
62

Demand for higher processor per-
formance has led to a dramatic increase in
clock frequency as well as an increasing num-
ber of transistors in the processor core. As
chips become faster and larger, designers face
significant challenges, including global clock
distribution and power dissipation.

A multiple clock domain (MCD) microar-
chitecture,1 which uses a globally asynchro-
nous, locally synchronous (GALS) clocking
style,2,3 permits future aggressive frequency
increases, maintains a synchronous design
methodology, and exploits the trend of mak-
ing functional blocks more autonomous. In
MCD, each processor domain is internally
synchronous, but domains operate asynchro-
nously with respect to one another. Design-
ers still apply existing synchronous design
techniques to each domain, but global clock
skew is no longer a constraint. Moreover,

domains can have independent voltage and
frequency control, enabling dynamic voltage
scaling at the domain level.

Global dynamic voltage scaling already
appears in many systems and can help reduce
power dissipation for rate-based and partial-
ly idle workloads. An MCD architecture can
save power even during intensive computa-
tion by slowing domains that are compara-
tively unimportant to the application’s current
critical path, even when it is impossible to
completely gate off those domains. The dis-
advantage is the need for interdomain syn-
chronization, which, because of buffering,
out-of-order execution, and superscalar data
paths, has a relatively minor impact on over-
all performance, less than 2 percent.4

MCD potentially has a significant energy
advantage with only modest performance cost,
if the frequencies and voltages of the various

Grigorios Magklis
Intel

Greg Semeraro
Rochester Institute of

Technology

David H. Albonesi
Steven G. Dropsho

Sandhya Dwarkadas
Michael L. Scott

University of Rochester

MULTIPLE CLOCK DOMAINS IS ONE SOLUTION TO THE INCREASING PROBLEM

OF PROPAGATING THE CLOCK SIGNAL ACROSS INCREASINGLY LARGER AND

FASTER CHIPS. THE ABILITY TO INDEPENDENTLY SCALE FREQUENCY AND

VOLTAGE IN EACH DOMAIN CREATES A POWERFUL MEANS OF REDUCING

POWER DISSIPATION.

DYNAMIC FREQUENCY AND
VOLTAGE SCALING FOR A

MULTIPLE-CLOCK-DOMAIN
MICROPROCESSOR

Published by the IEEE Computer Society 0272-1732/03/$17.00 2003 IEEE

domains assume appropriate values at appro-
priate times.1 Designers can implement this
control function completely online in hard-
ware, making it transparent to the user and sys-
tem software.4 Online control is useful in
environments where legacy applications must
run without modification, or significant user
involvement is undesirable. Otherwise, profil-
ing and instrumentation of the application
provides a more global view of the program
than in a hardware implementation, and has
the potential to provide better results, if the
behavior observed during the profiling run is
consistent with that occurring in production.5

This article briefly summarizes both of these
approaches and compares their performance
against a near-optimal offline technique.

MCD microarchitecture
The MCD microarchitecture1 consists of

four different on-chip clock domains, shown
in Figure 1, each with independent control of
frequency and voltage. In choosing the
boundaries among domains, we identified
points where

• there already existed a queue structure

that decoupled different pipeline func-
tions or

• relatively little interfunction communi-
cation occurred.

Main memory is external to the processor,
and we can view it as a fifth domain that
always runs at full speed.

We based our frequency and voltage-scal-
ing model on the Intel XScale processor (as
described by L.T. Clark in the short course
“Circuit Design of Xscale Microprocessors,”
at the 2001 Symp. VLSI Circuits). The XScale
continues to execute through the voltage/fre-
quency change. There is, however, a substan-
tial delay before the change becomes fully
effective.

Key to MCD’s fine-grained adaptation is effi-
cient, on-chip voltage scaling circuitry, a rapid-
ly emerging technology. New microinductor
technologies are paving the way for highly-effi-
cient, on-chip, buck converters.6 This circuit
technology should be mature enough for com-
mercialization within the next few years, and
the MCD microarchitecture, including the volt-
age control algorithms we present, will be ready
to take advantage of the technology.

63NOVEMBER–DECEMBER 2003

Front end

Integer unit Floating-point unit

Memory

Main memory

External memory

Integer issue queue

Integer ALUs and register file

Floating-point issue queue

Floating-point ALUs and register file

Fetch unit

L1
instruction

cache

ROB, rename, dispatch
L2 cache

Load/store unit

L1 data cache

Figure 1. MCD processor block diagram.

Online control algorithm
Analysis of processor resource utilization

reveals a correlation, over an interval of
instructions, between the valid entries in the
input queue (for each of the integer, floating-
point, and load/store domains) and the
desired frequency for the domain. This cor-
relation follows from considering the instruc-
tion processing core as the domain queue’s
sink and the front end as the source. Queue
utilization indicates the rate at which instruc-
tions flow through the core; if utilization
increases, instructions are not flowing fast
enough. Queue utilization is thus an appro-
priate metric for dynamically determining the
desired domain frequency (except in the front-
end domain, which the online algorithm does
not attempt to control).

This correlation between issue queue utiliza-
tion and desired frequency is not without chal-
lenges. Notable among them is that changes in
a domain’s frequency might affect the issue
queue utilization of that domain and possibly
others. This interaction among the domains is
a potential source of error that might degrade
performance beyond acceptable thresholds or
lead to lower-than-expected energy savings.
Interactions might lead to instability in domain
frequencies, as changes in the other domains
influence each particular domain.

The online algorithm consists of two com-
ponents that act independently but coopera-
tively. The result is a frequency curve that
approximates the envelope of the queue uti-
lization curve, creating a small performance
degradation and a significant energy savings.
In general, an envelope detection algorithm
reacts quickly to sudden changes in the input
signal (queue utilization, in this case). In the
absence of significant changes, this algorithm
slowly decreases the controlling parameter.

Such an approach represents a feedback
control system. For a control system, if the
plant (the entity under control) and the con-
trol point (the parameter being adjusted) are
linearly related, then the system will be stable,
and the control point will correctly adjust to
changes in the plant. Because of the rapid
adjustments necessary for significant changes
in utilization and the otherwise slow adjust-
ments, we call the approach an attack/decay
algorithm.4 The attack-decay-sustain-release
(ADSR) envelope-generating techniques in

signal processing and signal synthesis inspired
this algorithm.7

The MCD architecture employs the
attack/decay algorithm independently in each
back-end domain. The hardware counts the
entries in the domain issue queue over a
10,000-instruction interval. Using that num-
ber and the corresponding number from the
prior interval, the algorithm determines if
there has been a significant change (a thresh-
old of 1.75 percent), in which case the algo-
rithm uses the attack mode: The frequency
changes (up or down as appropriate) by a
modest amount (6 percent). If no significant
change occurs or if there is no activity in the
domain, the algorithm uses the decay mode:
It decreases the domain frequency slightly
(0.175 percent).

In all cases, if the overall instructions per
cycle (IPC) changes by more than a certain
threshold (2.5 percent), the frequency remains
unchanged for that interval. This convention
identifies natural decreases in performance
that are unrelated to the domain frequency
and prevents the algorithm from reacting to
them. Thresholding tends to reduce the inter-
action of a domain with adjustments in other
domains. The IPC performance counter is the
only global information that is available to all
domains.

To protect against settling at a local mini-
mum when a global minimum exists, the algo-
rithm forces an attack whenever a domain
frequency has been at one extreme or the other
for 10 consecutive intervals. This is a com-
mon technique to apply when a control sys-
tem reaches an end point and the
plant/control relationship becomes undefined.

Profile-based control algorithm
The profile-based control algorithm has

four phases: It

• uses standard performance profiling tech-
niques to identify subroutines and loop
nests that run long enough to justify
reconfiguration;

• constructs a directed acyclic graph
(DAG) that represents dependences
among domain operations in these long-
running fragments of code, and distrib-
utes the slack in the DAG to minimize
energy;

64

MICRO TOP PICKS

IEEE MICRO

• uses per-domain histograms of operating
frequencies to identify, for each long-run-
ning code fragment, the minimum fre-
quency for each domain that would
permit execution to complete within a
fixed slow-down bound; and

• edits the application’s binary code to
embed path-tracking and reconfiguration
instructions that will instruct the hardware
to adopt appropriate frequencies at appro-
priate times during production runs.

Choosing reconfiguration points
Phase one uses a binary editing tool8 to

instrument subroutines and loops. When the
instrumented binary executes, it counts when
each subroutine or loop executes in a given
context. In the most general case we consid-
ered, a call tree that captures all call sites
between the main and the current point of
execution can represent a context. The call
tree differs from the static call graph that many
compilers construct because it has a separate
node for every path over which a given sub-
routine is reachable (it will also be missing any
nodes that the profiling tool did not
encounter during its run). The call tree is not
a true dynamic call trace, but a compressed
one, which superimposes multiple instances
of the same path. For example, if the program
calls a subroutine from inside a loop, this loop
will have the same call history every time, and
can be represented by a single node in the tree,
even though the program might have actual-
ly called it many times.

After running the binary code and collect-
ing its statistics, we annotate each tree node
with the dynamic instances and the total
instructions executed, from which we can cal-
culate the average instructions per instance
(including instructions executed in the node’s
children). We then identify all nodes that run
long enough (10,000 instructions or more) for
a frequency change to take effect and to have
a potential impact on energy consumption.

Starting from the leaves and working up,
we identify all nodes whose average instance
(excluding instructions executed in long-run-
ning children) exceeds 10,000. Figure 2 shows
a call tree; the long-running nodes are shaded.
Note that these nodes, taken together, are
guaranteed to cover almost all of the applica-
tion history in the profiled run.

The shaker algorithm
To select frequencies and corresponding

voltages for long-running tree nodes, we run
the application through a heavily modified
version of the SimpleScalar/Wattch tool kit,9,10

with all clock domains at full frequency. Dur-
ing this run, in phase two, we collect a trace of
all primitive events (temporally contiguous
work performed within a single hardware unit
on behalf of a single instruction), and the
functional and data dependences among these
events. The trace output is a dependence
DAG for each long-running node in the call
tree. Working from this DAG, the shaker
algorithm attempts to “stretch” (make longer
in time) individual events that are not on the

65NOVEMBER–DECEMBER 2003

5K

H

4K

I

3K

J

6K

K

20K

8K

G

20K

F

29K 4K

L

1K

M

2K

N

50K 19K

75K

B

D

C

A

E

Figure 2. Call tree with associated instruction counts. The shaded nodes are candidates for
reconfiguration.

application’s critical execution path, as if they
could run at their own, event-specific, lower
frequency.

Whenever an event in a dependence DAG
has two or more incoming arcs, it is likely that
one arc constitutes the critical path and that
the others will have slack. Slack indicates that
the previous operation completed earlier than
necessary. If all of the outgoing arcs of an event
have slack, then we have an opportunity to
save energy by performing the event at a lower
frequency. With each event in the DAG, we
associate a power factor whose initial value is
based on the relative power consumption of
the corresponding clock domain in our
processor model. When we stretch an event,
we scale its power factor accordingly.

The shaker tries to distribute slack as uni-
formly as possible. It begins at the end of the
DAG and works backward. When it encoun-
ters a stretchable event whose power factor
exceeds the current threshold (originally set
to be slightly below that of the few most
power-intensive events in the graph) the shak-
er scales the event until it either consumes all
the available slack or its power factor drops
below the current threshold. If any slack
remains, the event moves later, so that as much
slack as possible occurs at its incoming edges.

When the shaker reaches the beginning of
the DAG, it reverses direction, reduces its
power threshold by a small amount, and makes
a new pass forward through the DAG, scaling
high-power events and moving slack to out-
going edges. It repeats this back-and-forth
process until all the available slack is con-
sumed, or until all the events adjacent to slack
edges have been scaled to the minimum per-
missible frequency. When it completes its
work, the shaker constructs a per-domain sum-
mary histogram that indicates, for each of the
frequency steps, the total cycles for events in
the domain that have been scaled to run at or
near that frequency. A combination of the his-
tograms for multiple dynamic instances of the
same tree node then becomes the input to the
slow-down thresholding algorithm.

Slow-down thresholding
Phase three recognizes that we cannot in

practice scale the frequency of individual
events: We must scale each domain as a whole.
If we are willing to tolerate a small perfor-

mance degradation, d, we can choose a fre-
quency that causes some events to run slower
than ideal. Using the histograms generated by
the shaker algorithm, we choose a frequency
based on all the events in higher bins of the
histogram. For the chosen frequency, the extra
time necessary to execute those events must
be less than or equal to d percent of the total
time required to execute all the events in the
node, run at their ideal frequencies.

Application editing
In phase four, to effect the reconfigurations

chosen by the slow-down thresholding algo-
rithm, we must insert code at the beginning
and end of each long-running subroutine or
loop. Although the instrumentation overhead
necessary to track the full definition of con-
text is low (about 9 extra cycles for each
10,000-instruction interval, plus 8 more
cycles if the frequency requires changing),
simply tracking the program counter yields
results that are almost as accurate as in this full
definition.

The results we present associate a single
desired frequency with each long-running sub-
routine or loop, regardless of calling context.
At the beginning of each such code fragment,
the instrumented binary writes a statically
known frequency into an MCD hardware
reconfiguration register. More complex defin-
itions of context require additional instru-
mentation as well as a lookup table containing
the frequencies chosen by the slow-down
thresholding algorithm of phase three.5

Results
We assume a processor microarchitecture

similar to that of the Alpha 21264 with a fre-
quency range of 250 MHz to 1 GHz and a cor-
responding voltage range of 0.65 V to 1.2 V.
Traversing the entire voltage range requires 55
µs. We select applications from the Media-
Bench and SPEC CPU2000 suites. For the
profile-based approach, we use a smaller train-
ing input data set during profiling, but gather
final results using the larger reference data set.

The MCD processor has an inherent per-
formance penalty of less than 2 percent com-
pared to its globally clocked counterpart, and
an energy penalty of about 1 percent. Figure
3 shows energy × delay improvements for the
online and profile-based algorithms relative

66

MICRO TOP PICKS

IEEE MICRO

to this baseline MCD processor with no volt-
age control. We obtain the so-called offline
results with perfect future knowledge.1

For all three control strategies, the average
performance degradation (not shown) is
approximately 7 percent. The online algo-
rithm achieves a significant overall energy ×
delay improvement, about 17 percent,
although its reactive nature results in a slight
degradation for one benchmark. As expected,
profiling yields better and more consistent
results, about a 27 percent overall energy ×
delay improvement, nearly matching that of
the omniscient offline algorithm.

The MCD approach alleviates many of the
bottlenecks of fully synchronous systems,

while exploiting proven synchronous design
methodologies. The union of the MCD
microarchitecture with emerging on-chip volt-
age scaling technology permits fine-grained
voltage scaling that is broadly applicable. Both
the online and profile-based techniques that
we have developed exploit this capability to
provide significant energy savings. MICRO

References
1. G. Semeraro et al., “Energy-Efficient

Processor Design Using Multiple Clock
Domains with Dynamic Voltage and Fre-
quency Scaling,” Proc. 8th Int’l Symp. High-
Performance Computer Architecture (HPCA

02), IEEE CS Press, 2002, pp. 29-40.
2. D.M. Chapiro, “Globally Asynchronous

Locally Synchronous Systems,” PhD thesis,
Stanford Univ., 1984.

3. A. Iyer and D. Marculescu, “Power and Per-
formance Evaluation of Globally Asynchro-
nous Locally Synchronous Processors,”
Proc. 29th Int’l Symp. Computer Architec-
ture (ISCA 02), IEEE CS Press, 2002, pp.
158-170.

4. G. Semeraro et al., “Dynamic Frequency
and Voltage Control for a Multiple Clock
Domain Microarchitecture,” Proc. 35th Ann.
IEEE/ACM Int’l Symp. Microarchitecture
(MICRO-35), IEEE CS Press, 2002, pp. 356-
370.

5. G. Magklis et al., “Profile-based Dynamic
Voltage and Frequency Scaling for a Multi-
ple Clock Domain Microprocessor,” Proc.
30th Int’l Symp. Computer Architecture
(ISCA 03), ACM Press, 2003, pp. 14-27.

6. V. Kursun et al., “Analysis of Buck Convert-
ers for On-Chip Integration with a Dual Sup-
ply Voltage Microprocessor,” IEEE Trans.
VLSI Systems, vol. 11, no. 3, June 2003, pp.
514-522.

7. K. Jensen, “Envelope Model of Isolated
Musical Sounds,” Proc. 2nd COST G-6
Workshop on Digital Audio Effects
(DAFx99), Norwegian University of Science
and Technology, 1999, pp. W99-1–W99-5.

8. A. Eustace and A. Srivastava, “ATOM: A

67NOVEMBER–DECEMBER 2003

Online
Offline
Profile-based

45

40

35

30

25

20

P
er

ce
nt

ag
e

 im
pr

ov
em

en
t

15

10

5

0

−5

ad
pc

m
_d

ec
od

e

ad
pc

m
_e

nc
od

e

ep
ic

_d
ec

od
e

ep
ic

_e
nc

od
e

g7
21

_d
ec

od
e

g7
21

_e
nc

od
e

gs
m

_d
ec

od
e

gs
m

_e
nc

od
e

jp
eg

_d
ec

od
e

jp
eg

_e
nc

od
e

m
pe

g2
_d

ec
od

e

m
pe

g2
_e

nc
od

e

gz
ip

vp
r

m
cf

sw
im

ap
pl

u

ar
t

eq
ua

ke

av
er

ag
e

Figure 3. Energy × delay improvement results.

Flexible Interface for Building High Perfor-
mance Program Analysis Tools,” Proc.
Usenix 1995 Technical Conf., Usenix Assoc.,
1995, pp. 303-314.

9. D. Brooks, V. Tiwari, and M. Martonosi,
“Wattch: A Framework for Architectural-
Level Power Analysis and Optimizations,”
Proc. 27th Int’l Symp. Computer Architecture
(ISCA 00), IEEE CS Press, 2000, pp. 83-94.

10. D. Burger and T. Austin, The SimpleScalar
Tool Set, Version 2.0, technical report CS-
TR-97-1342, Computer Science Dept., Univ.
of Wisconsin, June 1997.

Grigorios Magklis is a researcher at the Intel-
UPC Barcelona Research Center. His research
interests include architecture, operating sys-
tems, application analysis, and tools. Magklis
is a PhD candidate and has an MSc in com-
puter science from the University of Rochester.
He is a member of the ACM and IEEE.

Greg Semeraro is an assistant professor in the
Department of Computer Engineering at the
Rochester Institute of Technology. His
research interests include the modeling, analy-
sis, and simulation of microarchitecture; dig-
ital and real-time systems; and nonlinear
control systems. Semeraro has a PhD in elec-
trical and computer engineering from the
University of Rochester. He is a member of
the IEEE Computer Society, the IEEE Edu-
cation Society, and the American Society for
Engineering Education.

David H. Albonesi is an associate professor in
the Department of Electrical and Computer
Engineering at the University of Rochester.
His research interests include microarchitec-
ture with an emphasis on adaptive architec-
tures, power-aware computing, and
multithreading. Albonesi has a PhD from the
University of Massachusetts at Amherst. He is
a senior member of the IEEE, and a member
of the IEEE Computer Society and the ACM.

Steven G. Dropsho is a postdoctoral
researcher in the Department of Computer
Science at the University of Rochester. His
research interests include architecture, power
efficiency, and parallel and distributed sys-
tems. Dropsho has a PhD in computer sci-
ence from the University of Massachusetts at
Amherst. He is a member of the IEEE Com-
puter Society and the ACM.

Sandhya Dwarkadas is an associate professor
in the Department of Computer Science at the
University of Rochester. Her research interests
include parallel and distributed computing,
computer architecture, and networks, and the
interactions among and interfaces between the
compiler, runtime system, and underlying
architecture. Dwarkadas has a PhD in electri-
cal and computer engineering from Rice Uni-
versity. She is a member of the IEEE, the IEEE
Computer Society, and the ACM.

Michael L. Scott is a professor of computer
science at the University of Rochester. His
research interests include operating systems,
languages, architecture, and tools, with a par-
ticular emphasis on parallel and distributed
systems. He has a PhD in computer sciences
from the University of Wisconsin-Madison.
He is a member of the IEEE, the IEEE Com-
puter Society, and the ACM.

Direct questions and comments about this
article to David H. Albonesi, Computer Stud-
ies Bldg., University of Rochester, PO Box
270231, Rochester, NY 14627-0231;
albonesi@ece.rochester.edu.

For further information on this or any other
computing topic, visit our Digital Library at
http://www.computer.org/publications/dlib.

68

MICRO TOP PICKS

IEEE MICRO

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

