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ABSTRACT
InterWeave is a distributed middleware system that supports the
sharing of strongly typed, pointer-rich data structures across a wide
variety of hardware architectures, operating systems, and program-
ming languages. As a complement to RPC/RMI, InterWeave fa-
cilitates the rapid development of maintainable code by allowing
processes to access shared data using ordinary reads and writes.

Internally, InterWeave employs a variety of aggressive optimiza-
tions to obtain significant performance improvements with minimal
programmer effort. In this paper, we focus on application-specific
optimizations that exploit dynamic high-level information about an
application’s spatial data access patterns and the stringency of its
coherence requirements. Using applications drawn from computer
vision, datamining, and web proxy caching, we illustrate the spec-
ification of coherence requirements based on the (temporal) con-
cept of “recent enough” to use, and introduce two (spatial) notions
of views, which allow a program to limit coherence management
to the portion of a data structure actively in use. Experiments with
these applications show that InterWeave can reduce their communi-
cation traffic by up to one order of magnitude with minimum effort
on the part of the application programmer.

1. INTRODUCTION
As the Internet becomes increasingly central to modern com-

puting, more and more applications are taking advantage of re-
sources at distributed sites. Example problem domains include
e-commerce, computer-supported collaborative work, multi-player
games, intelligent environments, interactive data mining, and re-
mote visualization and steering of real or simulated systems. Con-
ceptually, most applications in these domains involve some sort of
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distributed shared state: information that has relatively static struc-
ture but mutable content, and that is needed at more than one site.
To allow applications to work efficiently across high-latency, low-
bandwidth links, programmers typically attempt to increase the lo-
cality of shared state through ad-hoc, application-specific caching
or replication protocols built on top of RPC-based systems such as
Sun RPC, Java RMI, CORBA, and .NET.

Software distributed shared memory (S-DSM) systems such as
TreadMarks [3] and Cashmere [39] automate the management of
shared state for local-area clusters, but they do not extend in any
obvious way to geographic distribution. As a general rule, they
assume that sharing processes are part of a single parallel program,
running on homogeneous hardware, with communication latencies
and bandwidths typical of modern local- or system-area networks,
and with data lifetimes limited to that of the running program.

Our recent InterWeave system [12, 41], by contrast, caters ex-
plicitly to the needs of distributed applications. It provides pro-
grams with a global, persistent store that can be accessed with or-
dinary reads and writes, regardless of the machine architectures or
programming languages used. As a complement to RPC, Inter-
Weave serves to (1) eliminate hand-written code that maintains the
coherence and consistency of cached data; (2) support genuine ref-
erence parameters in RPC calls, eliminating the need for overly
conservative deep-copy parameters or, in many cases, for callback
invocations; and (3) reduce the number of “trivial” invocations used
simply to put or get data.

Unfortunately, the convenience of a global store introduces sig-
nificant performance challenges. S-DSM systems work well when
the temporal and spatial sharing granularity managed by the run-
time matches the access pattern of the application. Without such
careful matching, significant overhead may be incurred to maintain
data that are not actually shared at present or, worse yet, that are
falsely shared, e.g. as an artifact of co-location in the same page of
virtual memory. This overhead is a serious problem for system-area
S-DSM systems. It would be fatal for wide-area sharing.

Building on prior work in S-DSM, several recent projects have
proposed mechanisms to reduce the cost of coherence. RTL [7] and
InterWeave allow applications to share memory at the granularity
of application-defined regions. Object View [28] allows program-
mers to give hints to a compiler to specify how threads use objects.
The compiler then constructs caching protocols customized to ap-
plication requirements. TACT [44] and InterWeave allow program-
mers to exploit the typically more relaxed coherence requirements
of Internet applications using tunable coherence models.

A common theme in these systems is the desire for program-
mers to deal with coherence in high-level terms, allowing them to
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Figure 1: Three cameras monitor the same environment and
cooperatively discover four objects by sharing relevant portions
of their image cubes.

obtain application-specific performance optimizations without get-
ting bogged down in the details of exactly which data are needed at
particular nodes at particular points in time. We elaborate on this
theme in this paper, considering high-level specifications of both
the temporal (when must updates occur?) and spatial (which data
must be updated?) aspects of coherence. As described in previous
papers [12], we capture the temporal aspect of coherence by allow-
ing a program to specify a predicate that determines when cached
data is “recent enough” to use. For the spatial aspect of coherence
(not covered in previous papers), we allow a program to specify a
“view” of a shared segment that eliminates coherence management
for inactive data. We consider views of both monolithic (array-
based) and pointer-based data structures.

We make two key contributions to the high-level specification of
coherence requirements. First, we show how highly relaxed coher-
ence can be provided for a programming model based on ordinary
reads and writes, despite the complications of heterogeneous lan-
guages and machine architectures. Second, we allow programs to
adjust their spatial and temporal coherence requirements dynami-
cally, to keep pace with changing needs. Neither language hetero-
geneity nor dynamic adaptation appears to be possible in compiler-
based systems such as Object View.

To illustrate the need for dynamic adaptation of coherence re-
quirements, consider an intelligent environment application, cur-
rently under development in our department [35, 34]. Cameras
mounted throughout an office space monitor a common area from
several vantage points. The cameras work cooperatively to dis-
cover objects by detecting events that are simultaneously observed

by multiple cameras. Figure 1 gives an example of discovering ob-
jects with three cameras. Each camera is served by a computing
node, and the nodes are connected by a local-area network. Each
node stores captured images locally as an image cube (X × Y × t)
and scans them for events of interest. For instance, a color change
in an image region may indicate a moving object.

When interpreting an event, a given node enhances its under-
standing of what occurred by scanning images captured by other
nodes. For non-critical tasks such as object tracking (e.g., where is
my coffee mug?), images from other nodes may be “recent enough”
to use even when they are seconds out of date. For more demanding
tasks (e.g. robotic manipulation), temporal coherence requirements
may become significantly tighter. Similarly, because events of in-
terest occur in subregions of images, it suffices to share only the
“interesting” image areas at any given time. While an entire im-
age may logically be shared, the actual sharing varies dynamically
according to the activity in the environment being observed.

The unit of sharing in InterWeave is a self-descriptive segment
(a heap) within which programs allocate strongly typed blocks of
memory. “Recent enough” predicates allow a program to control
the circumstances under which it will (need to) obtain updates to
a segment. Views allow the program to specify the portions of the
segment for which it will obtain those updates. Extensions to the
InterWeave API allow views to be changed by applications dynami-
cally. Sharers of a single segment can have different views. So long
as a program specifies its view correctly, it retains all of the advan-
tages of InterWeave: a shared memory programming model, true
reference parameters for RPC, relaxed coherence models (a speci-
fication of “recent enough”), two-way diffing to identify, transmit,
and update only the data that have changed, and transparent sup-
port for heterogeneous machines and languages. Our experience
with dynamic views and relaxed coherence models on a variety
of InterWeave applications indicates that programmers can provide
high-level coherence information with very modest effort, and that
InterWeave can in turn exploit this information to improve perfor-
mance by as much as an order of magnitude.

Previous papers have discussed multi-level sharing [12] and het-
erogeneity [41] in InterWeave. In the current work we focus on
exploiting application-level coherence information to optimize per-
formance. We begin in Section 2 with a review of the InterWeave
programming model and its implementation. We then describe the
design and implementation of dynamic views in Section 3. In Sec-
tion 4 we present performance results for three realistic applica-
tions: Internet proxy caching, intelligent environments, and inter-
active datamining. We discuss related work in more detail in Sec-
tion 5, and conclude in Section 6.

2. INTERWEAVE BACKGROUND
As a prelude to the description of views in Section 3 and to the

evaluation of both relaxed coherence and views in Section 4, we
briefly review the design and implementation of InterWeave. A
more detailed description can be found in other papers [12, 41].

2.1 Design of InterWeave
The InterWeave programming model assumes a distributed col-

lection of servers and clients. Servers maintain persistent copies of
shared data, and coordinate sharing among clients. Clients in turn
must be linked with a special InterWeave library, which arranges to
map a cached copy of needed data into local memory, and to update
that copy when appropriate. In keeping with wide-area distribution,
InterWeave allows processes to be written in multiple languages
and to run on heterogeneous machine architectures, while sharing
arbitrary typed data structures as if they resided in local memory.



In C, operations on shared data, including pointers, take precisely
the same form as operations on non-shared data.

Servers may be replicated to improve availability and reliabil-
ity. Data coherence among replicated servers is based on group
communication [25]. A detailed discussion of server replication is
beyond the scope of this paper.

2.1.1 Shared Data Allocation and Access
The unit of sharing in InterWeave is a self-descriptive data seg-

ment (a heap) within which programs allocate strongly typed blocks
of memory. Every segment is specified by an Internet URL. The
blocks within a segment are numbered and optionally named. By
concatenating the segment URL with a block name or number and
optional offset (delimited by pound signs), we obtain a machine-
independent pointer (MIP): “foo.org/path#block#offset”.
To accommodate heterogeneous data formats, offsets are measured
in primitive data units—characters, integers, floats, etc.—rather than
in bytes.

Every segment is managed by an InterWeave server at the IP
address corresponding to the segment’s URL. Different segments
may be managed by different servers. Assuming appropriate ac-
cess rights, the IW open segment() library call communicates
with the appropriate server to open an existing segment or to create
a new one if the segment does not yet exist. The call returns an
opaque handle that can be passed as the initial argument in calls to
IW malloc():

IW_handle_t h = IW_open_segment(url);
IW_wl_acquire(h); /* write lock */
my_type* p = IW_malloc(h, my_type_desc);
*p = ...
IW_wl_release(h);

InterWeave synchronization takes the form of reader-writer locks.
A process must hold a writer lock on a segment in order to allocate,
free, or modify blocks. The lock routines take a segment handle as
parameter.

As in multi-language RPC systems, the types of shared data
in InterWeave must be declared in an Interface Description Lan-
guage (IDL—currently Sun XDR). The InterWeave IDL compiler
translates these declarations into the appropriate programming lan-
guage(s) (C, C++, Java, Fortran). It also creates initialized type
descriptors that specify the layout of the types on the specified ma-
chine, and that allow the InterWeave library to translate data from
one form to another when communicating between machines with
different byte order, word length, alignment, or data representation.

InterWeave automatically translates and swizzles pointers inside
shared data segments. When necessary (e.g. to obtain an initial
pointer to a data structure using a MIP contained in a command-line
parameter), a process can also translate explicitly between MIPs
and local pointers using IW mip to ptr() or IW ptr to mip().

2.1.2 Coherence
As clients modify an InterWeave segment, the changes are cap-

tured in a series of internally consistent versions of the segment.
When a process first locks a shared segment (for either read or write
access), the InterWeave library obtains a copy from the segment’s
server. At each subsequent read-lock acquisition, the library checks
to see whether the local copy of the segment is “recent enough” to
use. If not, it obtains an update from the server. Twin and diff
operations [8], extended to accommodate heterogeneous data for-
mats, allow the implementation to perform an update (or to deliver
changes to the server at the time of a write lock release) in time
proportional to the fraction of the data that have changed.

InterWeave currently supports six different definitions of “recent
enough”. It is also designed in such a way that additional defini-
tions (coherence models) can easily be added. Among the current
models, Full coherence (the default) always obtains the most recent
version of the segment; Strict coherence obtains the most recent
version and excludes any concurrent writer; Null coherence always
accepts the currently cached version, if any (the process must ex-
plicitly override the model on an individual lock acquire in order
to obtain an update); Delta coherence [37] guarantees that the seg-
ment is no more than x versions out-of-date; Temporal coherence
guarantees that it is no more than x time units out of date; and Diff-
based coherence guarantees that no more than x% of the primitive
data elements in the segment are out of date. In all cases, x can be
specified dynamically by the process. All coherence models other
than Strict allow a process to hold a read lock on a segment even
when a writer is in the process of creating a new version.

2.2 Implementation of InterWeave
InterWeave currently consists of approximately 31,000 lines of

heavily commented C++ code. Both the client library and the server
have been ported to a variety of architectures (Alpha, Sparc, x86,
MIPS, and Power4), operating systems (Windows NT/2000/XP,
Linux, Solaris, Tru64 Unix, IRIX, and AIX), and languages (C,
C++, Fortran 77/90, and Java).

Our experiences with InterWeave have shown that it is scalable
with respect to the number of clients [12] and that its performance
is comparable to that of RPC parameter passing when transmitting
previously uncached data [41]. When updating previously cached
data, InterWeave’s use of platform-independent diffs allows it to
significantly outperform the straightforward use of RPC.

2.2.1 Client Library Implementation
When a process acquires a writer lock on a given segment, the

InterWeave library asks the operating system to disable write access
to the pages that comprise the local copy of the segment. When a
write fault occurs, the SIGSEGV signal handler, installed by the
InterWeave library at program startup time, creates a pristine copy,
or twin [8], of the page in which the write fault occurred. It saves a
pointer to that twin for future reference, and then asks the operating
system to re-enable write access to the page.

When a process releases a writer lock, the library gathers local
changes and converts them into machine-independent wire format
in a process called diff collection. It then sends this diff back to the
server. When a client acquires a reader lock and determines that its
local cached copy of the segment is not recent enough to use under
the desired coherence model, the client asks the server to build a
diff that describes the data that have changed between the current
local copy at the client and the master copy at the server. When the
diff arrives, the library uses it to update the local copy in a process
called diff application.

2.2.2 Server Implementation
Each server maintains an up-to-date copy of each of the segments

for which it is responsible, and controls access to those segments.
To avoid an extra level of translation, the server stores both data
and type descriptors in wire format. For each segment, the server
keeps track of blocks and subblocks. Each subblock comprises a
small contiguous group of primitive data elements from the same
block. For each modest-sized block and each subblock of a larger
block, the server remembers the version number of the segment
in which the content of the block or subblock was most recently
modified. This convention strikes a compromise between the size
of server-to-client diffs and the size of server-maintained metadata.



Upon receiving a diff from a client, an InterWeave server uses
the diff to update its master copy. It also updates the version num-
bers associated with blocks and subblocks affected by the diff. At
the time of a lock acquire, if the client’s cached copy is not recent
enough to use, the client sends the server the (out-of-date) version
number of the local copy. The server then identifies the blocks and
subblocks that have changed since the last update to this client by
comparing their version numbers with the client-presented version
number, constructs a wire-format diff, and returns it to the client.

Supporting relaxed coherence models, in particular, delta coher-
ence, is relatively easy with the help of the segment version num-
bers maintained by both the client and the server—it involves a
simple comparison of version numbers at the server. Temporal co-
herence is almost as easy: clients support it by maintaining a real-
time stamp for each locally cached segment and request an update
when the difference between current time and the time stamp ex-
ceeds the coherence parameter. Diff coherence, by contrast, is a bit
more complicated. For any client using Diff coherence, the server
must be able to track the percentage of the segment that has been
modified since the last version sent to the client. To minimize the
cost of this tracking, the server conservatively assumes that all up-
dates in each version are to independent portions of the segment.
Thus, it suffices to keep track of the size of the diff for each ver-
sion. By adding up the sizes for all versions newer than the last
version seen by the client, the server can determine whether the
client’s diff coherence parameter has been exceeded and whether
an update is necessary.

A variety of optimizations improve performance in common cases.
A client that has the only cached copy of a segment will enter exclu-
sive mode, in which it can acquire and release locks (both read and
write) an arbitrary number of times, with no communication with
the server. A segment that is usually modified in its entirety will en-
ter no-diff mode, eliminating the need for write faults, twins, and
diffs. Depending on the frequency of updates, a client/server pair
will choose dynamically between polling mode, in which the client
queries the server when it needs to evaluate its “recent enough”
predicate, and notification mode, in which the server pushes this
data to the client proactively. The utility of the notification mode is
also a function of the number of clients, since the server needs to
keep track of per-client coherence requirements. These and other
optimizations are documented elsewhere [12, 41].

3. INTERWEAVE VIEWS
Views allow an InterWeave client to specify the portion of a seg-

ment in which it is currently interested, thereby relieving the under-
lying system from the need to maintain coherence for the rest of the
segment. A view is constructed dynamically and can evolve over
time. Sharers of a single segment can have different views. Where
coherence models (Full, Temporal, Delta, etc.) address the tem-
poral dimension of application-level coherence information, views
address the spatial dimension. As with relaxed coherence models,
it is the programmer’s responsibility to define views correctly and
to touch only the data covered by the current view.

3.1 InterWeave View Design
Each InterWeave view is explicitly associated with a segment

and may contain an arbitrary number of view units. Each view unit
is a contiguous portion of a block. The view may be specified by
a pair of MIPs that refer to its start and end, respectively, or by
equivalent local pointers, if the segment is locally cached.

A process can create an empty view given a segment handle:

IW_view_t v = IW_create_view(h);

Once a view has been created the process that created it can aug-
ment the view by attaching more view units:

IW_mip_t start, end;
bool recursive;
IW_attach_view_unit(v, start, end, recursive);

It can also correspondingly detach view units using IW detach
view unit().

The recursive parameter indicates whether or not the view
unit should be recursively expanded. If the recursive flag is set,
the runtime includes in the view all other data that are reachable by
following intra-segment pointers that originate inside the view unit.
(Data reachable by following a pointer chain out of the segment
and back in again will not be included.) Each contiguous region of
additional data becomes an additional (implicitly specified) view
unit in the view.

A view unit can be part of an array or multiple contiguous fields
of a structure. We provide an API for convenient creation of fre-
quently used view structures, such as slices of multi-dimensional
arrays. Such structures comprise multiple view units, and can be
attached to a view as a group. Recursive views are especially con-
venient for pointer-rich dynamic data structures, such as the subtree
rooted at a given node or a linked list starting from a header node.

After view units have been attached to a view, the view can be ac-
tivated for use by a call to IW activate view(), which trans-
mits the view definition to the InterWeave server. At any given
time, a single process can have at most one active view on a given
segment. Once a process activates a view, future lock acquisitions
will maintain coherence only for the portion of the segment cov-
ered by the view. As pointers inside a recursive view change, the
view will be updated automatically by the runtime. New view units,
whether recursively reachable or explicitly attached, will become
effective (i.e., actually cached) at the time of the next lock acquire.
A view remains in effect until it is disabled using IW deacti-
vate view(). A view that is no longer needed can be destroyed
using IW delete view().

3.2 InterWeave View Implementation
The current InterWeave implementation is highly optimized for

efficient data sharing in heterogeneous environments [41]. It em-
ploys sophisticated data structures to manage segment memory on
both clients and servers, to track versions of segments, blocks, and
subblocks, to swizzle pointers, and to generate wire-format diffs. In
adding views to the system, we have tried to minimize the impact
on performance when views are not being used. Only one minor
change was required to the wire format itself (see Section 3.2.3).

The view implementation adds 2,500 lines of code to InterWeave.
This code serves to maintain view descriptions at both client and
server, and to generate view-specific diffs when a client must be
updated. We elaborate on these points in the following subsections.

3.2.1 Client Side View Management
Within the client library, a view is represented by a hash table

indexed by block serial number. Each entry in the table contains
a list of the view units contained in a given block, together with
their primitive offset ranges. When IW attach view unit()
is invoked, the runtime translates the start and end pointers of
the view unit into a block serial number and a primitive offset range
within the block, and updates the view’s hash table accordingly.

To track updates to views, both the view itself and each of its
view entries has a version number. When the process calls IW ac-
tivate view() and then attempts to lock the segment, the run-
time passes the hash table entries to the server. If view units are



subsequently added to or deleted from the view, the client passes a
list of these changes to the server the next time it acquires the lock.

So long as a client process keeps its promise to touch only the
data covered by its view, the existing modification detection and
wire format translation routines in InterWeave correctly collect any
changes made by the client, and pass them to the server.

3.2.2 Server Side View Management
When a server receives a view definition from a client, it creates

its own hash table, indexed by block serial number, to store the list
of view units. For each large block in the table it also stores a bit
vector indicating which subblocks are in the view.

For recursive view units, the server traverses the segment meta-
data to determine the full extent (scope) of the view. The traversal is
driven by the type descriptors already maintained for the segment.
For each view unit encountered, the server searches the type de-
scriptor of the block to find the locations of pointers. It then builds
a new view unit for each (strongly typed) pointed-to datum (not the
entire block containing the datum) and adds these view units to the
view. The traversal procedure stops when no more view units can
be added.

When a client informs the server that it has added or deleted view
units, the server updates its description of the view accordingly.
When a block is deleted from a segment (by any client), the server
automatically removes any view units contained in that block from
all known client views. (The server also informs each client of the
deleted block as part of the normal update mechanism when it next
updates the client’s cached version of the segment.)

With recursive view units, the scope of a view can change dy-
namically as pointers are reassigned. Before sending diffs to a
client, any view with recursive view units needs (at least conceptu-
ally) to be re-expanded by recursively following pointers. To avoid
this expensive operation, the server actually updates view scopes
lazily and conservatively. Assisted by block version numbers, the
server searches only subblocks that have changed since the last up-
date sent to the client. For each pointer in such subblock, the server
adds the pointed-to view unit into the view if it is not present yet.
To avoid accidentally dropping useful view units, the server conser-
vatively keeps the old pointed-to view unit in the view. With this
strategy, a client may receive some view units that should already
have been dropped. Although this is harmless semantically, it may
waste bandwidth. As a tradeoff, we set a threshold for the number
of changed versions. When the threshold is exceeded, the server
traverses all views and re-builds the view scopes.

3.2.3 Server Side Diff Collection
A server keeps the most recent version of the segments for which

it is responsible. For each modest-sized block in each segment, and
for each subblock of a larger block, the server remembers the ver-
sion number of the segment in which the content of the block or
subblock was most recently modified. Without views, the server
can compute diffs for a client using the version number of the seg-
ment cached at the client and the version number associated with
the server’s master copy. The server simply updates the client with
blocks or subblocks whose version is larger than the client’s ver-
sion. When views are in use, the process is similar except that
the server now must consider the blocks or subblocks covered by
the views and the version of these blocks or subblocks cached at
the client. In this case, a single version number for each client no
longer suffices.

Consider a client that activates a view of some segment S at ver-
sion V1 and obtains its first update at version V2. At this point the
data in the view have been updated to version V2, but the data out-

v10 blk#6, v5blk#1, v10

server’s master copy

blk#4, v8

blk#1, v9 blk#4, v8

blk#1 blk#6

view unit table view version table

wire−format diff for updating a client

blk#43 blk#19 blk#6

Figure 2: An InterWeave server collects a diff to update a client
with an active view. Here blk#4 and blk#6 were added to the
view after the last update to the client. blk#4 was once in the
view but was dropped after the client updated its version to v8.
Since then blk#4 has not been modified. blk#6 was not in
the view before. Using its view version, pre-view version, and
view version table, the server constructs a diff containing the
necessary updates for blk#1 and blk#6, but not blk#4.

side the view have not. Now suppose the client advances to a new
version V3, and then decides to add a new view unit v into the view
(v might also be added by the runtime automatically as a result of
pointer changes in a recursive view). Since the data d in v were not
in the view before, the client-cached copy of d is at version V1. If
the server only maintains a single version number for the view, it
will be unaware that d missed the updates between version V1 and
V2. Simply put, while the server will know that a newly added view
unit needs to be brought up to date, it won’t know how out-of-date
that view unit was before. Similar problems exist when dropped
view units are added back into a view.

To address these problems, the server maintains some additional
information for each client that has activated a view: (a) a pre-
view version—the segment version number when the view was ac-
tivated; (b) a view version—the segment version number when the
client was most recently updated; and (c) a view version table—a
hash table that tracks the version of each client-cached view unit,
even if the view unit has been detached.

To collect a diff for a view unit covered by the current active
view, the server must know which version of the view unit is cached
by the client. For views whose scope has not changed since the last
update to the client, the server knows that the client-cached view
units have been updated to view version. This is the common case,
and is handled efficiently by InterWeave. For view units added to
the view since the last update, there are two cases. In one case,
the corresponding view units are found in the view version table,
so the server knows exactly which version is cached by the client.
In the other case, the server can infer that the client’s copy must be
the pre-view version. Once the server determines a version for the
client-cached copy, it computes the difference between the client’s
version and the current version, using the normal diff collection
process already implemented in InterWeave. The server sends the
diff to the client and updates the view version table to reflect the
new version cached at the client. Figure 2 gives an example of the
process described above.

While data not in the current view are not updated when acquir-
ing a lock, the server must still inform the client of any changes
to segment metadata, including: (a) added or deleted type descrip-
tors; (b) the serial number of added or deleted blocks; and (c) the
serial numbers of type descriptors of added blocks. This informa-
tion is needed for management of segment memory space, and for
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Figure 3: The effect of using non-recursive views. (a) 100Mbps
network. (b) 10Mbps network. The x axis shows the increasing
coverage of the view from 10% to 100%. The left-most bar in
each graph is the baseline performance when no view is used.
For cases involving views, we vary the scope of the view from a
coverage of 10% to 100% of the segment. For each view cover-
age, the left bar (“Blk. View”) uses a view consisting of x% of
all blocks; the right bar (“Subblk. View”) includes x% of each
block in the view.

swizzling pointers in a view that points to data outside the view. In
the original InterWeave implementation, the data and metadata of
a newly created block were sent to the client together. The ability
to send the metadata by itself was the only change to InterWeave’s
wire format required to accommodate views.

4. PERFORMANCE AND APPLICATION
EXPERIENCES

In this section, we evaluate the performance of InterWeave views
using microbenchmarks and describe our experiences in specifying
and exploiting high-level coherence information in three distributed
applications. Unless otherwise specified, in all experiments, the
InterWeave server and client processes run on separate machines,
each with a 2GHz Pentium IV processor running Linux 2.4.9, and
are connected with either 100Mbps or 10Mbps Ethernet.
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Figure 4: Communication traffic for “Blk. View” and “Subblk.
View”, normalized to the communication traffic without views.

4.1 Microbenchmark Performance
With appropriate use of views, an application can help the Inter-

Weave system reduce the overhead of coherence maintenance. This
is especially beneficial for processes distributed over the Internet
where bandwidth is limited. However, such benefits come at the
cost of more metadata and maintenance operations on the server.
In this section, we use microbenchmarks to evaluate the potential
benefits of views and the overhead associated with them.

4.1.1 Non-recursive Views
The first experiment compares the time required for an Inter-

Weave client to receive updates with or without non-recursive views.
We arrange for two InterWeave client processes to share a segment
consisting of 1000 blocks. Each block is a 160-element integer ar-
ray. One process functions as a writer and updates every integer
in the segment. The second process functions as a reader and uses
Full coherence to read the segment after each update. We measure
the latency for the reader process to acquire a reader lock. The la-
tency is broken down into the communication time to transmit the
client request and server update, the diff construction time on the
server, and the translation time to apply the diff on the client. To
factor in the network bandwidth, we experiment with two differ-
ent connections between the the reader process and the InterWeave
server, i.e. 100Mbps or 10Mbps Ethernet.

The results are shown in Figure 3. As can be seen from the fig-
ure, the communication time is significantly reduced due to the re-
duction in traffic by using views. The absolute reduction is more
dramatic with the 10Mbps network (note the different scales on the
two y axes). “Subblk. View” has slightly higher computation and
communication overhead than “Blk. View” for both the client and
server. On the server, when an entire block is in a view, the server
only needs to collect changes in the block. When only a portion of
a block is in the view, the server has to perform extra work to locate
the portion of the block that is covered by the view. The resulting
diff is also larger because more blocks, and thus more metadata,
are in the diff. The larger diffs, increased metadata, and scattered
changes increase the client’s translation cost correspondingly.

We plot the communication traffic (bytes transferred) for the
“Blk. View” and “Subblk. View” in Figure 4. The bandwidth con-
sumption is directly proportional to the percentage of total data
contained in the current view.
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Figure 5: Communication traffic with recursive views, normal-
ized to the communication traffic without views.

4.1.2 Recursive Views
Our second experiment measures the time required for the server

to maintain views with recursive view units. We arrange for one
writer and one reader to share a segment that contains 50 doubly
linked lists with header nodes. Besides pointers to the previous and
next items in the list, each item contains 16 integers as a payload.
We start with each list containing 1,000 items. The writer inserts
100 items at the end of each list and the reader locks the segment to
get the updates. The reader includes a list into its view by adding
the header of the list as a recursive view unit. Thus the items in-
serted into those lists will be automatically added to the view by
InterWeave. We vary the coverage of views from 10% to all of
the 50 lists. Again, we conduct experiments on both 100Mbps and
10Mbps Ethernet.

Figure 5 shows the reduction in communication traffic with re-
cursive views. As described in Section 3.2.3, the InterWeave server
always updates the client with full segment metadata. Because
some of this metadata corresponds to data not included in the view,
communication traffic is higher than in Figure 4.

In Figure 6, we compare the latency of client updates with and
without views. The latency breakdown in this figure includes a new
item, Server Recur. View, which is the cost of recursively
computing the view scope on the server.

Unsurprisingly, there is a higher overhead associated with recur-
sive views. This cost grows linearly as the view coverage increases.
Combined together, the lower bandwidth reduction (see Figure 5)
and the larger overhead of view maintenance actually cause the
the performance of view coverage over 60% to become worse than
that without views for the fast 100Mbps network. However, with
a slower 10Mbps network, using views continues to be beneficial
until it reaches 100% coverage. We expect Internet applications to
benefit from views in InterWeave in most cases since the network
conditions (e.g., bandwidth and latency) in the Internet are typi-
cally worse than that of a congestion-free 10Mbps local-area net-
work. We are also invetigating ways to maintain recursive views
more efficiently.

4.2 Views in an Intelligent Environment
Application

In Section 1, we described a distributed object discovery appli-
cation in an intelligent environment [35, 34], where multiple nodes
share their “image cubes”. Each image cube is an array of im-
ages captured recently by the node’s camera. As explained earlier,
different nodes at different times access different portions of the
cubes. Straightforward sharing of these cubes using InterWeave
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Figure 6: The effect of using recursive views. (a) 100Mbps net-
work. (b) 10Mbps letwork. The left-most bar in each graph is
the baseline performance without views.

segments would be very inefficient, wasting large amounts of com-
munication bandwidth if a node only wants to access a small por-
tion of the cube. Similarly, splitting up the cube into multiple seg-
ments is cumbersome and difficult, especially given that the portion
of the cube accessed by any node changes over time. In the fol-
lowing, we describe how we solve the problem using InterWeave
views.

Since a full fledged intelligent environment is still under devel-
opment, we use an application kernel to evaluate InterWeave. As
shown in Figure 7, each camera node collects an image cube and
stores it in an InterWeave segment shared by other nodes. Each
image is stored as a separate block. An application running on a
remote machine samples the images and executes a series of op-
erations to find and analyze events in the cube. It first looks for
events in the cube starting from the first image and coarsely sam-
pling images through time. Once evidence of an event is detected
in a sample image t0, the application locates a minimal rectangular
region that contains the event. To verify and interpret the event, it
accesses the same region within d time steps before and after the
event—the subcube from t0 − d to t0 + (d − 1).

Without using views, whenever a remote image is accessed, the
entire image must be brought in, even though only a small part of
it will ever be examined. Our solution is to use views to specify the
portion of the image that will be scanned for events. Once an event
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Figure 7: Finding and interpreting events in a shared image
cube. The application samples images in the shared cube to
detect interesting events. Later it examines the subcube con-
taining that event.
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Figure 8: Bandwidth consumption with views under different
sampling intervals, normalized to the bandwidth consumption
without views. The x axis indicates the number of images in-
tersected by the subcube.

is located within a sample image, we add the surrounding subcube
to the view to more closely examine the evidence for the event.

Figure 8 shows the reduction in communication traffic achieved
by using views. In this experiment, the image cube contains 100
recently collected images, each of size 320× 240 pixels. The cube
is sampled at two different rates, every 5th image (“Sample 5”) or
every 10th image (“Sample 10”). We assume the the discovery of
an event is in the middle of the sampling process (i.e. at the 50th of
100 images in the cube). The application then examines the remote
subcube centered around the event point. The cross section area of
the subcube is 80 × 60 pixels and the length of the subcube varies
from 10 to 90 pixels as indicated by the x axis in the figure.

As we can see from this figure, the communication traffic is sig-
nificantly reduced. While the traffic increases as the length of the
subcube increases for both “Sample 10” and “Sample 5”, a closer
comparison reveals that the former increases slightly faster than the
latter. This is because the smaller sampling interval causes more
images to be accessed and hence cached by the application. When
an event is detected, the application needs a smaller amount of up-
date data to construct the subcube containing the event.

A−>A−>C

Root

A B C

A−>CB−>BABC−>AA−>A

A−>AB

Figure 9: Including queries on a summary structure. Each node
represents a meaningful dataming sequence. Each node has
pointers to all other nodes for which it is a subsequence. Here
the result for an including query concerning item B can be ob-
tained by traversing the substructure rooted at node B.

4.3 Recursive Views in an Interactive and
Incremental Datamining Application

We demonstrate the benefit of recursive views using an interac-
tive and incremental datamining application. This application per-
forms incremental sequence mining on a remote database of trans-
actions (e.g. retail purchases). Each transaction in the database (not
to be confused with transactions on the database) comprises a set
of items, such as goods that were purchased together. Transactions
are ordered with respect to one another in time. The goal is to find
ordered sequences of items that are commonly purchased by indi-
vidual customers over time.

In our experiments, both the database server and the datamining
client are InterWeave clients. The database server reads from an
active, growing database, and builds a summary data structure (a
lattice of item sequences) that is used to answer mining queries,
as shown in Figure 9. Each node in the lattice represents a poten-
tially meaningful sequence of transactions s and contains pointers
to other sequences containing s. The summary structure is shared
between the database server and the mining client in a single Inter-
Weave segment. Approximately 1/3 of the space in the local-format
version of the segment is consumed by pointers.

The mining client executes an including query over the summary
structure, returning all sequences containing the query items. For
example, in the example shown in Figure 9, an including query
concerning item B will return the nodes highlighted in the figure
(i.e., B, AB, B→B and A→AB). Because each sequence node
contains pointers to every node for which it is a subsequence, we
can process an including query by starting from the nodes that have
items that are required and then traversing the descendants of those
nodes. If a client process is only interested in including queries
on a certain set of items, it can save communication bandwidth by
updating only the substructure rooted at those items.

Our sample database is generated by tools from IBM research [38].
It includes 100,000 customers and 1000 different items, with an
average of 10 transactions per customer and a total of 5000 item
sequence patterns of average length 4. The average transaction size
is 2.5. The total database size is 20MB.

The summary structure is initially generated using half the data-
base. The server then repeatedly updates the structure using an
additional 1% of the database at each update. As a result, the num-
ber of nodes in the summary structure slowly and monotonically
increases over time. For our tests we selected four items for which
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Figure 10: Update latency with views normalized to the cost
without views in the datamining application.
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Figure 11: Server side overhead for constructing wire-format
diffs for updates in the datamining application.

including queries would produce a relatively large number of se-
quences from the lattice.

Figure 10 compares the average update latency and bandwidth
consumption seen at the client side using different view configura-
tions. “View X” means X of our four selected items are added as
recursive view units to the view. When the client acquires a lock
on the segment, only the substructures rooted at those items are up-
dated. Three different metrics are measured: update latency, update
traffic, and the number of nodes updated. The figure demonstrates
that recursive views tremendously reduce the update traffic and la-
tency.

With fewer nodes to update, the server and the client also save
diff processing time. Figure 11 shows the time spent constructing
diffs and maintaining recursive views on the server. Recursive view
maintenance overhead increases as the number of nodes added to
the view increases. However, this overhead is adequately compen-
sated for by the reduction in diff construction time, not to mention
the reduced communication time due to lower traffic.

4.4 Scalable Sharing of Metadata in ICP
With the rapid growth of Internet traffic, hierarchical and co-

operative proxy caching have proven to be effective in reducing
bandwidth and improving client side access latency [15]. The In-
ternet Caching Protocol (ICP), designed by the Harvard Harvest
group [10], is perhaps the most popular sharing protocol, and is

widely deployed. In ICP, cooperative proxies are organized into a
hierarchical structure. Each proxy can have parents and siblings,
all of which are referred to as peer proxies in this paper. When a
proxy misses in its own local cache, it probes its peers for possible
remote hits. If all of its peers miss, the proxy must go to the original
web server on its own or ask its parent to fetch the object.

Unfortunately, ICP does not scale well as the size of caches or
the number of cooperating proxies increases. On a local miss, the
proxy sends query messages to its peers asking for the missed ob-
ject. The number of these messages is quadratic in the number
of peer proxies. To solve this problem, Summary Cache [15] and
Cache Digest [33] have independently proposed similar solutions,
in which each proxy keeps a compact directory of contents recently
cached at every other proxy. Now when a proxy misses in its local
cache, it consults its peer directories before sending out ICP query
messages. Queries are sent only to those proxies indicated by the
directory as having a recent version of the page (URL). Both so-
lutions use Bloom filters [6] to represent the peer directories. A
Bloom filter is a succinct randomized data structure that supports
efficient membership queries.

There is a basic tradeoff in the implementation of directories:
frequent updates consume communication bandwidth, while out-
dated directories may introduce both false hits and false misses.
False hits occur when the directory falsely indicates a URL exists
in another proxy’s cache. False misses occur when the directory
does not list any proxy as containing the URL in its cache, even
though the URL is actually cached at a peer. Use of a Bloom filter
also entails a small but controllable false hit rate [6, 15].

Summary Cache [15] proposes a broadcasting update scheme.
Each proxy broadcasts to its peers an update of its directory after
a fixed percentage of changes have occurred (for example, broad-
casting every 1% of its local changes). To reduce the size of a
broadcast message, each time only the difference since the last up-
date is broadcast. Cache Digest [33] uses an on-demand update
scheme. Each proxy decides how often it needs an update from
other proxies. A proxy can piggy-back update requests on query
messages to its peers. Likewise, a proxy can inform its peers that a
new directory update is available by piggy-backing the information
on its responses to query messages.

Neither of the above schemes is ideal. Broadcasting requires
that all peers be updated at a fixed rate. If one proxy requires more
accurate information, each of its peers must also receive more fre-
quent updates. More importantly, efficient and robust broadcast-
ing support is usually not available in wide-area networks. While
update on demand is more flexible, it consumes more bandwidth
than broadcasting because it always transmits the entire directory
(a Bloom filter) on each update. Since the Bloom filter is a random-
ized data structure, it is difficult to compress [30].

To evaluate the overhead incurred by updating peer directories
on demand, we conduct an experiment on an ICP simulator, proxy-
cizer, from the Crispy Squid Group at Duke University [14]. Since
the original proxycizer implements neither Summary Cache nor
Cache Digest, we augmented it with a directory implementation
based on Cache Digest [33]. We use a trace file from the IRCache
organization [21]. The trace records one day of requests to one of
its proxies at Pittsburgh, Pennsylvania. The trace comprises 1.4
million HTTP requests with an average object size of 11.4KB. We
first run the trace through proxycizer’s ICP simulator with 4 simu-
lated proxies, each with a disk cache of about 1.2GB (this allows
space for approximately 100,000 objects). The trace is fed to the
proxies in a round-robin manner. Table 1 summarizes the results.

Each proxy caches 3 Bloom filters to summarize the contents
cached at each of its peer proxies. Each Bloom filter is 200KB



0

0.5

1

1.5

2

2.5

0.1% 0.2% 0.4% 0.6% 0.8% 1% 2%
Directory Update Frequency

N
or

m
al

iz
ed

 t
o 

IC
P

ICP Query Messages
Directory Update Traffic
Lost Remote Hits

Figure 12: Using directories to reduce ICP query messages.
The number of queries is normalized to that of ICP and the
directory update traffic is normalized to the traffic of transmit-
ting remote hit objects.

long. (We use a Bloom filter longer than that specified in [33] in
order to achieve a reasonable remote cache hit rate.) For each of
its cached Bloom filters, a proxy requires an update once the proxy
that is modeled by the Bloom filter has changed its content beyond
a certain threshold. Figure 12 shows the number of query messages
and the total communication traffic required to update the direc-
tories as we vary the update threshold from 0.1% to 2%. In this
figure, we also show the percentage of remote hits lost due to the
imprecise information in the directories.

The figure shows that using cached directories indeed signifi-
cantly reduces the number of ICP query messages. However, the
proxies voraciously consume bandwidth to update the directories.
At the update threshold of 0.6%, the communication traffic to up-
date the directories equals almost half the traffic for transmitting
the objects themselves from hits in remote peers. The directory up-
date traffic can be reduced by increasing the update threshold, with
the trade-off of increasing lost remote hits.

We propose using InterWeave to automate the sharing of the di-
rectories among peer proxies. We can then reduce the traffic to up-
date directories using InterWeave’s relaxed coherence models and
diffing. To evaluate this idea, we add an InterWeave simulator into
the modified proxycizer. In the simulator, each proxy stores its own
directory in a segment shared by other peer proxies. Each proxy up-
dates its directory segment whenever 0.1% of its local disk cache
changes. Other proxies access the directory by acquiring a reader
lock on the segment.

We again run the previously described experiments, this time on
the InterWeave-augmented simulator. To control the update fre-
quency of cached segments of peer directories, we use the Delta
coherence model with parameters x ranging from 1 to 20. These
cause InterWeave to update the client’s local segment cache when-
ever it is x versions older than the server’s master version. Since

Number of requests 1295000
Number of ICP query messages 2187207

Hits in local cache 28.4%
Hits in remote peer cache 9.7%

Aggregate size of remote hit objects 1860.89MB

Table 1: Simulation results for ICP.
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Figure 13: Using InterWeave segments to share peer directo-
ries. The x axis represents the parameter for the Delta coher-
ence model. The directory update traffic is normalized to the
traffic of transmitting remote hit objects. Note that the scale of
the y axis is one order less than that in Figure 12.

each proxy updates its own directory segment when 0.1% of the
cache changes (and thus creates a new version at that time), the
parameters we used effectively correspond to the previously used
update thresholds of 0.1% to 2%. The results are shown in Fig-
ure 13.

Comparing the InterWeave results with those in Figure 12, we
see that InterWeave significantly reduces the communication traffic
required to keep the peer directories up to date. Each time a proxy
locks a peer directory segment for update, the segment server com-
putes and transmits a diff capturing the difference between the di-
rectory’s newest version and the proxy’s cached version. Although
Summary Cache [15] also broadcasts the differences between con-
secutive versions to reduce message size (which has not been com-
pared here), InterWeave provides a much more flexible method for
doing so without requiring complex coherence management code
within the applicaiton. With InterWeave, the application (and in
fact, each proxy) can change the update frequency simply by tun-
ing the parameter for Delta coherence. In addition, cooperating
peer proxies no longer have to communicate in lock step in order
to coordinate with each other to update their directories.

In Figure 12, the choice of Delta coherence parameter exhibits
a correlation with the rate of lost remote cache hits. Thus, each
proxy can make individual decisions about how often it wants to get
updates for each of its peers’ directories, keeping the lost remote hit
rate at a satisfactory level.

5. RELATED WORK
InterWeave finds context in an enormous body of related work.

We focus here on some of the most relevant literature; additional
discussion can be found in technical reports [11, 40].

Dozens of object-based systems attempt to provide a uniform
programming model for distributed applications. Many are lan-
guage specific; many of the more recent of these are based on Java.
Language-independent distributed object systems include PerDiS
[16], Legion [18], Globe [42], Microsoft’s DCOM, and various
CORBA-compliant systems. Globe replicates objects for avail-
ability and fault tolerance. PerDiS and a few CORBA systems
(e.g. Fresco [26] and CASCADE [13]) cache objects for local-
ity of reference. While we speculate that relaxed coherence and
views might be applicable to such systems, current implementa-



tions tend to rely on the inefficient retransmission of entire ob-
jects, or the transmission and replay of operation logs. Equally
significant from our point of view, there are important applications
(e.g., compute-intensive parallel applications) that do not employ
an object-oriented programming style.

At least two early S-DSM systems provided support for het-
erogeneous machine types. Toronto’s Mermaid system [45] al-
lowed data to be shared across more than one type of machine, but
only among processes created as part of a single run-to-completion
parallel program. All data in the same VM page was required
to have the same type, and only one memory model—sequential
consistency—was supported. CMU’s Agora system [5] supported
sharing among more loosely-coupled processes, but in a signifi-
cantly more restricted fashion than in InterWeave. Pointers and
recursive types were not supported, all shared data had to be ac-
cessed indirectly through a local mapping table, and only a single
memory model (similar to processor consistency) was supported.
Precedents for the automatic management of pointers include Her-
lihy’s thesis work [19], LOOM [24], and the more recent “pickling”
(serialization) of Java [32].

Several “software-only” S-DSM systems have proposed that pro-
grammers explicitly identify the data to be modified in a critical
section, either directly [23, 20] or by explicit [36, 4] or implicit [22]
association with a synchronization object (lock). In contrast to sys-
tems that maintain coherence at the level of virtual memory pages,
software-only S-DSM is less vulnerable to false sharing. In a sim-
ilar vein, views in InterWeave relieve the system of the need to
inform processes of updates to “uninteresting” portions of a data
structure. In addition, InterWeave allows each process to customize
its view as well as to change its coverage dynamically as needed.

Munin [8] is an early homogeneous S-DSM system that chooses
among alternative coherence protocols (invalidate v. update, for ex-
ample) based on program annotations that specify expected access
patterns (migratory, widely shared, etc.). While it provides a re-
lease consistent programming model, Munin does not allow users
to further relax coherence requirements with respect to reads and
writes of the same location.

Stampede [31] is a system designed specifically with multime-
dia applications in mind. A data sharing abstraction called space-
time memory allows processes to access a time-sequenced collec-
tion of data items easily and efficiently. One of the novel aspects
of this system is the buffer management and garbage collection of
this space-time memory. InterWeave attempts to provide semantics
similar to those of hardware shared memory, and therefore retains
only the latest version of shared data.

Object View [28] uses programmer knowledge to classify objects
according to their access patterns. Object views must be specified
at compile time. InterWeave views do not rely on language exten-
sions, and can be composed dynamically. Object Clusters [29] are
closed sets of shared Java objects reachable and accessible only
from a single root object by following object references. Inter-
Weave similarly follows pointers to expand a recursive view scope,
but has no restrictions on the choice of root objects.

Problem-Oriented Object Memory (POOM) [27] is an object
model that allows exploitation of application specific semantics by
relaxing strict consistency to achieve good performance for shared
write-intensive data. Specifically, it allows multiple object replicas
to be modified in parallel and uses a value “amalgamation” process
to merge the state of diverged replicas of an object to a single mean-
ingful value. In the POOM model the unit of consistency is still the
entire object. InterWeave’s relaxed coherence models serve mainly
to improve performance for readers of shared data; coherence can
be maintained for only part of a segment by using views.

Friedman [17] and Agrawal et al. [1] have shown how to com-
bine certain pairs of consistency models in a non-version-based
system. Alonso et al. [2] present a general system for relaxed,
user-controlled coherence. Khazana [9] also proposes the use of
multiple consistency models. The TACT system of Yu et al. [43] al-
lows coherence and consistency requirements to vary continuously
in three orthogonal dimensions. Several of InterWeave’s built-in
coherence models are similarly continuous, but because our goal is
to reduce read bandwidth and latency, rather than to increase avail-
ability (concurrency) for writes, we insist on strong semantics for
writer locks.

6. CONCLUSION
InterWeave allows distributed applications to share strongly typed,

pointer-rich data structures across heterogeneous hardware and soft-
ware platforms. We described a new dynamic view mechanism for
InterWeave, and discussed how views and relaxed coherence mod-
els exploit an application’s high-level coherence requirements to
optimize system performance. We demonstrated the convenience
and effectiveness of these mechanisms with applications in intel-
ligent environments, interactive datamining, and cooperative web
proxy caching. We plan to evaluate and adopt techniques used
in Peer-to-Peer (P2P) computing systems to improve InterWeave’s
scalability and fault tolerance, and to provide a shared state infras-
tructure for increasingly popular P2P applications. We are also con-
sidering transactional extensions to the InterWeave programming
model, to enable processes to more easily modify a collection of
segments consistently.
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