
Profile-based Dynamic Voltage and Frequency Scaling for a Multiple Clock
Domain Microprocessor∗

Grigorios Magklis†, Michael L. Scott†, Greg Semeraro‡, David H. Albonesi‡, and Steven Dropsho†

† Department of Computer Science
‡ Department of Electrical and Computer Engineering

University of Rochester, Rochester, NY 14627

Abstract

A Multiple Clock Domain (MCD) processor addresses
the challenges of clock distribution and power dissipation
by dividing a chip into several (coarse-grained) clock do-
mains, allowing frequency and voltage to be reduced in do-
mains that are not currently on the application’s critical
path. Given a reconfiguration mechanism capable of choos-
ing appropriate times and values for voltage/frequency
scaling, an MCD processor has the potential to achieve sig-
nificant energy savings with low performance degradation.

Early work on MCD processors evaluated the poten-
tial for energy savings by manually inserting reconfigura-
tion instructions into applications, or by employing an ora-
cle driven by off-line analysis of (identical) prior program
runs. Subsequent work developed a hardware-based on-line
mechanism that averages 75–85% of the energy-delay im-
provement achieved via off-line analysis.

In this paper we consider the automatic insertion of re-
configuration instructions into applications, using profile-
driven binary rewriting. Profile-based reconfiguration in-
troduces the need for “training runs” prior to production
use of a given application, but avoids the hardware com-
plexity of on-line reconfiguration. It also has the potential
to yield significantly greater energy savings. Experimen-
tal results (training on small data sets and then running on
larger, alternative data sets) indicate that the profile-driven
approach is more stable than hardware-based reconfigura-
tion, and yields virtually all of the energy-delay improve-
ment achieved via off-line analysis.

1. Introduction

The ongoing push for higher processor performance has
led to a dramatic increase in clock frequencies in recent
years. The Pentium 4 microprocessor is currently shipping
at 3.06 GHz [27], and is designed to throttle back execution
when power dissipation reaches 81.8W. At the same time,

∗This work was supported in part by NSF grants CCR–9701915,
CCR–9702466, CCR–9811929, CCR–9988361, CCR–0204344, and EIA–
0080124; by DARPA/ITO under AFRL contract F29601-00-K-0182; by an
IBM Faculty Partnership Award; and by equipment grants from IBM, Intel,
and Compaq.

technology feature sizes continue to decrease, and the num-
ber of transistors in the processor core continues to increase.
As this trend toward larger and faster chips continues, de-
signers are faced with several major challenges, including
global clock distribution and power dissipation.

It has been suggested that purely asynchronous systems
have the potential for higher performance and lower power
compared to fully synchronous systems. Unfortunately,
CAD and validation tools for such designs are not yet ready
for industrial use. An alternative, which addresses all of
the above issues, is a Globally Asynchronous Locally Syn-
chronous (GALS) system [9]. In previous work we have
proposed a GALS system known as a Multiple Clock Do-
main (MCD) processor [30]. Each processor region (do-
main) is internally synchronous, but domains operate asyn-
chronously of one another. Existing synchronous design
techniques can be applied to each domain, but global clock
skew constraints are lifted. Moreover, domains can be given
independent voltage and frequency control, enabling dy-
namic voltage scaling at the level of domains.

Global dynamic voltage scaling already appears in many
systems, notably those based on the Intel XScale [25] and
Transmeta Crusoe [17] processors, and can lead to signifi-
cant reductions in energy consumption and power dissipa-
tion for rate-based and partially idle workloads. The ad-
vantage of an MCD architecture is its ability to save energy
and power even during “flat out” computation, by slowing
domains that are comparatively unimportant to the appli-
cation’s critical path, even when those domains cannot be
gated off completely.

The obvious disadvantage is the need for inter-domain
synchronization, which incurs a baseline performance
penalty—and resulting energy penalty—relative to a glob-
ally synchronous design. We have quantified the perfor-
mance penalty at approximately 1.3% [29]. Iyer and Mar-
culescu [23] report a higher number, due to a less precise es-
timate of synchronization costs. Both studies confirm that
an MCD design has a significant potential energy advan-
tage, with only modest performance cost, if the frequencies
and voltages of the various domains are set to appropriate
values at appropriate times. The challenge is to find an ef-
fective mechanism to identify those values and times.

mls
ISCA '03

As with most non-trivial control problems, an optimal
solution requires future knowledge, and is therefore infeasi-
ble. In a recent paper, we proposed an on-line attack-decay
algorithm that exploits the tendency of the future to resem-
ble the recent past [29]. Averaged across a broad range of
benchmarks, this algorithm achieved overall energy×delay
improvement of approximately 85% of that possible with
perfect future knowledge.

Though a hardware implementation of the attack-decay
algorithm is relatively simple (fewer than 2500 gates), it
nonetheless seems desirable to find a software alternative,
both to keep the hardware simple and to allow different
control algorithms to be used at different times, or for dif-
ferent applications. It is also clearly desirable to close the
energy×delay gap between the on-line and off-line (future
knowledge) mechanisms. In this paper we address these
goals through profile-driven reconfiguration.

For many applications, we can obtain a better prediction
of the behavior of an upcoming execution phase by study-
ing the behavior of similar phases in prior runs than we can
from either static program structure or the behavior of re-
cent phases in the current run. The basic idea in profile-
driven reconfiguration is to identify phases in profiling runs
for which certain voltage and frequency settings would be
profitable, and then to modify the application binary to rec-
ognize those same phases when they occur in production
runs, scaling voltages and frequencies as appropriate.

Following Huang [21], we assume that program phases
will often be delimited by subroutine calls. We also con-
sider the possibility that they will correspond to loop nests
within long-running subroutines. We use traditional profil-
ing techniques during training runs to identify subroutines
and loop nests that make contributions to program runtime
at a granularity for which MCD reconfiguration might be
appropriate (long enough that a frequency/voltage change
would have a chance to “settle in” and have a potential im-
pact; not so long as to suggest a second change). We then
employ off-line analysis to choose MCD settings for those
blocks of code, and modify subroutine prologues/epilogues
and loop headers/footers in the application code to effect the
chosen settings during production runs.

Following Hunt [22], we accommodate programs in
which subroutines behave differently when called in differ-
ent contexts by optionally tracking subroutine call chains,
possibly distinguishing among call sites within a given sub-
routine as well. Experimentation with a range of options
(Section 4) suggests that most programs do not benefit sig-
nificantly from this additional sophistication.

The rest of the paper is organized as follows. In Sec-
tion 2, we briefly review the MCD microarchitecture. In
Section 3, we describe our profiling and instrumentation in-
frastructure, and discuss alternative ways to identify corre-
sponding phases of training and production runs. Perfor-

Front−end

Integer Floating−point

Memory

Main Memory

External

Integer Issue Queue

Int ALUs & Register File

FP Issue Queue

FP ALUs & Register File

Fetch Unit

L1 I−Cache

ROB, Rename, Dispatch L2 Cache

Load/Store Unit

L1 D−Cache

Figure 1. MCD processor block diagram.

mance and energy results appear in Section 4. Additional
discussion of related work appears in Section 5. Section 6
summarizes our conclusions.

2. Multiple Clock Domain Microarchitecture

In our study, we use the MCD processor proposed
in [30]. The architecture consists of four different on-chip
clock domains (Figure 1) for which frequency and voltage
can be controlled independently. In choosing the bound-
aries between them, an attempt was made to identify points
where (a) there already existed a queue structure that served
to decouple different pipeline functions, or (b) there was
relatively little inter-function communication. Main mem-
ory is external to the processor and for our purposes can
be viewed as another, fifth, domain that always runs at full
speed.

The disadvantage of an MCD design is the need for syn-
chronization when information crosses the boundary be-
tween domains. The synchronization circuit is based on
the work of Sjogren and Myers [31]. It imposes a delay
of one cycle in the consumer domain whenever the distance
between the edges of the two clocks is within 30% of the
period of the faster clock. Our simulator, derived from the
one used in [30], includes a detailed model of the synchro-
nization circuit, including randomization caused by jitter.

For the baseline processor, we assume a 1GHz clock
and 1.2V supply voltage. We also assume a model of fre-
quency and voltage scaling based on the behavior of the In-
tel XScale processor [11], but with a tighter voltage range,
reflecting expected compression in future processor genera-
tions. A running program initiates a reconfiguration by writ-
ing to a special control register. The write incurs no idle-
time penalty: the processor continues to execute through
the voltage/frequency change. There is, however, a delay
before the change becomes fully effective. Traversing the
entire voltage range requires 55µs. Given this transition
time, changes will clearly be profitable only if performed at
a granularity measured in thousands of cycles.

3. Application Analysis

Our profile-based control algorithm can be divided into
four phases, which we discuss in the four subsections below.
Phase one performs conventional performance profiling to
identify subroutines and loop nests that are of appropriate
length to justify reconfiguration. Phase two constructs a
DAG that represents dependences among primitive opera-
tions in the processor and then applies a “shaker” algorithm
to distribute the slack in the graph in a way that minimizes
energy [30]. Phase three uses per-domain histograms of
primitive operation frequencies to identify, for each chosen
subroutine or loop nest, the minimum frequency for each
domain that would, with high probability, allow execution
to complete within a fixed slowdown bound. Phase four
edits the application binary to embed path-tracking or re-
configuration instructions at the beginnings and ends of ap-
propriate subroutines and loop nests.

3.1. Choosing Reconfiguration Points

Changing the domain voltage takes several microsec-
onds and thus is profitable only over intervals measured
in thousands of instructions. Our goal is therefore to find
the boundaries between major application phases. While
our previous off-line [30] and attack-decay [29] algorithms
make reconfiguration decisions at fixed intervals, regardless
of program structure, it is clear that program phases corre-
spond in practice to subroutine calls and loops [21], and
that the boundaries of these structures are the natural points
at which to instrument program binaries for the purpose of
reconfiguration.

Phase one of our profile-driven reconfiguration mecha-
nism uses the ATOM binary instrumentation package [13]
to instrument subroutines and loops. Because we are work-
ing with binaries, loops are defined as the strongly con-
nected components of subroutine control flow graphs; they
may or may not correspond to loop constructs in the source
code. When executed, the instrumented binary counts the
number of times that each subroutine or loop is executed
in a given “context”. In an attempt to evaluate the tradeoff
between reconfiguration quality and the overhead of instru-
mentation to be inserted in phase four, we consider several
different definitions of context. The most general employs
a call tree reminiscent of the calling context tree (CCT) of
Ammons et al. [1]. Each node of the call tree is a subroutine
or loop in context. The path from the root of the tree to a
node captures the callers and call sites on the path back to
main at the time the subroutine or loop was entered.

The call tree differs from the static call graph constructed
by many compilers in that it has a separate node for every
path over which a given subroutine can be reached (it will
also be missing any nodes that were not encountered dur-
ing the profiling run). At the same time, the call tree is

drand48

L2

initm

L1

drand48

L2

initm

L1

main

drand48

L2

initm

L1

main main

initm initm

drand48 drand48

main

initm

drand48

void initm(double **a, int m, int n)
{
L1: for (int i = 0; i < m; i++)
L2: for (int j = 0; j < n; j++)

a[i][j] = drand48() * 1e6;
}

int main(int argc, char **argv)
{

initm(A, 10, 10);
initm(B, 10, 10);

}

Figure 2. Example code and call trees.

not a true dynamic call trace, but a compressed one, where
multiple instances of the same path are superimposed. For
example if a subroutine is called from inside a loop it will
have the same call history every time, and thus it will be
represented by a single node in the tree, even though it may
actually have been called many times. In the case of recur-
sive subroutines only the initial call is recorded in the tree;
the rest of the recursion is folded into this one node. Our
notion of call tree differs from a CCT in the provision of
nodes for loops and the differentiation of nodes based on
call site within the caller.

By way of example, the bottom part of Figure 2 shows
code to initialize a pair of matrices. The top of the figure
contains four trees, the leftmost of which is the call tree. In
this tree there are two initm children of main, because
initm is called from two different places in main. There
are also separate nodes for the L1 and L2 loops. On the
other hand there is only one drand48 child of the L2 node,
though it is called 100 times.

The other three trees in the top portion of Figure 2 corre-
spond to simplified definitions of context. The second and
fourth do not distinguish among call sites. The third and
fourth do not track loops. The fourth tree is the CCT of
Ammons et al. [1]. In an attempt to determine how much
information is really needed to distinguish among applica-
tion phases, our phase one tool instruments the application
binary in a way that allows us to construct all four trees.
After running the binary and collecting its statistics, we an-
notate each tree node with the number of dynamic instances
and the total number of instructions executed, from which
we can calculate the average number of instructions per in-
stance (including instructions executed in the children of the
node). We then identify all nodes that run long enough for

5K

H

4K

I

3K

J

6K

K

20K

8K

G

20K

F

29K 4K

L

1K

M

2K

N

50K 19K

75K

B

D E

C

A

Figure 3. Call tree with associated instruction
counts. The shaded nodes have been identified
as candidates for reconfiguration.

a frequency change to take effect and to have a potential
impact on energy consumed. We use 10,000 instructions as
the definition of “long enough”. A longer window could
only reduce the quality of reconfiguration, and would have
a negligible impact on the instrumentation overhead.

Starting from the leaves and working up, we identify all
nodes whose average instance (excluding instructions ex-
ecuted in long-running children) exceeds 10,000. Figure 3
shows a call tree in which the long-running nodes have been
shaded. Note that these nodes, taken together, are guar-
anteed to cover almost all of the application history of the
profiled run (all that can be missing is a few short-running
nodes near the root).

We report results in Section 4 for six different defini-
tions of context. Four correspond to the trees in the up-
per portion of Figure 2. We call these L+F+C+P, L+F+P,
F+C+P, and F+P, where F stands for “function” (subrou-
tine), L stands for “loop”, C stands for “call site”, and P
stands for “path”. We also consider two simpler definitions,
L+F and F, which use the L+F+P and F+P trees to identify
long-running nodes in phase one, but ignore calling history
during production runs, allowing them to employ signifi-
cantly simpler phase four instrumentation.

3.2. The Shaker Algorithm

To select frequencies and corresponding voltages for
long-running tree nodes, we use the “shaker” and “slow-
down thresholding” algorithms from the off-line analysis
of [30]. We run the application through a heavily-modified
version of the SimpleScalar/Wattch toolkit [4, 5], with all
clock domains at full frequency. During this run we collect
a trace of all primitive events (temporally contiguous work
performed within a single hardware unit on behalf of a sin-
gle instruction), and of the functional and data dependences
among these events. The output of the trace is a dependence
DAG for each long-running node in the call tree. Working
from this DAG, the shaker algorithm attempts to “stretch”
(scale) individual events that are not on the application’s
critical execution path, as if they could be run at their own,

event-specific lower frequency.
Whenever an event in the dependence DAG has two or

more incoming arcs, it is likely that one arc constitutes the
critical path and that the others will have “slack”. Slack
indicates that the previous operation completed earlier than
necessary. If all of the outgoing arcs of an event have slack,
then we have an opportunity to save energy by performing
the event at a lower frequency. With each event in the DAG
we associate a power factor whose initial value is based on
the relative power consumption of the corresponding clock
domain in our processor model. When we stretch an event
we scale its power factor accordingly.

The goal of the shaker is to distribute slack as uniformly
as possible. It begins at the end of the DAG and works back-
ward toward the beginning. When it encounters a stretch-
able event whose power factor exceeds the current thresh-
old, originally set to be slightly below that of the few most
power-intensive events in the graph (this is a high-power
event), the shaker scales the event until either it consumes
all the available slack or its power factor drops below the
current threshold. If any slack remains, the event is moved
later in time, so that as much slack as possible is moved
to its incoming edges. When it reaches the beginning of
the DAG, the shaker reverses direction, reduces its power
threshold by a small amount, and makes a new pass forward
through the DAG, scaling high-power events and moving
slack to outgoing edges. It repeats this process, alternately
passing forward and backward over the DAG, reducing its
power threshold each time, until all available slack has been
consumed, or until all events adjacent to slack edges have
been scaled down to one quarter of their original frequency.
When it completes its work, the shaker constructs a sum-
mary histogram for each clock domain. Each histogram in-
dicates, for each of the frequency steps, the total number of
cycles for events in the domain that have been scaled to run
at or near that frequency. Histograms for multiple dynamic
instances of the same tree node are then combined, and pro-
vided as input to the slowdown thresholding algorithm.

3.3. Slowdown Thresholding

Phase three of our profile-driven reconfiguration mech-
anism recognizes that we cannot in practice scale the fre-
quency of individual events: we must scale each domain as
a whole. If we are willing to tolerate a small percentage per-
formance degradation, d, we can choose a frequency that
causes some events to run slower than ideally they might.
Using the histograms generated by the shaker algorithm,
we calculate, for each clock domain and long-running tree
node, the minimum frequency that would permit the do-
main to complete its work with no more than d% slow-
down. More specifically, we choose a frequency such that
the sum, over all events in higher bins of the histogram, of
the extra time required to execute those events at the chosen

frequency is less than or equal to d% of the total length of
all events in the node, run at their ideal frequencies. This
delay calculation is by necessity approximate. For most
applications the overall slowdown estimate turns out to be
reasonably accurate: the figures in Section 4 show perfor-
mance degradation (with respect to the MCD baseline) that
is roughly in keeping with d.

3.4. Application Editing

To effect the reconfigurations chosen by the slowdown
thresholding algorithm, we must insert code at the begin-
ning and end of each long-running subroutine or loop. For
all but the L+F and F definitions of context, we must also
instrument all subroutines that appear on the call chain of
one or more long-running nodes. For the L+F+C+P and
F+C+P definitions, we must instrument relevant call sites
within such routines. In other words, reconfiguration points
in the edited binary are a (usually proper) subset of the in-
strumentation points.

To keep track of run-time call chains, we assign a static
numeric label to each node in the tree, starting from 1 (0 is a
special label that means that we are following a path that did
not appear in the tree during training runs). We also assign
a static label, from a different name space, to each subrou-
tine that corresponds to one or more nodes in the tree. If
the nodes of a call tree are labeled from 1 to N , the cor-
responding subroutines will be labeled from 0 to M − 1,
where M ≤ N . In the most general case (L+F+C+P), we
instrument the prologue of each of the M subroutines that
participate in the tree to access an (N + 1) × M lookup
table, using the label of the previous node at run time (held
in a global variable) and the label of the current subroutine
(held in a static constant in the code) to find the new node
label. Subroutine epilogues restore the previous value.

Headers and footers of long-running loops are also in-
strumented, as are call sites that may lead to long-running
nodes (assuming we’re tracking call sites), but these do not
need to use the lookup table. It is easy to guarantee that
the label of every loop and call site differs by a statically
known constant from the label of the subroutine in which it
appears. To obtain the new node label, a loop header or call
site can simply add an offset to the current label.

We also generate an N +1-entry table containing the fre-
quencies chosen by the slowdown thresholding algorithm of
phase three. When entering a subroutine (or loop) that cor-
responds to one or more long-running nodes, we use the
newly calculated node label to index into this table. We
then write the value found into an MCD hardware recon-
figuration register. We assume that this write is a single,
unprivileged instruction capable of setting the frequencies
of all four domains to arbitrary values.

In the call tree shown in Figure 3, nodes A through
F have long-running descendants, or are themselves long-

running. Subroutines and loops corresponding to these
nodes will therefore have instrumentation instructions at
their entry and exit points to keep track of where we are
in the tree. Subroutines and loops corresponding to nodes
B, C, E and F will also have instructions for reconfigura-
tion. Nodes G through N will not be instrumented, because
they cannot reach any long-running nodes.

The two definitions of context that do not use call chain
information lead to much simpler instrumentation. Call
sites themselves do not need to be instrumented, and there is
no need for the lookup tables. Every instrumentation point
is in fact a reconfiguration point, and writes statically known
frequency values into the hardware reconfiguration register.

Because ATOM does not support in-line instrumentation
code, and because subroutine call overhead is high com-
pared to the overhead of the instrumentation itself, we can-
not obtain an accurate estimate of run-time overhead using
ATOM-instrumented code. For the sake of expediency we
have therefore augmented our simulator to emulate the in-
strumentation code. The current emulation charges a fixed
performance and energy penalty for each type of instru-
mentation point. These penalties are based on worst case
values gleaned from the simulated execution of a hand-
instrumented microbenchmark. We assume that accesses to
the various lookup tables miss in the L1 cache, but hit in the
L2 cache. The performance penalty for an instrumentation
point that accesses the 2-D table of node labels is about 9 cy-
cles. For a reconfiguration point that subsequently accesses
the table of frequencies and writes the reconfiguration reg-
ister, the penalty rises to about 17 cycles. These relatively
small numbers reflect the fact that instrumentation instruc-
tions are not on the application’s critical path, and can be
used to fill pipeline slots that would otherwise be wasted.

4. Results

Our modifications to SimpleScalar and Wattch reflect the
synchronization penalties and architectural differences of
an MCD processor, and support dynamic voltage and fre-
quency scaling in each domain. We have also modified the
simulator to emulate our instrumentation code. Our archi-
tectural parameters (Table 1) have been chosen, to the extent
possible, to match the Alpha 21264 processor.

We report results for six applications from the Media-
Bench [24] suite, each comprising “encode” and “de-
code” operations, and seven applications from the SPEC
CPU2000 suite [19] (four floating-point and three integer),
resulting in a total of nineteen benchmarks. MediaBench is
distributed with two input sets, a smaller one, which we call
the training set, and a larger one, which we call the refer-
ence set. For the SPEC benchmarks we used the provided
training and reference input sets. Table 2 shows the instruc-
tion windows used in our simulations.

Branch predictor: comb. of bimodal and 2-level PAg
Level1 1024 entries, history 10
Level2 1024 entries
Bimodal predictor size 1024
Combining predictor size 4096
BTB 4096 sets, 2-way

Branch Mispredict Penalty 7
Decode / Issue / Retire Width 4 / 6 / 11
L1 Data Cache 64KB, 2-way set associative
L1 Instruction Cache 64KB, 2-way set associative
L2 Unified Cache 1MB, direct mapped
Cache Access Time 2 cycles L1, 12 cycles L2
Integer ALUs 4 + 1 mult/div unit
Floating-Point ALUs 2 + 1 mult/div/sqrt unit
Issue Queue Size 20 int, 15 fp, 64 ld/st
Reorder Buffer Size 80
Physical Register File Size 72 integer, 72 floating-point
Domain Frequency Range 250 MHz – 1.0 GHz
Domain Voltage Range 0.65 V – 1.20 V
Frequency Change Speed 73.3 ns/MHz
Domain Clock Jitter ±110 ps, normally distributed
Inter-domain Synchronization Window 300 ps

Table 1. Simplescalar configuration.

Benchmark Training Reference
adpcm decode entire program (7.1M) entire program (11.2M)
adpcm encode entire program (8.3M) entire program (13.3M)
epic decode entire program (9.6M) entire program (10.6M)
epic encode entire program (52.9M) entire program (54.1M)
g721 decode 0 – 200M 0 – 200M
g721 encode 0 – 200M 0 – 200M
gsm decode entire program (77.1M) entire program (122.1M)
gsm encode 0 – 200M 0 – 200M
jpeg compress entire program (19.3M) entire program (153.4M)
jpeg decompress entire program (4.6M) entire program (36.5M)
mpeg2 decode entire program (152.3M) 0 – 200M
mpeg2 encode 0 – 200M 0 – 200M
gzip 20,518 – 20,718M 21,185 – 21,385M
vpr 335 – 535M 1,600 – 1,800M
mcf 590 – 790M 1,325 – 1,525M
swim 84 – 284M 575 – 775M
applu 36 – 236M 650 – 850M
art 6,865 – 7,065M 13,398 – 13,598M
equake 958 – 1,158M 4,266 – 4,466M

Table 2. Instruction windows for both the training
and reference input sets.

4.1. Slowdown and Energy Savings

Our principal results appear in Figures 4, 5, and 6.
These show performance degradation, energy savings, and
energy×delay improvement, respectively, for the applica-
tions in our benchmark suite. All numbers are shown with
respect to a baseline MCD processor. Experimentation with
additional processor models indicates that the MCD pro-
cessor has an inherent performance penalty of about 1.3%
(max 3.6%) compared to its globally-clocked counterpart,
and an energy penalty of 0.8% (max 2.1%). We have not
attempted to quantify any performance or energy gains that
might accrue from the lack of global clock skew constraints.

Figure 7. Minimum, maximum and average slow-
down, energy savings, and energy×delay improve-
ment.

The “off-line” and “on-line” bars represent results ob-
tained with perfect future knowledge and with hardware-
based reconfiguration, as described in [30] and [29], respec-
tively. The third set of bars represents the L+F profiling
scheme as described in Section 3. All the simulations were
run using the reference input set. The profiling-based cases
were trained using the smaller input set. The profiling bars
include the performance and energy cost of instrumentation
instructions.

Our results indicate that the potential for energy savings
from dynamic voltage scaling is quite high. The off-line
algorithm achieves about 31% energy savings on average,
with 7% slowdown. The savings achieved by the on-line
algorithm for the same average slowdown are about 22%,
which is roughly 70% of what the off-line achieves. Profile-
based reconfiguration achieves almost identical results to
the off-line algorithm. This is very promising, because it
shows that we can—with some extra overhead at applica-
tion development time—expect results very close to what an
omniscient algorithm with future knowledge can achieve.

Figure 7 summarizes—in the form of “error” bars—the
minimum, maximum and average performance degradation,
energy savings and energy×delay improvement for the dif-
ferent reconfiguration methods. The “global” numbers cor-
respond to a single-clock processor that employs global dy-
namic voltage scaling for each benchmark, so as to achieve
approximately the same total run time as the off-line algo-
rithm. For example, if the application runs for 100s with
the off-line algorithm, but takes only 95s on a single-clock
processor running at maximum frequency, the equivalent
“global” result assumes that we will run the single-clock
processor at 95% of its maximum frequency. As we can
see, all MCD reconfiguration methods achieve significantly
higher energy savings than “global” does: 82% higher for
off-line and L+F; 29% higher for on-line (attack-decay).

Figure 4. Performance degradation results.

Figure 5. Energy savings results.

Figure 6. Energy×delay improvement results.

Figure 8. Performance degradation.

Figure 9. Energy savings.

Figure 7 also highlights the difference in the stabil-
ity/predictability of the reconfiguration methods. With
profile-driven reconfiguration, performance degradation for
all applications remains between 1% and 12% (the numbers
plotted are for L+F, but all the other options stay in this
range as well). The on-line algorithm, by contrast, ranges
from 1% to 28%. As a result, the energy×delay results for
L+F are all between 17% and 41%, while those for the on-
line algorithm range from −4% to 34%.

4.2. Sensitivity to Calling Context

For our application suite we see relatively little varia-
tion due to the different definitions of context discussed in
Section 3.1; methods that do not use call chains generally
perform as well as the more complicated methods. The ap-
plications that show some variation are presented in Fig-
ures 8 and 9. For mpeg2 decode, not having call chains
leads to higher performance degradation (and respective en-
ergy savings). Investigation reveals different behavior for

this application in the training and production runs. Specif-
ically, there are functions that can be reached over multi-
ple code paths, some of which do not arise during training.
Mechanisms that track call chains will not reconfigure the
processor on these paths at run time. The L+F and F mech-
anisms, however, will always change frequencies when they
encounter a node that was long-running in the training runs,
even when they reach it over a different path.

Instrumentation of call sites produces a noticeable dif-
ference in results for only one application: epic encode.
Here tracking the site of calls (in L+F+C+P and F+C+P)
leads to slightly lower performance degradation (less than
1%), but higher energy savings (approximately 4%) than
in L+F+P and F+P. The difference stems from a subrou-
tine (internal filter) that is called from six different
places from inside its parent (build level). Each invo-
cation of internal filter has different behavior, and
follows slightly different code paths. Tracking of call sites
allows the reconfiguration mechanism to choose different
frequencies for the different invocations. When we ignore
the call sites we inevitably choose the average frequency of
all instances, which, though it yields similar performance
degradation, is not as energy efficient.

For most of the MediaBench programs the code is split
into a large number of small and medium sized subroutines.
A reconfiguration algorithm can do reasonably well by ig-
noring loops and reconfiguring at the subroutines that in-
clude them. Epic encode and mpeg2 encode include sub-
routines with more than one long-running loop. Reconfig-
uring these loops individually leads to a small increase in
performance degradation and a corresponding increase in
energy savings. By contrast, in adpcm decode, gsm decode
and, to a lesser extent, adpcm encode, loop reconfiguration
leads to a decrease in performance degradation and a corre-
sponding decrease in energy savings.

One might expect loops to matter more in scientific ap-
plications, in which subroutines often contain more than
one time-consuming loop nest. We can see examples in two
of our floating-point SPEC benchmarks. In applu, recon-
figuring at loop boundaries increases performance degrada-
tion by about 2%, with a 1% gain in energy savings. The
increase in performance degradation appears to be due to
instrumentation overhead: when not considering loops we
change frequency fewer than 10 times in our simulation
window (200M instructions); with loop reconfiguration this
number rises to about 8,000. In art, the core computation
resides inside a loop with seven sub-loops. Reconfiguring
at loop boundaries again increases performance degrada-
tion by about 2%, but with somewhat better energy savings:
roughly 5%.

Based on these results, we recommend the L+F method,
i.e., reconfiguring at loop and function boundaries, but with-
out including call chain information in the program state.

It produces energy and performance results comparable to
those of the more complicated algorithms, with lower in-
strumentation overhead. Using call chains as part of the
program state may be a more appropriate method when ap-
plication behavior changes significantly between the train-
ing and production runs, but this situation does not arise in
our application suite.

4.3. Sensitivity to Slowdown Threshold

Figures 10 and 11 show the energy savings and
energy×delay improvement achieved by the on-line, off-
line and L+F algorithms relative to achieved slowdown.
Several things are apparent from these figures. First, profile-
based reconfiguration achieves almost the same energy sav-
ings for equivalent performance degradation as the off-line
algorithm. The on-line algorithm on the other hand, al-
though it is close to the off-line at low performance degra-
dation targets, starts to tail off with increased slowdown.
Beyond a slowdown of 8% the on-line algorithm continues
to save energy, but its energy×delay improvement stays the
same. Beyond about 15% (not shown here), energy×delay
improvement actually begins to decrease. By contrast, the
off-line and profile-based reconfiguration methods show a
much more linear relationship between performance degra-
dation and energy×delay. We would expect it to tail off
eventually, but much farther out on the curve.

4.4. Instrumentation Overhead

Table 3 shows the number of long-running nodes iden-
tified by our profiling tool, as well as the total number of
nodes in the call tree, for both the data sets, under the most
aggressive (L+F+C+P) definition of calling context. It in-
dicates the extent to which code paths identified in training
runs match those that appear in production runs. (Our pro-
filing mechanism, of course, does not construct call trees
for production runs. The numbers in Tables 3 and 4 were
collected for comparison purposes only.) The numbers in
the “Common” column indicate the number of tree nodes
(long-running and total) that appear (with the same ances-
tors) in the trees of both the training and reference sets. The
last column (“Coverage”) presents these same numbers as
a fraction of the number of nodes in the tree for the refer-
ence set. It is clear from this column that the training and
reference sets run most applications through the same code
paths. The notable exception is mpeg2 decode, in which
the training set produces only 63% of the tree nodes pro-
duced by the reference set. Moreover only 57% of the
long-running nodes identified under the training input set
are the same as those identified under the reference input
set. When run with the reference input set, swim also pro-
duces more reconfiguration points, because some loops in
the code run for more iterations and thus are classified as
long running. Unlike mpeg2 decode though, all reconfigu-

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14

E
ne

rg
y

S
av

in
gs

 (
%

)

Slowdown (%)

on-line
off-line

L+F

Figure 10. Energy savings for the on-line, off-line
and L+F algorithms.

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14

E
ne

rg
y-

D
el

ay
 Im

pr
ov

em
en

t (
%

)

Slowdown (%)

on-line
off-line

L+F

Figure 11. Energy×delay improvement for the on-
line, off-line and L+F algorithms.

ration points found with the training set are also found with
the reference set.

Table 4 addresses the cost of instrumentation, again for
L+F+C+P. The second column (“Static”) shows the num-
ber of static reconfiguration and instrumentation points in
the code. These numbers are in some cases smaller than
the corresponding numbers in Table 3 because a subrou-
tine or loop may correspond to multiple nodes in the call
tree. Numbers are identical between the training and refer-
ence data sets, again with the exception of mpeg2 decode.
The third column of the table (“Dynamic”) shows how
many times we executed reconfiguration and instrumenta-
tion code at run time (profiling with the training set and
running with the reference set). These numbers are gen-
erally much higher than the static ones, since we execute
each subroutine or loop many times. The only exception is
mpeg2 decode, where the number of dynamic reconfigura-
tion/instrumentation points is smaller than the static. This
happens because we use ATOM to profile the application
and so the static numbers correspond to the whole program

Benchmark TRAIN REF Common Coverage
adpcm decode 2 4 2 4 2 4 1.00 1.00
adpcm encode 2 4 2 4 2 4 1.00 1.00
epic decode 18 25 18 25 18 25 1.00 1.00
epic encode 65 91 65 91 65 91 1.00 1.00
g721 decode 1 1 1 1 1 1 1.00 1.00
g721 encode 1 1 1 1 1 1 1.00 1.00
gsm decode 3 5 3 5 3 5 1.00 1.00
gsm encode 6 9 6 9 6 9 1.00 1.00
jpeg compress 11 17 11 17 11 17 1.00 1.00
jpeg decompress 4 6 4 6 4 6 1.00 1.00
mpeg2 decode 11 15 14 19 8 12 0.57 0.63
mpeg2 encode 30 40 30 40 30 40 1.00 1.00
gzip 78 224 70 196 65 182 0.93 0.93
vpr 67 92 84 119 7 12 0.08 0.10
mcf 26 41 26 41 26 41 1.00 1.00
swim 16 23 25 32 16 23 0.64 0.78
applu 61 77 68 85 60 77 0.98 0.91
art 65 98 68 100 65 98 0.96 0.98
equake 30 35 30 35 30 35 1.00 1.00

Table 3. Number of reconfiguration nodes and total
number of nodes in the call tree when profiling with
the reference and training sets.

Benchmark Static Dynamic Overhead
adpcm decode 2 4 470 939 0.33%
adpcm encode 2 4 470 939 0.17%
epic decode 18 25 106 149 0.03%
epic encode 27 40 4270 4441 0.29%
g721 decode 1 1 1 1 0.00%
g721 encode 1 1 1 1 0.00%
gsm decode 3 5 5841 11681 0.30%
gsm encode 6 9 12057 16579 0.35%
jpeg compress 7 11 40 45 0.00%
jpeg decompress 4 6 1411 1415 0.17%
mpeg2 decode 4 7 1 2 0.00%
mpeg2 encode 30 40 7264 7283 0.18%
gzip 19 56 153 170 0.00%
vpr 56 75 3303 3307 0.03%
mcf 24 37 10477 16030 0.03%
swim 16 23 5344 5352 0.03%
applu 49 62 7968 7968 0.06%
art 43 64 63080 65984 0.39%
equake 30 35 34 41 0.00%

Table 4. Static and dynamic reconfiguration and
instrumentation points, and estimated run-time
overhead for L+F+C+P.

execution. The production runs, however, are executed on
SimpleScalar, and use an instruction window of only 200M
instructions—much less than the entire program.

The final column of Table 4 shows the cost, as a percent-
age of total application run time, of the extra instructions
injected in the binary, as estimated by our simulator. These
numbers, of course, are for the L+F+C+P worst case. Fig-
ure 12 shows the number of instrumentation points, and as-
sociated run-time overhead, of the simpler alternatives, nor-
malized to the overhead of L+F+C+P. The first two sets of

Figure 12. Number of static reconfiguration and in-
strumentation points and run-time overhead com-
pared to L+F+C+P.

bars compare the number of static reconfiguration and in-
strumentation points in the code for the different profiling
algorithms, averaged across all applications. The L+F and
F methods, of course, have no static instrumentation points,
only reconfiguration points. Note also that the number of
static instrumentation points is independent of whether we
track call chain information at run time; all that varies is
the cost of those instrumentation points. Thus, for example,
L+F+P will always have the same number of long-running
subroutines and loops as L+F. The last set of bars in Fig-
ure 12 compares the run-time overhead of the different pro-
filing methods. As expected, L+F+C+P has the highest
overhead. Interestingly, the number of instrumentation in-
structions for L+F and F is so small that there is almost
perfect scheduling with the rest of the program instructions,
and the overhead is virtually zero.

Tables 3 and 4 also allow us to estimate the size of our
lookup tables. In the worst case (gzip) we need a 225 × 56-
entry table to keep track of the current node, and a 225-entry
table to store all the domain frequencies: a total of about
13KB. All other benchmarks need less than 4KB.

5. Related Work

Microprocessor manufacturers such as Intel [25] and
Transmeta [18] offer processors capable of global dynamic
frequency and voltage scaling. Marculescu [26] and Hsu
et al. [20] evaluated the use of whole-chip dynamic volt-
age scaling (DVS) with minimal loss of performance using
cache misses as the trigger. Following the lead of Weiser et
al. [32], many groups have proposed OS-level mechanisms
to “squeeze out the idle time” in underloaded systems via
whole-chip DVS. Childers et al. [10] propose to trade IPC
for clock frequency, to achieve a user-requested quality of
service from the system (expressed in MIPS). Processes
that can achieve higher MIPS than the current QoS setting
are slowed to reduce energy consumption. By contrast, our
work aims to stay as close as possible to the maximum per-
formance of each individual application.

Other work [7, 28] proposes to steer instructions to
pipelines or functional units running statically at different
speeds so as to exploit scheduling slack in the program to
save energy. Fields et al. [15] use a dependence graph simi-
lar to ours, but constructed on the fly, to identify the critical
path of an application. Their goal is to improve instruc-
tion steering in clustered architectures and to improve value
prediction by selectively applying it to critical instructions
only. Fields et al. [14] also introduce an on-line “slack” pre-
dictor, based on the application’s recent history, in order to
steer instructions between a fast and a slow pipeline.

Huang et al. [21] also use profiling to reduce energy, but
they do not consider dynamic voltage and frequency scal-
ing. Their profiler runs every important function with every
combination of four different power-saving techniques to
see which combination uses the least energy with negligi-
ble slowdown. Our work minimizes performance degrada-
tion by scaling only the portions of the processor that are
not on the critical path. We also consider reconfiguration
based on loop and call chain information, and require only
a single profiling run for each set of training data.

Several groups have used basic block or edge profil-
ing and heuristics to identify heavily executed program
paths [8, 12, 16, 33]. Ball and Larus [3] first introduced
an efficient technique for path profiling. In a follow-up
study, Ammons et al. [1] describe a technique for context
sensitive profiling, introducing the notion of a calling con-
text tree (CCT), on which our call trees are based. Am-
mons et al. also describe a mechanism to construct the CCT,
and to associate runtime statistics with tree nodes. They
demonstrate that context sensitive profiling can expose dif-
ferent behavior for functions called in different contexts.
We borrow heavily from this work, extending it to include
loops as nodes of the CCT, and differentiating among calls
to the same routine from different places within a single
caller. The reason we need the CCT is also different in
our case. Instead of the most frequently executed paths, we
need the minimum number of large-enough calling contexts
that cover the whole execution of the program.

6. Conclusions

We have described and evaluated a profile-driven recon-
figuration mechanism for a Multiple Clock Domain micro-
processor. Using data obtained during profiling runs, we
modify applications to scale frequencies and voltages at ap-
propriate points during later production runs. Our results
suggest that this mechanism provides a practical and effec-
tive way to save significant amounts of energy in many ap-
plications, with acceptable performance degradation.

In comparison to a baseline MCD processor, we demon-
strate average energy savings of approximately 31%, with
performance degradation of 7%, on 19 multimedia and
SPEC benchmarks. These results rival those obtained by

an off-line analysis tool with perfect future knowledge, and
are significantly better than those obtained using a previ-
ously published hardware-based on-line reconfiguration al-
gorithm. Our results also indicate that profile-driven recon-
figuration is significantly more stable than the on-line alter-
native. The downside is the need for training runs, which
may be infeasible in some environments.

We believe that profile-driven application editing can be
used for additional forms of architectural adaptation, e.g.
the reconfiguration of CAM/RAM structures [2, 6]. We also
hope to develop our profiling and simulation infrastructure
into a general-purpose system for context-sensitive analysis
of application performance and energy use.

Acknowledgements

We are grateful to Sandhya Dwarkadas for her many con-
tributions to the MCD design and suggestions on this study.

References

[1] G. Ammons, T. Ball, and J. R. Larus. Exploiting Hardware
Performance Counters with Flow and Context Sensitive Pro-
filing. In Proceedings of the 1997 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementa-
tion, pages 85–96, June 1997.

[2] R. Balasubramonian, D. H. Albonesi, A. Buyuktosunoglu,
and S. Dwarkadas. Memory Hierarchy Reconfiguration for
Energy and Performance in General-Purpose Processor Ar-
chitectures. In Proceedings of the 33rd Annual IEEE/ACM
International Symposium on Microarchitecture, pages 245–
257, Dec. 2000.

[3] T. Ball and J. R. Larus. Efficient Path Profiling. In Pro-
ceedings of the 29th Annual IEEE/ACM International Sym-
posium on Microarchitecture, pages 46–57, Dec. 1996.

[4] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Frame-
work for Architectural-Level Power Analysis and Optimiza-
tions. In Proceedings of the 27th International Symposium
on Computer Architecture, June 2000.

[5] D. Burger and T. Austin. The SimpleScalar Tool Set, Version
2.0. Technical Report CS-TR-97-1342, Computer Science
Department, University of Wisconsin, June 1997.

[6] A. Buyuktosunoglu, S. Schuster, D. Brooks, P. Bose,
P. Cook, and D. H. Albonesi. An Adaptive Issue Queue for
Reduced Power at High Performance. In Proceedings of the
Workshop on Power-Aware Computer Systems, in conjunc-
tion with ASPLOS-IX, Nov. 2000.

[7] J. Casmira and D. Grunwald. Dynamic Instruction Schedul-
ing Slack. In Proceedings of the Kool Chips Workshop, in
conjunction with MICRO-33, Dec. 2000.

[8] P. P. Chang. Trace Selection for Compiling Large C Appli-
cation Programs to Microcode. In Proceedings of the 21st
Annual Workshop on Microprogramming and Microarchi-
tecture (MICRO 21), pages 21–29, Nov. 1988.

[9] D. M. Chapiro. Globally Asynchronous Locally Syn-
chronous Systems. PhD thesis, Stanford University, 1984.

[10] B. R. Childers, H. Tang, and R. Melhem. Adapting Proces-
sor Supply Voltage to Instruction-Level Parallelism. In Pro-
ceedings of the Kool Chips Workshop, in conjunction with
MICRO-34, Dec. 2001.

[11] L. T. Clark. Circuit Design of XScaleTM Microprocessors.
In 2001 Symposium on VLSI Circuits, Short Course on Phys-
ical Design for Low-Power and High-Performance Micro-
processor Circuits, June 2001.

[12] J. R. Ellis. A Compiler for VLIW Architectures. Technical
Report YALEU/DCS/RR-364, Yale University, Department
of Computer Science, Feb. 1985.

[13] A. Eustace and A. Srivastava. ATOM: A Flexible Interface
for Building High Performance Program Analysis Tools.
In Proceedings of the USENIX 1995 Technical Conference,
Jan. 1995.

[14] B. Fields, R. Bodı́k, and M. D. Hill. Slack: Maximizing Per-
formance Under Technological Constraints. In Proceedings
of the 29th International Symposium on Computer Architec-
ture, pages 47–58, May 2002.

[15] B. Fields, S. Rubin, and R. Bodı́k. Focusing Processor Poli-
cies via Critical-Path Prediction. In Proceedings of the 28th
International Symposium on Computer Architecture, July
2001.

[16] J. A. Fisher. Trace Scheduling: A Technique for Global
Microcode Compaction. IEEE Transactions on Computers,
30(7):478–490, July 1981.

[17] M. Fleischmann. Crusoe Power Management – Reducing
the Operating Power with LongRun. In Proceedings of the
HOT CHIPS Symposium XII, Aug. 2000.

[18] T. R. Halfhill. Transmeta breaks x86 low power barrier. Mi-
croprocessor Report, 14(2), Feb. 2000.

[19] J. L. Henning. SPEC CPU2000: Measuring CPU Perfor-
mance in the New Millennium. Computer, pages 28–35,
July 2000.

[20] C.-H. Hsu, U. Kremer, and M. Hsiao. Compiler-Directed
Dynamic Frequency and Voltage Scaling. In Proceedings of
the Workshop on Power-Aware Computer Systems, in con-
junction with ASPLOS-IX, Nov. 2000.

[21] M. Huang, J. Renau, and J. Torrellas. Profile-Based Energy
Reduction in High-Performance Processors. In Proceedings
of the 4th Workshop on Feedback-Directed and Dynamic
Optimization (FDDO-4), Dec. 2001.

[22] G. C. Hunt and M. L. Scott. The Coign Automatic Dis-
tributed Partitioning System. In Proceedings of the 3rd
USENIX Symposium on Operating Systems Design and Im-
plementation, Feb. 1999.

[23] A. Iyer and D. Marculescu. Power and Performance Evalu-
ation of Globally Asynchronous Locally Synchronous Pro-
cessors. In Proceedings of the 29th International Symposium
on Computer Architecture, May 2002.

[24] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Media-
bench: a Tool for Evaluating and Synthesizing Multimedia
and Communications Systems. In Proceedings of the 30th
Annual IEEE/ACM International Symposium on Microar-
chitecture, pages 330–335, Dec. 1997.

[25] S. Leibson. XScale (StrongArm-2) Muscles In. Micropro-
cessor Report, 14(9):7–12, Sept. 2000.

[26] D. Marculescu. On the Use of Microarchitecture-Driven Dy-
namic Voltage Scaling. In Proceedings of the Workshop on
Complexity-Effective Design, in conjunction with ISCA-27,
June 2000.

[27] Intel Corp. Datasheet: Intel R© Pentium R© 4 Processor with
512-KB L2 cache on 0.13 Micron Process at 2 GHz–3.06
GHz. Available at http://www.intel.com/design/pentium4/-
datashts/298643.htm, Nov. 2002.

[28] R. Pyreddy and G. Tyson. Evaluating Design Tradeoffs in
Dual Speed Pipelines. In Proceedings of the Workshop on
Complexity-Effective Design, in conjunction with ISCA-28,
June 2001.

[29] G. Semeraro, D. H. Albonesi, S. G. Dropsho, G. Magklis,
S. Dwarkadas, and M. L. Scott. Dynamic Frequency and
Voltage Control for a Multiple Clock Domain Microarchi-
tecture. In Proceedings of the 35th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, Nov. 2002.

[30] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Al-
bonesi, S. Dwarkadas, and M. L. Scott. Energy-Efficient
Processor Design Using Multiple Clock Domains with Dy-
namic Voltage and Frequency Scaling. In Proceedings of the
8th International Symposium on High-Performance Com-
puter Architecture, Feb. 2002.

[31] A. E. Sjogren and C. J. Myers. Interfacing Synchronous and
Asynchronous Modules Within A High-Speed Pipeline. In
Proceedings of the 17th Conference on Advanced Research
in VLSI, pages 47–61, Sept. 1997.

[32] M. Weiser, A. Demers, B. Welch, and S. Shenker. Schedul-
ing for Reduced CPU Energy. In Proceedings of the 1st
USENIX Symposium on Operating Systems Design and Im-
plementation, Nov. 1994.

[33] C. Young and M. D. Smith. Improving the Accuracy of
Static Branch Prediction Using Branch Correlation. In Pro-
ceedings of the 6th International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, pages 232–241, Oct. 1994.

