synchronization
circuitry, can be found in prior papers [17, 25, 26].

We investigated two models for dynamic voltage and fre-
quency scaling: an XScale model and a Transmeta model,
both of which are based on published information from their
respective companies [7, 10]. For both of these models, we
assume that the frequency change can be initiated immedi-
ately when transitioning to a lower frequency and voltage,
while the desired voltage must be reached first before in-
creasing frequency. For the Transmeta model, we assume
a total of 32 separate voltage steps, at 28.6mV intervals,
with a voltage adjustment time of 20µs per step. Frequency
changes require the PLL to re-lock. Until it does, the do-
main remains idle. The PLL locking circuit is assumed to
require a lock time that is normally distributed with a mean
time of 15µs and a range of 10–20µs. With the tight inter-
action between the domains, the suspension of one domain
quickly cascades to other domains. As one can imagine, this
has a profound impact on overall performance. For these
reasons the Transmeta model was not investigated further
and is not included in any of the analysis that follows. For
the XScale model, we assume that frequency changes occur
as soon as the voltage changes and circuits operate through
the change.

A disadvantage of multiple clock domains is that data
generated in one domain and needed in another must cross
a domain boundary, potentially incurring synchronization
costs. In order to accurately model these costs, we account
for the fact that the clocks driving each domain are inde-
pendent by modeling independent jitter, the variation in the
clock, on a cycle-by-cycle basis. Our model assumes a nor-
mal distribution of jitter with a mean of zero. In addition,
we have analyzed the architectural characteristics of MCD
processors which influence overall performance degradation
and determined that the dominant characteristic is the abil-
ity of the microarchitecture to tolerate pipeline latencies.
The accuracy of the domain clock PLLs and the character-
istics of the independent clock jitter play a negligible role
in overall performance. In fact, both superscalar features
(which allow instructions to cross domains in groups) and
out-of-order execution (which allows synchronization laten-
cies to be hidden) greatly override the synchronization cost
relegating it to an average of less than 3%. The MCD design
also has the benefit of reduced clock skew, power, and metal
due to the lack of a global skew requirement. However, we
assume no such advantages in the analysis that follows.

For the current study we add adaptive structures to the
MCD domains. The resulting adaptive MCD architecture
has a base configuration with small and simple structures
running at a very high clock rate. For applications that
perform better with additional resources, key structures can
be upsized with a corresponding reduction in the clock rate
of their domain. Unaffected domains still run at their base
high clock rate.

Having adaptable structures and a variable clock means
that structures may be safely oversized. The greater capac-
ity (and lower domain frequency) is used only if an applica-
tion attains a net benefit. Applications that do not require
the extra capacity configure to a smaller size and run at a
higher frequency. This approach permits the tradeoff be-
tween per-domain clock rate and complexity to be made for
each application or application phase.

In the front end, the instruction cache and branch pre-
dictor are jointly resizable (i.e., each cache configuration is
paired with a branch predictor sized to operate at the fre-
quency of the cache). This permits applications with larger
instruction footprints, or those that require more branch
prediction resources, to be accommodated, albeit at the cost
of a lower domain frequency. Similarly, in the load / store
domain, the data cache and second level cache are resizable,
also as matched pairs. In the integer and floating-point do-
mains, issue queues can similarly be resized to match avail-
able ILP. Additional structures could also conceivably be
resized; we leave these options for future work.

There are costs associated with supporting adaptive struc-
tures. With the smallest sizings, per-domain pipe stage de-
lays are balanced in order to attain the highest clock rate.
When the clock frequency is lowered to accommodate the
additional delay of an upsized structure, the resulting stage
delay imbalance results in a design that is over-pipelined
with respect to the particular frequency. The cost is a longer
branch mis-predict penalty. In our study, the adaptive MCD
incurs two additional integer cycles and one additional front-
end cycle for branch mispredictions. In addition, the base
MCD configuration must have its structures designed for
maximum performance in order to achieve the highest pos-
sible clock rate. But to support resizing, the smallest struc-

Table 1: L1 data and L2 cache configurations.

L1-D sub-banks L2 sub-banks
size assoc adapt optimal size assoc adapt optimal

32 KB 1 32 32 256 KB 1 8 8
64 KB 2 32 8 512 KB 2 8 4
128 KB 4 32 16 1 MB 4 8 4
256 KB 8 32 4 2 MB 8 8 4

32k1W /
256k1W

64k2W /
512k2W

128k4W /
1024k4W

256k8W /
2048k8W

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Adaptive Optimal

D-Cache/L2 Configuration

G
H

z

Figure 1: D-cache / L2 frequency versus configura-
tion.

ture size must be a substructure of the larger sizings. Thus,
structures may be suboptimal in their large configurations
relative to the same size structure that has been optimized
for a non-adaptable design.

2.1 Load / store domain
In the load / store domain, the L1 data and L2 caches are

8-way associative, and resized by ways [9]. The base con-
figuration (smallest size and highest clock rate) is a 32 KB
direct-mapped data cache and a 256 KB direct-mapped L2
cache. The two caches are upsized together by increasing
their associativity. The configurations we consider in our
experiments are shown in Table 1.

We use the CACTI modeling tool [29] (version 3.1) to ob-
tain timings for all plausible cache configurations at a given
size. The optimal columns in Table 1 describe the configu-
rations that provide the fastest cycle time for the given ca-
pacity and associativity, without the ability to resize. The
adapt columns were chosen by adopting the fastest configu-
ration of the minimal-size structure and then replicating this
configuration at higher levels of associativity to obtain the
larger configurations. This strategy ensures the fastest clock
frequency at the minimum configuration, but may not pro-
duce the fastest configuration when structures are upsized.
Since CACTI configures a 32KB direct-mapped cache as 32
sub-banks, each additional way in the adaptive L1-D cache
is an identical 32 KB RAM. The reconfigurable L2, similarly,
has 8 sub-banks per 256 KB way. In contrast, the number of
sub-banks in an optimal fixed L1 varies with total capacity,
and the optimal L2 structure has 4 sub-banks per way for
all sizes larger than the minimum.

Frequencies for the various cache configurations, optimal
and adaptive, are plotted in Figure 1. The difference be-
tween the optimized and adaptive configurations is small:
approximately 5%.

16k 32k 48k 64k
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Adaptive Optimal

I-Cache Size

G
H

z

Figure 2: I-Cache Frequency versus Configuration.

2.2 Front end domain
In the front end both the instruction cache and the branch

predictor are adaptive. Like the L1-D and L2 caches, they
are always resized together. The configurations we consider
are shown in Table 2. Like the data caches, the instruction
cache adapts by ways, but with associativities of 1, 2, 3, and
4. The branch predictor is a hybrid design with a global
shared history (gshare) component, a local history compo-
nent, and a meta predictor to select which component to
use. The gshare component is a global branch history ta-
ble (BHT) of 2hg two-bit counters indexed by the hg-bit
global history. The local history component consists of a
pattern history table (PHT) holding the histories for differ-
ent branches. The table is indexed by the branch PC and
returns a hl-bit wide local history. The hl-bit wide local
history is used to index a local BHT of 2hl two-bit counters.

As a baseline for comparison, we explored 18 different
instruction cache configurations, ranging in size from 4 to
64KB, and in associativity from 1 to 4, to find the best
fully synchronous option. Averaged across our suite of 32
MediaBench, Olden, and SPEC2000 applications, a direct-
mapped 64KB configuration provides the best performance.

Figure 2 compares the operating frequency of an optimally
configured direct-mapped cache to that of our adaptive con-
figurations at various total cache sizes. As is clear on the
adaptive curve, there is a large difference in frequency be-
tween direct-mapped and 2-way set associative configura-
tions: as much as 31%. Since instruction streams tend to
need little associativity, the optimal configuration of a large
instruction is direct-mapped and aggressively clocked. This
is a clear advantage to the fully synchronous processor that
the adaptive design must overcome.

2.3 Integer and floating point domains
In both the integer and floating point domains, the is-

sue queues are resizable from 16 to 64 entries in four incre-
ments. The issue queue timings are derived as described by
Palacharla et al. [21], using the same technology file used by
CACTI. Based on the results of Buyuktosunoglu et al. [5],
we assume that a resizable issue queue suffers no access
penalty over a non-resizable issue queue of the same size.
A plot of queue frequencies is shown in Figure 3. Note that
due to the log4 structure of the selection logic and the fact
that the selection delay is much larger than the wake-up de-
lay, we suffer a significant frequency decrease when moving
from an issue queue with 16 entries (which has 2 levels of

Table 2: Adaptive instruction cache / branch predictor configurations.

I-cache, dynamic Branch predictor
Size Assoc Sub-banks hg gshare PHT Meta-predictor hl local PHT local BHT

16 KB 1 32 14 bits 16384 16384 11 bits 2048 1024
32 KB 2 32 15 bits 32768 32768 12 bits 4096 1024
48 KB 3 32 15 bits 32768 32768 12 bits 4096 1024
64 KB 4 32 16 bits 65536 65536 13 bits 8192 1024

16 20 24 28 32 36 40 44 48 52 56 60 64
0.4

0.6

0.8

1.0

1.2

1.4

1.6

Issue Queue Size

G
H

z

Figure 3: Issue queue frequency analysis.

A B

A B

Swap A&B blocks

A

A AB

B

����������
���������� ����������

����������

Figure 4: Partitioning options for a 4-way Account-
ing Cache.

logic) to any larger issue queue up to 64 entries (all of which
have 3 levels of logic). As will be explained more fully in
Section 5, this frequency effect causes a 16-entry issue queue
to be best for most applications.

3. ADAPTIVE CONTROL ALGORITHMS
Both caches and issue queues require some sort of control

algorithm to support on-line adaption to program phases.
We describe our algorithms in this section. Note that they
are not used in the whole-program experiments: for those we
pick the configurations that show the best overall behavior
based on exhaustive (off-line) exploration of the state space.

3.1 Phase adaptive caches
For our reconfigurable caches we employ the Accounting

Cache [9] described in our earlier work on energy efficiency.
As described in Section 2, this cache adapts by ways. Even
when running in a limited number of ways, however, it col-
lects statistics in the remaining ways, allowing us to calcu-
late the number of hits and misses that would have occurred
over a given span of time for any of the possible configura-
tions.

The four possible configurations of a 4-way set associative
Accounting Cache are shown in Figure 4. In this example,
the A partition can be 1, 2, 3, or 4 ways. The B partition is
the remaining portion. The A partition is accessed first. If
the data block is found it is returned. Otherwise a second
access is made to the B partition, which causes blocks to
be swapped. Note that the B partition is not considered a
lower level of cache. All three caches of the adaptive MCD
machine (L1I, L1D, and combined L2) have their own A
and B partitions. When we simulate a fully synchronous
processor, however, or when we choose a single adaptive
configuration for the entire program run, we use only the A
partitions: a miss in A skips B and goes directly to the next
lower level of the memory hierarchy.

A cache with a small A partition runs at a higher fre-
quency than one with a larger A partition. Ideally one would
make the A partition as small as possible without generat-
ing a significant number of B accesses. The B partition
access latency is an integral number of cycles at the clock
rate dictated by the size of the A partition.

As described in detail in previous work [9], we maintain
full most-recently-used (MRU) state on cache lines. Sim-
ple counts of the number of blocks accessed in each MRU
state are sufficient to reconstruct the precise number of hits
and misses to the A and B partitions for all possible cache
configurations, regardless of the current configuration. Our
control algorithm resets the counts at the end of every 15K
instruction interval, choosing a configuration for the next
interval that would have minimized total access cost in the
interval just ended. The hardware components required to
perform this calculation are relatively modest. Based on
dedicated arithmetic circuits and binary addition trees, we
estimate a total of well under 5,000 gates.

3.2 Adaptive issue queues
A special property of the adaptive Accounting Cache de-

sign is that it avoids exploration of the configuration space
when determining the best configuration. This property is
also desirable for issue queue control. We introduce a new,
deterministic algorithm to measure the inherent ILP of the
currently running application, independent of microarchitec-
tural features. The queue control algorithm uses this figure
to choose among the four possible queue sizes the one that
maximizes effective ILP, normalized to frequency.

A key observation is that the amount of inherent paral-
lelism in the instruction stream can be calculated by im-
mediate dependences of output registers on input registers.
The earliest a result can be ready is the latest time of any of
its input operands plus the latency of the operation. For this
discussion let us assume that all ALU operations have a one
cycle latency. As instructions are fetched, their source reg-
isters are renamed via the register rename mapping table.
With tracking hardware initially reset, all input operands

for the first instruction will have timestamps of zero and
the destination register will receive a timestamp of ’1’. If
the next instruction uses that destination register as an in-
put then its own destination register will be updated with a
timestamp of ’2’, and so on. The maximum timestamp M
is continuously recorded during this process.

Tracking continues until N instructions have been fetched,
where N represents the queue size of 16, 32, 48, or 64. At
that time an estimate of the application’s ILP is N

MN
. Of

course, the division is not actually performed because the
numerator is a fixed quantity and the denominators can be
compared directly in integer form. When all four estimates
have been computed, the control algorithm scales them by
the corresponding frequencies and compares them to deter-
mine which queue size would have led, in the very recent
past, to the highest effective ILP. Dedicated hardware op-
timized for this task is modest.

The majority of the hardware is in extra storage to hold
the timestamps: four bits per register to track the ILP for
the 16 entry queue (ILP16), five bits for ILP32, and six bits
each for ILP48 and ILP64. The tracking intermingles inte-
ger and floating point operations, keeping a count of each.
A tracking interval ends when either count, NINT or NFP ,
reaches N . This operation correctly stifles consideration of
larger queue sizes that can never be filled for the less domi-
nant instruction type because of resource limitations for the
dominant instruction type. With 32 logical integer and 32
logical floating point registers, ILP tracking requires an ad-
ditional 256 bits for ILP16 and 384 bits for ILP64. In our
experiments we track the ILP for all queues depths simulta-
neously, and consider the possibility of resizing as soon as all
four counts are available. Alternatively, one could use one
set of hardware counters and calculate the four ILP values
serially by cycling through the values of N . Counters are
reset at the end of each tracking interval.

4. METHODOLOGY
Our simulation environment is based on the SimpleScalar

toolset [4] with MCD processor extensions. These exten-
sions include modifications to model an aggressive super-
scalar processor, e.g., the Register Update Unit (RUU) has
been split into separate reorder buffer (ROB), issue queue,
and physical register file structures. They also include a
heavy re-write of the time management code to emulate sep-
arate clocks for each domain, complete with jitter, and to
account for synchronization delays on all cross-domain com-
munication. Table 3 contains a summary of the simulation
parameters. These have been chosen, in general, to match
the characteristics of the Alpha 21264. Much more detail on
the MCD extensions can be found in prior papers [25, 26].

We employ a total of 32 benchmark applications: adpcm,
epic, jpeg, g721, gsm, ghostscript, mesa, and mpeg2 from
the MediaBench suite; bh, bisort, em3d, health, mst, pe-
rimeter, power, treeadd, and tsp from the Olden suite;
bzip2, crafty, eon, gcc, gzip, parser, twolf, vortex, and
vpr, from SPECint2000; and apsi, art, equake, galgel,
mesa, and wupwise from SPECfp2000. We run the full appli-
cation for bisort, treeadd, and all of the MediaBench appli-
cations other than ghostscript; the others use instruction
windows ranging from 47M-200M instructions. Standard
reference inputs were used wherever possible.

The evaluation of the adaptive MCD processor is per-
formed by comparing the relative performance (program

Table 3: Architectural parameters for simulated
processor.

Fetch queue: 16 entries
Branch mispredict penalty: 9 front-end + 7 integer cycles

(10 + 9 for adaptive MCD)
Decode, issue, and retire widths: 8, 6, and 11 instructions
L1 cache latency (I and D): 2/8, 2/5, 2/2, or 2/– cycles,

for A and (optionally) B partitions
L2 cache latency: 12/43, 12/27, 12/12, or 12/– cycles
Memory latency: 80 ns (1st access), 2 ns (subsequent)
Integer ALUs: 4 + 1 mult/div unit
FP ALUs: 4 + 1 mult/div/sqrt unit
Load/store queue: 64 entries
Physical register file: 96 integer, 96 FP
Reorder buffer: 256 entries

execution time) of the best configuration for each applica-
tion against the fully synchronous processor that provides
the best overall performance for our application suite. To
find this “best overall” machine we explored a very wide
design space: the cross-product of 4 integer issue queue
sizes, 4 floating-point issue queue sizes, 4 data /L2 cache
organizations, and 16 instruction cache / branch predictor
organizations—a total of 1,024 options. (With 32 applica-
tions, this portion of our work alone consumed 160 CPU
months of simulation time.) The sweep of i-cache configu-
rations in particular ranged from 4KB to 64KB and 1, 2, 3,
and 4-way associativity, including many (higher frequency)
options not available in the adaptive MCD architecture. The
overall best fully synchronous configuration for this suite of
benchmarks has a 16-entry integer issue queue, a 16-entry
floating-point issue queue, a 64KB direct-mapped instruc-
tion cache with a 16-bit gshare branch predictor, and a
32KB direct-mapped L1 data cache / 256KB direct-mapped
L2 cache. The 64 KB direct-mapped instruction cache is
27% faster than the same capacity in the adaptive MCD de-
sign, and the misprediction penalty is substantially lower.
The data cache is the smallest and fastest configuration.

5. RESULTS
Shown in Figure 5 is the relative improvement in run

time of the Program-Adaptive and Phase-Adaptive MCD
processors over the best-overall fully synchronous proces-
sor. Program-Adaptive configurations are chosen by per-
application exhaustive testing across all possible adaptive
MCD configurations. Phase-Adaptive results employ the
control algorithms described in Section 3. Many applica-
tions achieve a significant performance improvement with
the adaptive MCD processor: for gcc the Program-Adaptive
and Phase-Adaptive processors outperform the fully syn-
chronous processor by 42% and 45%, respectively. For em3d
the corresponding numbers are 45% and 49%.

When running in Program-Adaptive mode, 85% of our
applications use the smallest available integer issue queue.
73% use the smallest floating-point issue queue. 50% use
the smallest pair of data caches. 55% use the smallest I-
cache. At the same time, there are applications that bene-
fit from larger / slower configurations. Often one structure
dominates performance. Gsm encode and decode, for exam-
ple, have similar performance for all configurations with a
64KB 4-Way instruction cache. While the very best results
are achieved in conjunction with the smallest / fastest in-

ad
pc

m
 e

nc
od

e
ad

pc
m

 d
ec

od
e

ep
ic

 e
nc

od
e

ep
ic

 d
ec

od
e

jp
eg

 c
om

pr
es

s
jp

eg
 d

ec
om

pr
es

s
g7

21
 e

nc
od

e
g7

21
 d

ec
od

e
gs

m
 e

nc
od

e
gs

m
 d

ec
od

e
gh

os
ts

cr
ip

t
m

es
a

m
ip

m
ap

m
es

a
os

de
m

o
m

es
a

te
xg

en
m

pe
g2

 e
nc

od
e

m
pe

g2
 d

ec
od

e bh
bi

so
rt

em
3d

he
al

th
m

st
pe

rim
et

er
po

w
er

tr
ee

ad
d

ts
p

ap
si ar
t

bz
ip

2
cr

af
ty

eo
n

eq
ua

ke
ga

lg
el

gc
c

gz
ip

m
es

a
pa

rs
er

tw
ol

f
vo

rt
ex vp

r
w

up
w

is
e-10%

0%

10%

20%

30%

40%

50%

Program-Adaptive Phase-Adaptive

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

Figure 5: Performance improvement of Program- and Phase-adaptive MCD over fully synchronous.

teger and load / store structures, the differences are minor.
Ghostscript, similarly, performs well whenever the instruc-
tion cache is larger than 32KB; additional increases yield
only marginal improvements.

The bias toward the smallest configuration is due to a
number of applications having small computation kernels,
high instruction level parallelism, and small data sets; e.g.,
adpcm encode, adpcm decode, bzip2, and mpeg2 encode.
For these applications the smaller configuration supplies suf-
ficient capacity for efficient processing; thus, they opt for
this configuration due to its higher clock frequency. On the
other hand, memory intensive applications such as em3d per-
form best with larger / slower structures that significantly
reduce the number of cache misses and avoid the associated
long latencies.

There are also applications for which Program-Adaptive
MCD performs worse than the fully synchronous processor
(jpeg decompress 2.7%, gsm encode 0.1%, ghostscript

1.8%, mesa mipmap 4.9%, apsi 1.9%, bzip2 4.8% and vpr

6.6%). The most common source of trouble is an inability to
deliver instructions to the execution units fast enough. This
in turn stems from the inability to upsize the I-cache without
increasing its associativity, which exacts a significant cost in
clock rate. For applications that need the larger capacity
(but not the increased associativity) there is no way to gain
back the performance lost due to the decrease in frequency.
For all other applications, the Program-Adaptive MCD im-
proves performance relative to the fully synchronous pro-
cessor, and in many cases it is a significant improvement

(adpcm decode 30.5%, em3d 48.7%, mst 43.3%, art 32.2%,
gcc 41.4% and vortex 33.1%). Overall, a 17.6% perfor-
mance improvement is achieved.

5.1 Program- vs Phase-Adaptive
In general, Phase-Adaptive outperforms Program-Adap-

tive. There are no applications in our suite for which the
performance of the Phase-Adaptive MCD is lower than that
of the fully synchronous processor, and the overall perfor-
mance improvement increases to 20.4%. In several appli-
cations the improvement is significant: apsi, epic encode,
ghostscript, crafty, eon, mesa, parser, twolf, and vortex.

A special discussion of the instruction cache is warranted
here. All instruction cache configurations are useful for im-
proving performance in the Program-Adaptive results, with
nearly half (45%) of the applications configured with an
instruction cache other than the smallest. In the Phase-
Adaptive case, by contrast, only the smallest instruction
cache configuration is used, yet the overall performance is
better than that of Program-Adaptive. It turns out that
adapting at phase changes improves throughput enough to
cause the processor to speculate through more branches.
This results in a larger number of mispredictions (though
not necessarily a higher misprediction rate) and more over-
head due to pipeline flushes. A smaller, faster instruction
cache reduces refill overhead by responding faster, thereby
increasing overall performance.

Faster pipeline refill is also why the best instruction cache
for the fully synchronous processor is one that is both fast

and large, at 64 KB direct-mapped. The frequency degra-
dation in the adaptive MCD design to go to a larger in-
struction cache which is set-associative outweighs the per-
formance benefits for these applications. This suggests, as
a topic for future work, that an adaptive instruction cache
design that resizes by sets rather than ways [23] might be
able to gain additional performance benefits.

There are a few notable cases where Phase-Adaptive does
not perform as well as Program-Adaptive. One such appli-
cation is adpcm decode. The cause is the code kernel in the
adpcm decoder() function, which contains a series of data-
dependent branches that are difficult to predict. The dy-
namic cache controller speeds up processing by configuring
the data caches to their minimal and fastest sizing. The con-
figuration is the proper configuration relative to the cache
domain behavior. This results in a high rate of process-
ing and causes more branches to be speculated, often incor-
rectly. By running with a larger cache the best synchronous
design processes instructions more slowly and suffers fewer
mispredictions, resulting in a dramatic decrease in pipeline
flushes and significantly better performance. This advantage
over the Phase-Adaptive case disappears if the problematic
branches are replaced with predicated instructions.

Phase-Adaptive mode is less effective with the applica-
tion mst because of periodic short bursts of cache conflicts
in the A partition. The cache controller responds by in-
creasing the associativity from direct-mapped to 2-way in
order to avoid the costly B partition accesses. However, the
change occurs in the next interval, after the burst, and the
cache configuration ends up flipping back to direct-mapped.
This pattern repeats, resulting in a slowdown compared to
Program-Adaptive mode.

In summary, the adaptive MCD approach is able to ex-
ploit the needs of individual applications better than a glob-
ally constrained, fully synchronous processor. The Program-
Adaptive MCD processor achieves a performance improve-
ment of 17.6% over the best performing fully synchronous
processor. Allowing the MCD processor to adapt to applica-
tion phases further improves performance to 20.4% over the
fully synchronous processor and, more significantly, Phase-
Adaptive achieves this improvement without the application
profiling of Program-Adaptive mode.

6. RELATED WORK
Several manufacturers, notably Intel [16] and Transmeta

[12], have processors capable of global frequency and voltage
scaling. Global control works well for saving energy in appli-
cations with real-time constraints for which the processor as
a whole is over-designed [14, 18]. The goal is to save energy
with minimum performance loss. In [1], Albonesi proposes
a complexity adaptive processor that adjusts structure ca-
pacity while varying global clock frequency and/or access
latencies (cycles) for performance optimization.

Childers et al. [6] propose trading IPC for clock frequency
to save energy. The underlying assumption is that lowering
the clock frequency will degrade performance. The user is
allowed to select the level of performance degradation to be
tolerated. This assumption is correct with a global clock,
but in a GALS architecture with decoupled clock domains,
decreasing the frequency can give higher performance if re-
sources are scaled up accordingly. Multiple clock domain
architectures [3, 15, 25] extend the work of Childers et al. by
permitting the frequency of each domain to be set indepen-

dently of the others. Semeraro et al. [25] adjust frequencies
automatically at run time to reduce energy in domains that
are not on the critical path of the instruction stream.

Powell et al. [23] describe a variable latency data cache.
By predicting which way in a set associative cache holds
the requested data, an access can be as fast as in a direct-
mapped cache. Misprediction forces an additional access.
Balasubramonian et al. [2] describe a reconfigurable data
cache hierarchy whose access time adjusts with the configu-
ration. They assume a globally synchronous processor. We
extend this work by decoupling the clock domains and ad-
justing the data cache hierarchy, instruction cache, branch
predictor, and integer and floating-point issue queues.

Reconfigurable issue queues [5, 9, 11, 22] have also been
used to reduce energy. Results indicate that applications
vary greatly in their resource requirements. The work of
Dropsho et al. [9] includes the instruction, data, and L2
caches; issue queues; ROB; and register files. While the
focus is energy efficiency, the results demonstrate that ap-
plication resource requirements vary across these structures.
Detailed timing of issue queues as it relates to queue size is
explored Buyuktosunoglu et al. [5] and Palacharla et al. [21].

Sasanka et al. [24] explore the combination of hardware
adaptation (of issue queue size and issue width) and global-
chip dynamic voltage scaling for multimedia applications.
The goal is to meet frame rate processing requirements while
minimizing energy dissipation. Our approach, by contrast,
improves performance through adaptation and fine-grain dy-
namic frequency scaling. We argue that to achieve appre-
ciable speedups, fine-grain dynamic frequency scaling us-
ing a GALS approach is necessary to limit the frequency
effect of upsizing a structure to the local unit level. As
we demonstrated in our early work [1], dynamically trad-
ing off frequency for complexity in a conventional, single
clock, design benefits only those applications with a severe
performance bottleneck. This paper demonstrates how the
adaptive MCD microarchitecture yields significant speedups
across a broad range of applications.

7. CONCLUSIONS
General-purpose processors are designed for good perfor-

mance across a range of applications. The resulting design
point is by necessity a compromise, since applications ex-
ercise the microarchitecture resources in widely varying de-
grees. The adaptive MCD architecture offers designers ad-
ditional dimensions in which the microarchitecture can be
optimized to further improve performance. By separating
major functionality into separate clock domains, clock rate
and complexity tradeoffs can be made independently in each
domain. By making the dominant structures in each domain
adaptive, these tradeoffs can be made dynamically for each
application or application phase.

We demonstrate that an adaptive MCD architecture pro-
vides outperforms any fixed, fully synchronous design. When
adapting once per application, the average advantage for our
suite of 32 standard benchmarks is 17.6%. When adapting
automatically in response to program phases, the advantage
is 20.4%, despite the branch delay and frequency penalties
inherent in adaptability. In future work we plan to explore
a wider range of adaptive structures, examine the effects of
branch predictor resizing in more detail, and consider resiz-
ing the instruction cache by sets instead of (or in addition)
to ways.

8. REFERENCES

[1] D. H. Albonesi. Dynamic IPC/clock rate optimization.
In 25th Intl. Symp. on Computer Architecture, June
1998.

[2] R. Balasubramonian, D. H. Albonesi,
A. Buyuktosunoglu, and S. Dwarkadas. Memory
Hierarchy Reconfiguration for Energy and
Performance in General-Purpose Processor
Architectures. In 33rd Intl. Symp. on
Microarchitecture, Dec. 2000.

[3] L. Bengtsson and B. Svensson. A Globally
Asynchronous, Locally Synchronous SIMD Processor.
In 3rd Intl. Conf. on Massively Parallel Computing
Systems, Apr. 1998.

[4] D. Burger and T. Austin. The Simplescalar Tool Set,
Version 2.0. Technical Report CS-TR-97-1342, U.
Wisc.–Madison, June 1997.

[5] A. Buyuktosunoglu, D. H. Albonesi, S. Schuster,
D. Brooks, P. Bose, and P. Cook. A Circuit Level
Implementation of an Adaptive Issue Queue for
Power-Aware Microprocessors. In 11th Great Lakes
Symp. on VLSI, Mar. 2001.

[6] B. R. Childers, H. Tang, and R. Melhem. Adapting
Processor Supply Voltage to Instruction-Level
Parallelism. In Kool Chips Workshop, Dec. 2000.

[7] L. T. Clark. Circuit Design of XScaleTM

Microprocessors. In 2001 Symposium on VLSI
Circuits, Short Course on Physical Design for
Low-Power and High-Performance Microprocessor
Circuits, June 2001.

[8] A. S. Dhodapkar and J. E. Smith. Managing
Multi-Configuration Hardware via Dynamic Working
Set Analysis. In 29th Intl. Symp. on Computer
Architecture, May 2002.

[9] S. Dropsho, A. Buyuktosunoglu, R. Balasubramonian,
D. H. Albonesi, S. Dwarkadas, G. Semeraro,
G. Magklis, and M. Scott. Integrating Adaptive
On-Chip Storage Structures for Reduced Dynamic
Power. In 11th Intl. Conf. on Parallel Architectures
and Compilation Techniques, Sept. 2002.

[10] M. Fleischmann. LongRunTM Power Management.
Technical report, Transmeta Corporation, Jan. 2001.

[11] D. Folegnani and A. Gonzalez. Energy-Efficient Issue
Logic. In 28th Intl. Symp. on Computer Architecture,
June 2001.

[12] T. R. Halfhill. Transmeta breaks x86 low-power
barrier. Microprocessor Report, 14(2), Feb. 2000.

[13] A. Hartstein and T. R. Puzak. The Optimum Pipeline
Depth for a Microprocessor. In 29th Intl. Symp. on
Computer Architecture, May 2002.

[14] C.-H. Hsu, U. Kremer, and M. Hsiao.
Compiler-Directed Dynamic Frequency and Voltage
Scaling. In Workshop on Power-Aware Computer
Systems, Nov. 2000.

[15] A. Iyer and D. Marculescu. Power and Performance
Evaluation of Globally Asynchronous Locally
Synchronous Processors. In 29th Intl. Symp. on
Computer Architecture, May 2002.

[16] S. Leibson. XScale (StrongArm-2) Muscles In.
Microprocessor Report, 14(9), Sept. 2000.

[17] G. Magklis, M. L. Scott, G. Semeraro, D. H. Albonesi,

and S. G. Dropsho. Profile-based Dynamic Voltage
and Frequency Scaling for a Multiple Clock Domain
Microprocessor. In 30th Intl. Symp. on Computer
Architecture, June 2003.

[18] D. Marculescu. On the Use of
Microarchitecture-Driven Dynamic Voltage Scaling. In
Workshop on Complexity-Effective Design, June 2000.

[19] V. Milutinovic, D. Fura, and W. Helbig. Pipeline
design tradeoffs in a 32-bit Gallium Arsenide
microprocessor. IEEE Trans. on Computers, 40(11),
Nov. 1991.

[20] J. Muttersbach, T. Villager, H. Kaeslin, N. Felber,
and W. Fichtner. Globally-Asynchronous
Locally-Synchronous Architectures to Simplify the
Design of On-Chip Systems. In 12th IEEE Intl.
ASIC/SOC Conf., Sept. 1999.

[21] S. Palacharla, N. Jouppi, and J. Smith. Quantifying
the complexity of superscalar processors. Technical
Report TR-96-1328, U. Wisc.–Madison, Nov. 1996.

[22] D. Ponomarev, G. Kucuk, and K. Ghose. Reducing
Power Requirements of Instruction Scheduling
Through Dynamic Allocation of Multiple Datapath
Resources. In 34th Intl. Symp. on Microarchitecture,
Dec. 2001.

[23] M. Powell, A. Agrawal, T. N. Vijaykumar, B. Falsafi,
and K. Roy. Reducing set-associative cache energy via
selective direct-mapping and way prediction. In 34th
Intl. Symp. on Microarchitecture, Dec. 2001.

[24] R. Sasanka, C. Hughes, and S. Adve. Joint Local and
Global Hardware Adaptations for Energy. In 10th
Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, Oct. 2002.

[25] G. Semeraro, D. H. Albonesi, S. G. Dropsho,
G. Magklis, S. Dwarkadas, and M. L. Scott. Dynamic
Frequency and Voltage Control for a Multiple Clock
Domain Microarchitecture. In 35th Intl. Symp. on
Microarchitecture, Nov. 2002.

[26] G. Semeraro, G. Magklis, R. Balasubramonian, D. H.
Albonesi, S. Dwarkadas, and M. L. Scott.
Energy-Efficient Processor Design Using Multiple
Clock Domains with Dynamic Voltage and Frequency
Scaling. In 8th Intl. Symp. on High-Performance
Computer Architecture, Feb. 2002.

[27] T. Sherwood and B. Calder. Time Varying Behavior
of Programs. Technical Report UCSD-CS99-630, U.
Cal. San Diego, Aug. 1999.

[28] E. Sprangle and D. Carmean. Increasing Processor
Performance by Implementing Deeper Pipelines. In
29th Intl. Symp. on Computer Architecture, May 2002.

[29] S. J. E. Wilton and N. P. Jouppi. CACTI: An
Enhanced Cache Access and Cycle Time Model. IEEE
J. of Solid-State Circuits, May 1996.

[30] B. Xu and D. Albonesi. Runtime reconfiguration
techniques for efficient general purpose computation.
IEEE Design and Test of Computers, Jan. 2000.

