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Abstract

Increasingly, Internet-level distributed systems are ori-
ented as much toward information access as they are toward
computation. From computer-supported collaborative work
to peer-to-peer computing, e-commerce, and multi-player
games—even web caching and Internet chat—applications
devote a significant fraction of their code to maintaining
shared state: information that has dynamic content but rel-
atively static structure, and that is needed at multiple sites.
We argue that tools to automatically manage shared state
have the potential to dramatically simplify the construction
of distributed applications and, in important cases, to im-
prove their performance as well. We discuss the charac-
teristics that such tools must possess, placing them in the
context of past work on distributed file systems, distributed
object systems, and software distributed shared memory. We
present the InterWeave system as a prototype implementa-
tion, and discuss its strengths and limitations.

1. Introduction

Most Internet-level applications are distributed not for
the sake of parallel speedup, but rather to access peo-
ple, data, and devices in geographically disparate loca-
tions. Increasingly, these programs are oriented as much
toward information access as they are toward computation.
E-commerce applications make business information avail-
able regardless of location. Computer-supported collabora-
tive work allows colleagues at multiple sites to share project
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design and management data. Multi-player games main-
tain a distributed virtual environment. Peer-to-peer systems
are largely devoted to indexing and lookup of a continu-
ally evolving distributed store. Even in the scientific com-
munity, so-called GRID computing [10] is as much about
finding and accessing remote data repositories as it is about
utilizing multiple computing platforms.

We believe that distributed systems will continue to
evolve toward data-centric computing. We envision a fu-
ture, for example, in which users enjoy continuous access
to an “intuitive” digital assistant that manages all their data,
models their intent, and suggests or carries out actions likely
to satisfy that intent.1 Like today’s PDAs, an intuitive as-
sistant will have an interface that travels with the user, but
unlike these devices it will continuously monitor its envi-
ronment, offload expensive computations, and access infor-
mation spread across the Internet. In effect, the PDA of the
future will serve as the hub of a sophisticated distributed
system with enormous amounts of shared state: sound and
video recordings of the physical environment, records of
past experience, and commonsense and task-specific knowl-
edge bases.

Today’s systems employ a variety of mechanisms that
might underlie distributed shared state. At one extreme
are distributed file and database systems such as AFS [19],
Lotus NotesTM , CVS [3], or OceanStore [16]. For the most
part these are oriented toward external (byte-oriented) data
representations, with a narrow, read-write interface, and
structure imposed by convention. Data in these systems
must generally be converted to and from an in-memory rep-
resentation in order to be used in programs. At the other
extreme, distributed object systems such as CORBA [18],
.NETTM , PerDiS [9], Legion [11], and Globe [23] present
data in a structured, high-level form, but require that pro-

1For further discussion of this topic, see
www.cs.rochester.edu/research/intuitive/.
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grams employ an object-oriented programming style. While
some of these systems do allow caching of objects at multi-
ple sites, performance can be poor.

By contrast, the shared memory available within cache-
coherent multiprocessors allows processes to share arbitrar-
ily complex structured data safely and efficiently, with ordi-
nary reads and writes. Many researchers (ourselves among
them) have developed software distributed shared memory
(S-DSM) systems to extend this programming model into
message-based environments [1, 17, 21]. Object-based sys-
tems can of course be implemented on top of shared mem-
ory, but the lower-level interface suffices for many applica-
tions.

Unfortunately, despite some 15 years of research,
S-DSM remains for the most part a laboratory curiosity.
The explanation, we believe, lies with the choice of appli-
cation domain. The S-DSM community has placed most
of its emphasis on traditional parallel programming: scien-
tific applications running on low-latency networks of homo-
geneous machines, with a single protection domain, usu-
ally a single programming language, and a primitive (ev-
erything lives or dies together) failure model. Within this
narrow framework, S-DSM systems provide an upward mi-
gration path for applications originally developed for small
cache-coherent multiprocessors, but the resulting perfor-
mance on clusters of up to a dozen nodes (a few dozen
processors), while good, does not lead us to believe that
S-DSM will scale sufficiently to be competitive with hand-
written message-passing code for large-scale parallel com-
puting.

As an abstract concept, we believe that shared memory
has more to offer to distributed computing than it does to
parallel computing. For the sake of availability, scalabil-
ity, latency, and fault tolerance, most distributed applica-
tions cache information at multiple sites. To maintain these
copies in the face of distributed updates, programmers typi-
cally resort to ad-hoc messaging protocols that embody the
coherence and consistency requirements of the application
at hand. The code devoted to these protocols often accounts
for a significant fraction of overall application size and com-
plexity, and this fraction is likely to increase. We see the
management of shared state as ripe for automation.

Distributed applications should be able to share program
variables as easily as people share web pages. Like hard-
ware cache coherence, or S-DSM within clusters, a system
for distributed shared state should provide a uniform name
space, and should maintain coherence and consistency auto-
matically. Unlike these more tightly coupled systems, how-
ever, it should address concerns unique to wide area distri-
bution:

• Names should be machine-independent, but cached
copies should be accessed with ordinary reads and
writes.

• Sharing should work across a wide variety of program-
ming languages and hardware architectures.

• Shared data should be persistent, outliving individual
executions of sharing applications.

• Coherence and consistency models should match the
(generally very relaxed) requirements of applications.
From a performance perspective, users should not be
forced to pay for unnecessary communication; from a
semantic perspective, they should be able to control the
points at which updates become visible to others.

• Important optimizations, of the sort embodied by
hand-tuned ad-hoc coherence protocols, should be ex-
plicitly supported, in a form that allows the user to
specify high-level requirements rather than low-level
implementations.

By replacing ad-hoc protocols, we believe that automatic
distributed shared state can dramatically simplify the con-
struction of many distributed applications. Java and C# pro-
grammers routinely accept the overhead of byte code inter-
pretation in order to obtain the conceptual advantages of
portability, extensibility, and mobile code. Similarly, we
believe that many developers would be willing to accept
a modest performance overhead for the conceptual advan-
tages of shared state, if it were simple, reliable, and portable
across languages and platforms. By incorporating optimiza-
tions that are often too difficult to implement by hand, au-
tomatic distributed shared state may even improve perfor-
mance in important cases.

We see shared state as entirely compatible with program-
ming models based on remote invocation. In an RPC/RMI-
based program, shared state serves to

• eliminate invocations devoted to maintaining the co-
herence and consistency of cached data;

• support genuine reference parameters in RPC calls,
eliminating the need to pass large structures repeat-
edly by value, or to recursively expand pointer-rich
data structures using deep-copy parameter modes;

• reduce the number of trivial invocations used simply to
put or get data.

These observations are not new. Systems such as Emer-
ald [13], Amber [4], and PerDiS have long employed shared
state in support of remote invocation in homogeneous
object-oriented systems. Clouds [8] integrated S-DSM into
the operating system kernel in order to support thread mi-
gration for remote invocation. Working in the opposite di-
rection, Koch and Fowler [14] integrated message passing
into the coherence model of the TreadMarks S-DSM sys-
tem. Kono et al. [15] support reference parameters and



caching of remote data during individual remote invoca-
tions, but with a restricted type system, and with no pro-
vision for coherence across calls.

RPC systems have long supported automatic deep-copy
transmission of structured data among heterogeneous lan-
guages and machine architectures [12, 25], and modern
standards such as XML provide a language-independent no-
tation for structured data. To the best of our knowledge,
however, no one to date has automated the typesafe sharing
of structured data in its internal (in-memory) form across
multiple languages and platforms, or optimized that sharing
for distributed applications. We propose to do so.

Over the past three years we have developed the Inter-
Weave system to manage distributed shared state. Inter-
Weave allows programs written in multiple languages to
map persistent shared segments into their address space, re-
gardless of Internet address or machine type, and to access
the data in those segments transparently and efficiently once
mapped. InterWeave currently runs on Alpha, Sparc, x86,
MIPS, and Power series processors, under Tru64, Solaris,
Linux, Irix, AIX, and Windows NT (XP). Currently sup-
ported languages are C, C++, Java, Fortran 77, and Fortran
90. Driving applications include datamining, intelligent dis-
tributed environments, and scientific visualization.

The following section provides a brief overview of the
InterWeave programming model, touching on naming and
persistence, language and machine heterogeneity, user-
visible optimizations, remaining open questions, and pro-
totype performance. Section 3 describes our current status
and plans, including application development.

2. InterWeave

In keeping with the goals discussed in Section 1, Inter-
Weave aims to support simple, safe, and efficient shar-
ing of state among distributed applications. Within each
client process, this state takes the form of ordinary global
and heap-allocated variables, with layout in memory ap-
propriate to the local programming language and machine
architecture. Unlike shared variables in a cache-coherent
multiprocessor, however, data shared in InterWeave have
uniform, Internet-wide names (based on URLs), and out-
live the executions of individual processes. They are
grouped together into versioned segments, protected by
reader-writer locks. The underlying implementation in-
corporates a wide variety of performance-enhancing op-
timizations [5, 6, 22]. Two higher-level optimizations—
specification of coherence/consistency semantics and re-
finement of segment views [7]—are available to the user for
additional performance tuning.

Each segment in InterWeave takes the form of a self-
descriptive heap within which programs allocate strongly
typed blocks of memory at run time. (Blocks may also be

statically allocated, and associated with named global vari-
ables. This mechanism is essential for Fortran 77, but can be
used in other languages as well.) Every segment is specified
by an Internet URL. The blocks within a segment are num-
bered and optionally named. By concatenating the segment
URL with a block name or number and optional offset (de-
limited by pound signs), we obtain a machine-independent
pointer (MIP): “foo.org/path#block#offset”. To
accommodate heterogeneous data formats, offsets are mea-
sured in primitive data units—characters, integers, floats,
etc.—rather than in bytes.

Every segment is managed by an InterWeave server
associated with the segment’s URL. Different segments
may be managed by different servers. Client programs
obtain access to segments by making calls to the Inter-
Weave library. Assuming appropriate access rights, the
IW open segment() call communicates with the appro-
priate server to open an existing segment or to create a new
one if the segment does not yet exist. The call returns an
opaque handle that can be passed as the initial argument in
calls to IW malloc().

As in multi-language RPC systems, the types of shared
data in InterWeave must be declared in an interface descrip-
tion language (IDL). The InterWeave IDL compiler trans-
lates these declarations into the appropriate programming
language(s). It also creates initialized type descriptors that
specify the layout of the types on the specified machine.
The descriptors must be registered with the InterWeave li-
brary prior to being used, and are passed as the second argu-
ment in calls to IW malloc(). These conventions allow
the library to translate to and from a machine-independent
wire format, ensuring that each type will have the appropri-
ate machine-specific byte order, alignment, etc. in locally
cached copies of segments [22].

Synchronization takes the form of reader-writer locks. A
process must hold a writer lock on a segment in order to
allocate, free, or modify blocks. The lock routines take a
segment handle as parameter.

Given a pointer to a block in an InterWeave segment, or
to data within such a block, a process can create a corre-
sponding MIP:

IW_mip_t m = IW_ptr_to_mip(p);

This MIP can then be passed to another process through a
message, a file, or a parameter of a remote procedure. Given
appropriate access rights, the other process can convert back
to a machine-specific pointer:

my_type *p = (my_type*)IW_mip_to_ptr(m);

The IW mip to ptr() call reserves space for the
specified segment if it is not already locally cached (com-
municating with the server if necessary to obtain layout in-
formation for the specified block), and returns a local ma-
chine address. Actual data for the segment will not be



copied into the local machine unless and until the segment
is locked.

It should be emphasized that IW mip to ptr() is pri-
marily a bootstrapping mechanism. Once a process has one
pointer into a data structure, any data reachable from that
pointer can be directly accessed in the same way as lo-
cal data, even if embedded pointers refer to data in other
segments. InterWeave’s pointer-swizzling [24] and data-
conversion mechanisms ensure that such pointers will be
valid local machine addresses. It remains the programmer’s
responsibility to ensure that segments are accessed only un-
der the protection of reader-writer locks.

When modified by clients, InterWeave segments move
over time through a series of internally consistent states.
When a process first locks a shared segment (for either read
or write), the InterWeave library obtains a copy from the
segment’s server. At each subsequent read-lock acquisition,
the library checks to see whether the local copy of the seg-
ment is “recent enough” to use [6]. If not, it obtains an up-
date from the server. Twin and diff operations [2], extended
to accommodate heterogeneous data formats [22], allow the
implementation to perform an update (or to deliver changes
to the server at the time of a write lock release) in time pro-
portional to the fraction of the data that has changed.

Further performance optimizations can be effected by
the InterWeave user through the use of user-specified coher-
ence models. This is in keeping with the goal of allowing
the user to specify high-level requirements rather than deal
with low-level implementation issues. Coherence models
can be specified in both the temporal and the spatial do-
main. In the temporal domain, InterWeave currently sup-
ports six different definitions of “recent enough”. It is also
designed in such a way that additional definitions (coher-
ence models) can easily be added. Among the current mod-
els, Full coherence (the default) always obtains the most re-
cent version of the segment; Strict coherence obtains the
most recent version and excludes any concurrent writer;
Null coherence always accepts the currently cached version,
if any (the process must explicitly override the model on an
individual lock acquire in order to obtain an update); Delta
coherence [20] guarantees that the segment is no more than
x versions out-of-date; Temporal coherence guarantees that
it is no more than x time units out of date; and Diff-based
coherence guarantees that no more than x% of the primitive
data elements in the segment are out of date. In all cases, x

can be specified dynamically by the process. All coherence
models other than Strict allow a process to hold a read lock
on a segment even when a writer is in the process of creating
a new version. The Delta, Temporal, and Diff-based models
are reminiscent of the continuous consistency mechanism
developed independently by the TACT group at Duke [26].

In the spatial domain, InterWeave provides a view mech-
anism [7] that allows a process to indicate that it is inter-

ested in only a portion of the data in a segment. Under nor-
mal circumstances, InterWeave clients cache entire copies
of segments. If a client requires only a portion of the seg-
ment, however, it can specify that portion as its view. Sub-
sequent updates to other parts of the segment will not be
propagated to the local copy.

Views can be specified as either a set of (local) address
ranges or as the memory reachable (recursively) through a
set of pointers. We have used address-range views in a dis-
tributed object recognition system to allow a process to in-
spect (and pay for) only that portion of an image in which it
expects to find what it wants. We have used pointer-based
views in a remote datamining benchmark to cover the por-
tion of an itemset lattice below a given node.

2.1. Open Issues

As in any system that allows a process to lock resources,
we must decide whether it is acceptable to request a lock
that is already held. InterWeave currently associates a
counter with each segment, which it increments when a lock
is re-requested. A corresponding number of unlock opera-
tions are required before the lock is released back to the
server. Nested requests must employ the same coherence
model; inconsistent requests result in a run-time error. At
present we do not allow a read lock to be acquired on top of
a write lock, nor do we allow a write lock on top of a read
lock, even when using full or strict coherence.

Additional issues arise under more relaxed coherence
models. Suppose, for example, that process P acquires a
lock on segment A using temporal coherence, and the li-
brary verifies that the currently cached copy is (just barely)
recent enough to use. If P subsequently requests the same
lock on A, a repeat of the “recent enough” check might fail.
Rather than introduce the possibility of a run-time error, the
current version of InterWeave simply increments the lock
counter and continues.

More subtly, an attempt to acquire a lock may fail due
to inter-segment inconsistency. Suppose, for example, that
process P has acquired a read lock on segment A, and that
the InterWeave library determined at the time of the acquire
that the currently cached copy of A, though not completely
up-to-date, was recent enough to use. Suppose then that P
attempts to acquire a lock on segment B, which is not yet
locally cached. The library will contact B’s server to obtain
a current copy. If that copy was created using information
from a more recent version of A than the one currently in
use at P, a consistency violation has occurred. Users can dis-
able this consistency check if they know it is safe to do so,
but under normal circumstances the attempt to lock B must
fail. The problem is exacerbated by the fact that the infor-
mation required to track consistency (which segment ver-
sions depend on which?) is unbounded. InterWeave hashes



this information in a way that is guaranteed to catch all true
consistency violations, but introduces the possibility of spu-
rious apparent violations [6].

As a partial solution to the problems of deadlock and
of both real and spurious consistency violations, the Inter-
Weave API currently provides a mechanism to acquire a
set of locks together, allowing the implementation to ob-
tain mutually consistent copies of the segments as a sin-
gle operation. This mechanism, however, can be used only
when a process is able to determine in advance the full set of
locks it will need in order to complete an operation. If data
inspected under one lock may determine which of several
other locks may be required, deadlocks and inconsistency
can still arise.

As a more complete solution, especially for applica-
tions that rely on remote invocation, we are considering a
transaction-based API. Aborts and retries could then be
used to recover from deadlock or inconsistency, with auto-
matic undo of uncommitted segment updates. We have not
yet decided how ambitious to make our design: in partic-
ular, whether to support nested transactions. Similarly, we
have not yet decided whether or how to make inconsistent
internal states of a segment visible to a remote invocation’s
server when the caller holds a write lock.

2.2. Performance

In previous papers [6, 7, 22] we report on the perfor-
mance of InterWeave’s coherence/consistency, data trans-
lation, and view mechanisms. In our remote datamining
benchmark, transmitting diffs instead of entire segments re-
duces bandwidth requirements by a factor of 5. An addi-
tional factor of 4 can be obtained by using a relaxed co-
herence model, exploiting the ability of the application to
tolerate moderately stale data without compromising cor-
rectness. (This change can be effected by modifying a sin-
gle line of source code.) Yet another factor of 3–5 can be
obtained in certain experiments by specifying pointer-based
views.

When transmitting entire segments between clients, In-
terWeave achieves performance comparable to that of Sun
RPC, and more than 8 times faster than object serialization
in Sun’s JDK 1.3.1. When only a portion of a segment
has changed, InterWeave’s use of diffs allows it to scale
its overhead down, significantly outperforming the straight-
forward use of RPC/RMI. Similarly, in a remote invoca-
tion microbenchmark, reference parameter calls allow In-
terWeave to leverage automatic caching of data at an RPC
server, thereby consuming dramatically less communication
bandwidth than would be required for traditional deep-copy
value parameters.

3. Status and Plans

In this position paper we have argued that future dis-
tributed systems will increasingly be oriented toward access
to shared state. Mechanisms and middleware to automate
coherent caching of that state can, we believe, make ap-
plications significantly easier to write and maintain. They
can also increase performance in many cases by making
sophisticated optimizations available to less sophisticated
programs. Rochester’s InterWeave system provides an ef-
fective platform for experimentation in this area.

We are actively collaborating with colleagues in our own
and other departments to employ InterWeave in three prin-
cipal application domains: remote visualization and steer-
ing of scientific simulations, incremental interactive data
mining, and human-computer collaboration in richly instru-
mented physical environments. We also see InterWeave as
central to the vision of intuitive computing mentioned in
Section 1, for which it can provide the information sharing
infrastructure.

Within our own group we are using InterWeave for re-
search in efficient data dissemination across the Internet,
and in the partitioning of applications across mobile and
wired platforms. We are also working to improve Inter-
Weave’s scalability, fault tolerance, and location indepen-
dence, and to provide a shared-state infrastructure for in-
creasingly popular peer-to-peer applications.
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