SOSP '03 poster abstract

Energy Efficient Prefetching and Caching

Athanasios E. Papathanasiou and Michael L. Scott
University of Rochester
{papathan,scott} @cs.rochester.edu

http://www.cs.rochester.edu/~papathan/research/BurstyFS/

Prefetching and caching are standard practice in mod-
ern file systems. They serve to improve performance—to
increase throughput and decrease latency—by eliminating
as many I/O requests as possible, and by spreading the
requests that remain as smoothly as possible over time,
resulting in relatively short intervals of inactivity. This
strategy ignores the goal of energy efficiency so impor-
tant to mobile systems, and in fact can frustrate that goal.
Magnetic disks, network interfaces, and similar devices
provide low power modes that save energy only when idle
intervals are relatively long. A smooth access pattern can
eliminate opportunities to save energy even during such
light workloads as MPEG and MP3 playback.

The aim of our work is to create bursty access patterns
for devices with non-operational low power modes, in-
creasing the average length of idle intervals and maximiz-
ing utilization when the device is active. At present we
are focusing on hard disks. We have modified the memory
management and file systems of the Linux 2.4.20 kernel,
extending them with novel algorithms and data structures
to:

e Quickly identify the working set of the executing job
mix and dynamically control the amount of memory
used for aggressive prefetching and buffering of dirty
data.

e Coordinate the generation of I/O requests among
concurrently running applications, so that they are
serviced by the device during the same small win-
dow of time.

Our kernel extensions are “epoch” based. Each epoch
consists of two phases: a request generation phase and
an idle phase. During the request generation phase the
operating system attempts to load into memory all data
that will be accessed soon. It can afford in this attempt
to be highly aggressive: the energy saved by ‘“spinning
down” a typical laptop disk is large enough to justify
fetching a substantial amount of data “just in case”. To
reduce the chance that something important is missed,
prefetching accuracy is improved through the use of hints.
Newly written applications can provide these hints explic-

100
80 5
&
S 60 |
z
wn
mo40 |
15}
(=)
m 20
0t
50 100 150 200 250 300 350 400 450 500

Total Memory (MB)

Bursty-MPEG ——
Bursty-Combined —<—

Linux-MPEG +
Linux-Combined x

Figure 1: Disk energy savings as a function of total mem-
ory size. An 8-fold increase in memory size leads to less
than 3% energy savings under standard Linux.

itly. Older applications are supported by a monitoring sys-
tem that predicts future accesses based on past behavior.

To coordinate prefetching requests across all running
applications we introduce a centralized prefetch daemon
that is responsible for generating prefetching requests for
all running applications. During the idle phase the dae-
mon monitors the progress of each application and the
status of the file system cache. It predicts the time of the
next request and, if that request is far enough in the future,
moves the device to a low power mode.

To evaluate our system we use applications with exe-
cution times longer than one minute that generate a sig-
nificant amount of file system activity. Such applica-
tions include MPEG and MP3 playback and encoding,
data transfer operations (copying), and large-scale compi-
lations. Figure 1 compares the disk energy savings of our
Bursty policy to that of the standard Linux kernel as total
system memory increases. Results are shown for two ex-
perimental workloads, MPEG playback (MPEG) and con-
current execution of MPEG playback and MP3 encoding
(Combined). The full poster will include similar results
for both clean and incremental rebuilds of the Linux ker-
nel itself.


mls
SOSP '03 poster abstract




