
0018-9162/03/$17.00 © 2003 IEEE December 2003 49

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Dynamically Tuning
Processor Resources
with Adaptive
Processing

T he productivity of modern society has
become inextricably linked to its ability to
produce energy-efficient computing tech-
nology. Increasingly sophisticated mobile
computing systems, powered for hours

solely by batteries, continue to proliferate rapidly
throughout society, while battery technology
improves at a much slower pace. In large data cen-
ters that handle everything from online orders for
a dot-com company to sophisticated Web searches,
row upon row of tightly packed computers may be
warehoused in a city block. Microprocessor energy
wastage in such a facility directly translates into
higher electric bills. Simply receiving sufficient elec-
tricity from utilities to power such a center is no
longer certain. Given this situation, energy effi-
ciency has rapidly moved to the forefront of mod-
ern microprocessor design.

The adaptive processing approach to improving
microprocessor energy efficiency dynamically tunes
major microprocessor resources—such as caches
and hardware queues—during execution to better
match varying application needs.1,2 This tuning usu-
ally involves reducing the size of a resource when its
full capabilities are not needed, then restoring the
disabled portions when they are needed again.
Dynamically tailoring processor resources in active
use contrasts sharply with techniques that simply
turn off entire sections of a processor when they

become idle. Presenting the application with the
required amount of hardware—and nothing more—
throughout its execution can achieve a potentially
significant reduction in energy consumption.

The challenges facing adaptive processing lie in
achieving this greater efficiency with reasonable
hardware and software overhead, and doing so
without incurring undue performance loss. Unlike
reconfigurable computing, which typically uses very
different technology such as FPGAs, adaptive pro-
cessing exploits the dynamic superscalar design
approach that developers have used successfully in
many generations of general-purpose processors.
Whereas reconfigurable processors must demon-
strate performance or energy savings large enough
to overcome very large clock frequency and circuit
density disadvantages, adaptive processors typically
have baseline overheads of only a few percent.

VARYING APPLICATION BEHAVIOR
Application needs for particular hardware

resources—such as caches, issue queues, and
instruction fetch logic within a dynamic superscalar
processor—can vary significantly from application
to application and even within the different phases
of a given application. Several studies have demon-
strated this dynamic application behavior. Figure 1
shows the execution behavior of the SPEC95 ijpeg
application in an early study.3 The graphs show the

Using adaptive processing to dynamically tune major microprocessor
resources, developers can achieve greater energy efficiency with
reasonable hardware and software overhead while avoiding undue
performance loss.

David H.
Albonesi

Rajeev
Balasubramonian

Steven G.
Dropsho

Sandhya
Dwarkadas

Eby G. Friedman

Michael C.
Huang

Volkan Kursun

Grigorios
Magklis

Michael L. Scott

Greg Semeraro
University of
Rochester

Pradip Bose

Alper
Buyuktosunoglu

Peter W. Cook

Stanley E.
Schuster
IBM T.J. Watson
Research Center

50 Computer

interval parallelism, expressed as total committed
instructions over total cycles, achieved with every
set number of instructions. Each dot in Figure 1a
equals the interval parallelism for 2,000 instruc-
tions, while Figure 1b shows the interval paral-
lelism for 100 instructions. To isolate the limits to
parallelism to primarily those inherent in the appli-

cation, the machine being modeled has almost infi-
nite resources and perfect caches.

These graphs show multiple levels of phases.
Figure 1a demonstrates major phase shifts occur-
ring at the granularity of millions of instructions.
Figure 1b shows that within these major phases,
finer-grained phases last for up to tens of thousands
of instructions. Within these phases, parallelism
varies widely, and this variation affects the degree
to which the size of various hardware structures,
such as caches and issue queues, affects perfor-
mance.3 Within some phases, large structures pro-
vide clear benefits, while in others, much smaller
structures can achieve almost the same performance
while saving significant energy.

To exploit application variability at a finer-
grained level—at least 10,000 cycles in duration—
hardware monitoring and control must occur
relatively rapidly, on the order of 10 to 100 cycles,
to achieve the acceptable time overhead for adap-
tation in the range of 0.1 to 1 percent. This means
that although developers can perform coarser-
grained adaptations through the operating system,
they must incorporate finer-grained adaptations at
the hardware, compiler, and runtime system levels.

ADAPTIVE PROCESSING ELEMENTS
Figure 2 shows the elements of an adaptive pro-

cessing system. To prevent the costs of adaptive
processing from rivaling its energy advantages, the
feedback and control mechanisms must be kept
simple and the adaptive hardware overhead must
be nominal.1,2

Adaptive hardware structures
Chip designers organize adaptive hardware so

that they can rapidly change its complexity, usually
a function of its size or width, to fit current appli-
cation needs. Modern processor designs feature eas-
ily adaptable modular structures, such as caches
and issue queues.

Figure 3 shows a 32-entry adaptive-issue queue,
partitioned into four equal increments.4 Although
the system always enables the bottom increment of
eight entries, it enables the upper increments’ con-
tent-addressable memory and random-access mem-
ory arrays on demand, according to the application’s
needs. Transmission gates isolate the CAM and
RAM bitlines, while simple gates achieve this func-
tion for the taglines.

The designer also partitions the wake-up and
selection logic sections, the latter by simply gating
the select tree at the appropriate level depending
on the number of enabled increments. Given the

Figure 1. Interval parallelism for the SPEC95 benchmark ijpeg. Each dot in the
graph is the ratio of total committed instructions to total cycles for an interval of
(a) 2,000 instructions and (b) 100 instructions.

Figure 2. Elements of an adaptive processing system. The system adapts modular
hardware structures and uses simple feedback and control to reduce hardware
overhead.

coarse level of adaptation, Alper Buyuktosunoglu
and colleagues discovered that using such an adap-
tive structure in a high-end processor would not
affect clock frequency.4 The gate count and energy
overhead each increased by less than 3 percent.

Figure 4 shows one of the first proposed adaptive
instruction caches, the dynamically resizable I-
cache.5 The DRI-cache can disable individual cache
sets, thereby maintaining constant associativity. To
enable or disable the set, the DRI-cache uses an
extra high-threshold-voltage transistor for each
row of RAM cells—which corresponds to one
cache set.

The transistor is placed between the cells’ nor-
mal ground for an individual set and the actual
ground. A logic high on the transistor gate signal
enables this set. Otherwise, the set is disabled,
which significantly reduces its leakage current and
dynamic power. Despite this relatively fine-grained
voltage-gating approach, the DRI-cache’s area and
speed overhead are less than 8 percent. Disabling a
set reduces its leakage current by 97 percent, but
the contents are lost. A recently proposed alterna-
tive6 disables part of the cache by dynamically
switching to a lower voltage, thereby retaining
cache contents while achieving about the same
reduction in leakage power.

Feedback and control system
Because adaptive processing reduces the effective

size of hardware structures, some increase in exe-
cution cycles is almost inevitable. Thus, the feed-
back and control system seeks to maximize the
savings in energy while limiting any performance
loss below a specified level. This involves three
major functions: monitoring the adaptive hard-
ware, triggering a decision, and making the
decision.

Designers use either static or dynamic approaches
for each of these functions. Static approaches
involving the compiler take a broader view of the
entire program and permit simpler hardware.
However, the static information available at compile
time limits these approaches and requires recom-
piling the application or performing a binary
rewrite. Alternatively, dynamic approaches that
involve a combination of hardware and the runtime
system offer the advantages of providing dynamic
runtime information and the ability to run legacy
applications. However, they suffer from a more lim-
ited program view and incur overhead.

Monitoring. To guide reconfiguration decisions,
the monitoring system gathers statistics that infer
the effectiveness of the adaptive hardware struc-

tures the processor is controlling or that help iden-
tify program phase changes. The system can gather
these statistics in hardware each cycle, or it can use
sampling to reduce monitoring overhead.

Dmitry Ponomarev and colleagues7 proposed an
adaptive-issue queue that records the number of
valid queue entries at the end of a sample period
and averages them over a longer interval period.
The system uses this average value to determine
when to downsize the queue. Simultaneously, an
overflow counter tracks the number of cycles whose
dispatch is blocked due to a full queue. The system
uses this result to guide upsizing decisions. Although

December 2003 51

CAM

CAM

CAM

CAM

en3

en2

en3

en2

en1 en1

en2

en3

en1

Tagline

Se
le

ct
io

n
lo

gi
c

Precharge&SenseAmp

Transmission gate

Transmission gate

Transmission gate

Precharge&SenseAmp

Transmission gate

Transmission gate

Transmission gate

RAM

RAM

RAM

RAM

Re
ad

y
Re

ad
y

Re
ad

y
Re

ad
y

Bitline

Instruction ReadWake-up Logic

en1-3

Figure 3. Adaptive-issue queue. The 32-entry queue is partitioned into four equal
increments.

I-cache array

RAM cells

Enable
Virtual ground

... ...
Sets

V Tag Data

Figure 4. Dynamically resizable I-cache. The DRI-cache can disable individual
cache sets, thereby maintaining constant associativity.

52 Computer

simple to implement in hardware, these two statis-
tics can effectively guide reconfiguration decisions.

Daniele Folegnani and Antonio Gonzalez use
program parallelism statistics, rather than issue
queue usage, to guide reconfiguration decisions.8

Specifically, if the processor rarely issues instruc-
tions from the back of the queue—that portion of
the queue that holds the most recent instructions—
the system assumes the queue to be larger than nec-
essary and downsizes it. The system also periodi-
cally upsizes the queue at regular intervals to limit
performance loss.

Researchers commonly use cache miss rate to
guide cache configuration decisions. The DRI-
cache, for example, measures the average miss rate
over a set operation interval to determine whether
to change the cache size. As miss rate information
may already be available in microprocessor per-
formance counters, the system can essentially
acquire this statistic for free.

Compiler-based profiling offers an alternative to
hardware monitoring. With this approach, devel-

opers either instrument the application and run it
on the target machine to collect statistics, or they
run it on a detailed simulator to gather the statis-
tics. Michael Huang and his colleagues use the sim-
ulator approach to collect statistics about the
execution length of subroutines for phase detection.9

The application behavior observed during the
profiling run must be representative of the behavior
encountered in production. Because this assump-
tion may not hold for many general-purpose appli-
cations, and inexpensive hardware counters are
readily available in modern microprocessors or can
be added with modest overhead, hardware-based
monitoring is more frequently used in adaptive pro-
cessing.

Triggering. A microprocessor can use several
approaches to trigger a reconfiguration decision.
The first approach reacts to particular character-
istics of the monitored statistics. For example,
Ponomarev’s adaptive-issue queue scheme upsizes
the queue when the average number of valid queue
entries over the interval period is low enough that

A major challenge in adaptive processing is to determine when
to trigger an adaptation. To do this, we need to partition the
program into phases that behave differently enough to warrant
adaptation. Ideally, the behavior within each phase is homoge-
neous and predictable. The granularity of each phase should not
be too fine or too coarse. If it is too fine, transient states and
adaptation overheads can negate any gains. If it is too coarse, the
behavior probably is not homogeneous.

In the context of improving energy efficiency, we use low-
power techniques for adaptation. An LPT is a hardware struc-
ture that, if activated, typically saves energy at the expense of
some performance. The processor activates LPTs at the begin-
ning of a phase on the basis of their predicted effect.

We classify adaptation approaches based on how they exploit
program behavior repetition. The conventional temporal
approach1exploits the similarity between successive intervals of
code in dynamic order; the newer positional approach2 exploits the
similarity between different invocations of the same code section.

The two approaches activate and deactivate LPTs based on
different criteria. Specifically, temporal schemes divide the exe-
cution into time intervals and predict the upcoming interval’s
behavior based on previous intervals’ behavior. Positional
schemes, instead, associate program behavior with a particular
code section. Thus, a positional scheme tests LPTs on different
executions of the same code section. Once the positional scheme
determines the best configuration, it applies that configuration
on future executions of the same code section. This approach is
based on the intuition that program behavior is largely deter-
mined by the code being executed. Experimental analysis shows
that calibration is more accurate in the positional approach.2

Positional adaptation is also very flexible. We propose three

Managing Multiple Low-Power Adaptation Techniques: The Positional Approach
Michael C. Huang, University of Rochester
Jose Renau and Josep Torrellas, University of Illinois at Urbana-Champaign

SISD:

Static Dynamic
Decision: What to adapt

Dynamic

Static
Instrumentation:
When to adapt

SIDD:

DIDD:

Embedded or
specialized server

General-purpose

Highly dynamic

Figure A. Different implementations of positional adaptation and
targeted workload environments.

Figure B. Energy-delay tradeoff curve. Starting from left to right in
the E-D tradeoffs region, the positional scheme applies pairs until
the cumulative slowdown reaches the slack.

(Subi, LPTj)

40
0

Never apply

∆Dij

Slowdown

∆Eij

E-D tradeoffs

12

Speedup

Cu
m

ul
at

iv
e

en
er

gy
 s

av
in

gs

(p
er

ce
nt

)

Cumulative slowdown (percent)

3020

Always apply

15

3

6

9

100

a smaller configuration could have held the aver-
age number of instructions. The system can easily
determine this condition from the sampled aver-
age occupancy statistics, the queue’s current size,
and the possible queue configurations. To prevent
nonnegligible performance loss, the system upsizes
the queue immediately when the overflow counter
exceeds a preset threshold.

Another approach detects phase changes to trig-
ger reconfiguration decisions. Balasubramonian’s
adaptive memory hierarchy10 compares cache miss
rates and the branch counts of the last two inter-
vals. If the system detects a significant change in
either, it assumes that a phase change has occurred.
Ashutosh S. Dhodapkar and James E. Smith11

improve on this approach by triggering a phase
change in response to differences in working-set
signatures—compact approximations that repre-
sent the set of distinct memory elements accessed
over a given period. A significant difference in
working-set signatures constitutes a phase change.

Still another approach triggers a resource upsiz-

ing only when a large enough increase in perfor-
mance would be expected. This technique can be
used to upsize an adaptive-issue queue.12 A larger
instruction window permits the stall time of instruc-
tions waiting in the window to be overlapped with
the execution of additional ready instructions in the
larger window. However, if this overlap time is not
sufficiently large, upsizing the queue will provide
little performance benefit. The system estimates the
overlap time and uses it to trigger upsizing decisions.

Huang and colleagues proposed positional adap-
tation,9 which uses the program structure to iden-
tify major program phases. Specifically, as the
“Managing Multiple Low-Power Adaptation
Techniques: The Positional Approach” sidebar
describes, this approach uses either compile-time
or runtime profiling to select an appropriate con-
figuration for long-running subroutines. In the sta-
tic approach, a profiling run measures the total
execution time and the average execution time per
invocation of each subroutine. Developers identify
phases as subroutines with values for those quan-

December 2003 53

different implementations that target different workload envi-
ronments. They differ on which adaptation decisions they make
statically and which decisions they make at runtime.2 Specifically,
as Figure A shows, instrumentation (I) is the selection of when
to adapt the processor, and decision (D) is the selection of what
LPTs to activate or deactivate at that time. The system can make
each selection statically (S) before execution or dynamically (D)
at runtime. For example, an implementation can produce static
instrumentation and static decision (SISD).

The targeted environments are labeled as embedded or spe-
cialized server, general-purpose, and highly dynamic. In these
implementations, we use the program’s major subroutines as the
code section. The core control algorithm for all the implemen-
tations is essentially the same.

Tests of the different LPTs on different subroutines record the
impact on energy and performance for comparison with other
LPT and subroutine combinations. Specifically, we rank the pairs
in decreasing order of energy savings per unit slowdown.

Figure B shows this ranking for a sample application in a
system with several LPTs. The difference between the three
implementations is how much information they provide. The
more static schemes are more accurate because they have more
information thanks to offline profiling.

The origin in the figure corresponds to the system with no acti-
vated LPT. As we follow the curve, we add the contribution of all
subroutine-LPT pairs from most to least efficient, accumulating
energy reduction (y-axis) and execution slowdown (x-axis). As an
example, Figure B shows the contribution of a pair (subroutinei,
LPTj) that saves ∆Eij and slows down the program ∆Dij.

We divide the curve into three main regions based on the
results for each pair: improving both performance and energy

(Always apply), saving energy at the cost of performance degra-
dation (E-D tradeoffs), and degrading both energy and perfor-
mance (Never apply). As the names suggest, we apply all the
pairs in the first region and no pairs in the third region. Given a
slack—or tolerable performance degradation—we start from
left to right in the E-D tradeoffs region and apply pairs until the
cumulative slowdown reaches the slack. In two experiments, the
positional schemes boosted the energy savings by an average of
84 percent and 50 percent over several temporal schemes.2

References
1. R. Balasubramonian et al., “Memory Hierarchy Recon-

figuration for Energy and Performance in General-Purpose
Processor Architectures,” Proc. Int’l Symp. Microarchitecture,
IEEE CS Press, 2000, pp. 245-257.

2. M. Huang, J. Renau, and J. Torrellas, “Positional Adaptation of
Processors: Application to Energy Reduction,” Proc. Int’l Symp.
Computer Architecture, IEEE CS Press, 2003, pp. 157-168.

Michael C. Huang is an assistant professor in the Department
of Electrical and Computer Engineering, University of
Rochester. Contact him at michael.huang@ece.rochester.edu.

Jose Renau is a PhD candidate in the Computer Science
Department at the University of Illinois at Urbana-
Champaign. Contact him at renau@cs.uiuc.edu.

Josep Torrellas is a professor and Willett Faculty Scholar in the
Computer Science Department at the University of Illinois at
Urbana-Champaign. Contact him at torrellas@cs.uiuc.edu.

54 Computer

tities that exceed preset thresholds, then they instru-
ment the entry and exit points of these routines to
trigger a reconfiguration decision.

Making a decision. Once a trigger event occurs, the
system must select the adaptive configuration to
use over the next operational period. If the num-
ber of configuration options is small, the system
can use a simple trial-and-error approach: It can
try each configuration over consecutive intervals
and select the best-performing configuration.
Balasubramonian’s adaptive memory hierarchy
uses this exploration approach.10

A second approach uses the monitored statistics
to make a decision. Ponomarev’s adaptive-issue
queue chooses a new configuration based on the dif-

ference between the current number of queue entries
and the sampled average of valid entries over the
interval period. If this difference is large, the system
can downsize the queue more aggressively.7

These approaches operate from the underlying
assumption that current behavior indicates future
behavior. If the behavioral change rate rivals that of
the evaluation period, significant error can occur.
Decision prediction attempts to circumvent this
issue by using past configuration information to pre-
dict the best-performing option. Dhodapkar and
Smith11 save their working-set signatures in RAM,
along with configuration information. When the
current signature closely matches a signature stored
in RAM, the system looks up the configuration and
immediately uses it. Similarly, in Huang’s positional
scheme, for every code section, once the best con-
figuration is determined, it is remembered and
applied to all future executions of that code section.

SAMPLE ADAPTIVE PROCESSING SYSTEM
Figure 5 shows a sample system in which adap-

tive processing has been applied to the issue queues,
load and store queue, reorder buffer, register files,
and caches of a four-way dynamic superscalar
processor.13 Equipped with these multiple adaptive
structures, the large number of possible configura-
tion combinations creates two primary challenges.

First, exploration is not an option because the
overhead would be prohibitive. Second, configur-
ing multiple structures creates a challenging cause-
and-effect assignment problem, making it difficult
to know whether a change in application perfor-
mance stems from a change in program behavior,
reconfiguring a different hardware structure, or
reconfiguring this particular structure. For these
reasons, rather than using instructions-per-cycle
performance as a monitoring statistic, we use local
statistics that more accurately infer changes in a
particular structure’s behavior.

For the caches, we use Balasubramonian’s
backup approach. First, our system accesses the

L1
I-cache ROB

IIQ

IREG

FIQ

FPREG

L2
unified
cache

LSQFetchQBranch
predict

Rename
map

Int FU s

FP FU s

L1
D-cache

Figure 5. Adaptive processing system. The shaded elements—the issue queues, load and store queue, reorder buffer, register files, and
caches—have been redesigned for adaptive processing.

Primary
read (miss)

Way 0 Way 1 Way 2 Way 3

mru[0] mru[1] mru[3]mru[2]

Backup
read (miss)

Data from
L2 cache

MRU 0

MRU 1

MRU 2

MRU 3

Misses

MRU stats
counters

Increment

C2

C1

C3

D

A : Read from primary (miss)
B : Read from backup (miss)
C1 : Write data from L2 into primary
C2 : Move primary to backup
C3 : Discard/writeback backup
D : Increment miss count

A B

Figure 6. L1 data cache operations. When data arrives from the L2 cache, on a
miss to both the primary and backup sections, the system writes the replaced
block in the primary section to the backup section and increments the miss
counter.

enabled partitions; it accesses the disabled parti-
tions only on a miss. To determine which partitions
we want the system to enable initially, we gather
statistics to determine the performance and energy
of all possible cache configurations during a par-
ticular interval of operation.

Figure 6 shows the fundamental operations the
system performs when data is missing from the L1
data cache. The system maintains the cache’s most
recently used state and associates an MRU counter
with each of the four states. The system accesses
the primary part of the MRU, shown in white, first.
Upon a miss, the system accesses the backup part,
shown in green, which also results in a miss. The
system then writes the replaced block in the pri-
mary section to the backup section, and writes the
backup block to L2 if it is dirty. The miss counter
also increments.

A hit within either the primary or backup part
causes the system to update the MRU state and coun-
ters. In Figure 7, block A (MRU[0]) is the most
recently used, block B (MRU[1]) is the second most
recently used, and so on. When the system accesses
a block, the counter associated with the block’s MRU
state increments and the MRU state is updated.

For example, accessing block B increments the
counter for the second most recently used block,
MRU[1]. Block B is now the most recently used
block and A is the second most recently used. An
access to C increments MRU[2] and changes the
MRU state. The next access to C increments
MRU[0] because it was just accessed, so it becomes
the most recently used block while the access to D
increments MRU[3].

At the end of an interval, a runtime routine reads
the MRU counters and the miss counter, then uses
this data to calculate the number of primary and
backup hits and overall misses that would have
occurred for each configuration during that inter-
val. Based on the time and energy costs of hits and
misses for each configuration, the system chooses
the best configuration for the next interval.

The MRU counters also permit calculation of the
adaptive cache’s actual performance loss compared
to some fixed baseline. If the baseline is a subset of
the adaptive cache, the system can use the MRU
counters to determine what its performance would
have been were it used. This value can be used to
keep a running total of the adaptive cache’s per-
formance loss up to this point.

If the adaptive cache’s performance loss is less than
the target, the controller can be more aggressive in
trading performance for energy. If its performance
loss is excessive, the controller must reduce the over-

all loss by acting more conservatively. This account-
ing operation permits a tight bound on the perfor-
mance loss while maximizing energy savings.

The queues, register files, and reorder buffer use
a variation of Ponomarev’s feedback and control
approach. When downsizing the register file, the
system moves into an active partition the register
values stored in the partition to be disabled. First,
the system prevents any physical register in the par-
tition to be disabled from being allocated to newly
renamed instructions. Next, it executes a small run-
time routine that performs the instruction move rx,
rx for each logical register rx. This causes the sys-
tem to read and transfer any logical register values

December 2003 55

hitsB

hitsB

hitsB

A B C D

(LRU)0 1 32
MRU state

DCAB

DAB

B

C

C DAD

C

C

B MRU[1]++

MRU[2]++

MRU[0]++

MRU[3]++

(MRU)

Ca
ch

e
bl

oc
k

ac
ce

ss
es

Config P1 B3

Config P2 B2

Config P3 B1

Config P4 B0

= MRU[3]
= MRU[0] + [1] + [2]

= MRU[2] + [3]
= MRU[0] + [1]

= MRU[1] + [2] + [3]
= MRU[0]

hitsB

= 0
= MRU[0] + [1] + [2] + [3]hitsP

hitsP

hitsP

hitsP

(b)(a)

Figure 7. Updating MRU state and counters. (a) State changes and counter
updates when accessing four different cache blocks. (b) Calculations performed
to determine the number of primary and backup hits for each configuration. A
configuration denoted as Px By, for example, has x primary and y backup
partitions.

1.5% 6.2% 1.5% 6.2% 1.5% 6.2% 1.5% 6.2%
Caches and

buffers
Caches and

buffers

2

0

4

6

8

10

12

14

MAX

MIN

Caches Buffers

20

30

40

50

60

70

10

0 Re
la

tiv
e

pe
rfo

rm
an

ce
 d

eg
ra

da
tio

n
(p

er
ce

nt
)

Re
la

tiv
e

en
er

gy
 s

av
in

gs
 (p

er
ce

nt
)

PerformanceEnergy

Latency tolerance (1/64 = 1.5%, 1/16 = 6.2%)

AVG

Figure 8. Adaptive structure energy savings and performance degradation across
14 benchmarks. Savings categories include caches only; queues, register files,
and reorder buffers only; and both combined. The lines bisecting the bars show
the range of values for the tested benchmarks.

56 Computer

stored in physical registers in the target partition
to a newly allocated physical register from the
enabled part of the register file.

Figure 8 summarizes the energy saved within the
adaptive structures—as well as the overall perfor-
mance degradation—for a combination of three
Olden, seven SPEC integer, and four SPEC float-
ing-point benchmarks.

We plot these results as a function of the per-
missible target-performance degradation. The 1.5
percent and 6.2 percent values correspond to the
power-of-two fractions 1/64 and 1/16, respectively.
If power-of-two values are used for the perfor-
mance degradation threshold, the hardware uses a
shifter as the divide circuit. As expected, a higher
target-performance degradation permits greater
energy savings. Further, the ability of modern
caches to hide latency with other work lets the
actual performance degradation dip much lower
than the permissible target.

The higher energy savings achieved in the caches
stems from their greater overall energy compared to
the buffers. For the 1.5 percent performance degra-
dation target, the adaptive structures achieved a 28
percent energy savings, with only a 0.6 percent

actual overall performance degradation. For the
6.2 percent target, the adaptive structures achieved
a 34 percent energy savings with only a 2.1 percent
performance loss.

To assess the cost and savings of adaptive pro-
cessing, the energy savings must be determined for
the processor as a whole. A modern superscalar
processor’s issue queues, reorder buffer, caches, and
register files can easily consume more than 50 per-
cent of the total chip power.14 Using this figure as
a conservative scaling factor for the energy results,
an adaptive processing system can achieve an over-
all chip energy savings of roughly 14 percent in
exchange for a 0.6 percent performance loss, or a
17 percent energy savings in exchange for a 2.1 per-
cent performance loss.

All power-saving techniques can be compared to
the common measure of a 3 to 1 power savings to
performance degradation ratio that can be achieved
simply by statically scaling the voltage. Assuming
a linear relationship between frequency and volt-
age, this corresponds to a 2 to 1 energy savings to
performance degradation ratio. Our sample adap-
tive processing system can achieve energy savings to
performance degradation ratios from 8 to 1 up to

Adaptation techniques are commonly used for reducing
energy in each layer of the system—hardware, network, oper-
ating system, and applications. Reaping the full benefits of a sys-
tem with multiple adaptive layers requires a careful coordination
of these adaptations. The Illinois GRACE project—Global
Resource Adaptation through Cooperation—has developed a
cross-layer adaptation framework to reduce energy while pre-
serving desirable application quality for mobile devices running
soft real-time multimedia applications.

A cross-layer adaptive system must balance two conflicting
demands: adaptation scope and temporal granularity. For exam-
ple, a global adaptation scope is desirable, but it can be expen-
sive and so must be infrequent. Adapting infrequently, however,
risks an inadequate response to intervening changes.

To balance this conflict, GRACE adopts a hierarchical
approach, performing expensive global adaptations occasion-
ally and inexpensive limited-scope adaptations constantly. This
combination can achieve most of the benefits of frequent global

GRACE: A Cross-Layer Adaptation Framework for Saving Energy
Daniel Grobe Sachs, Wanghong Yuan, Christopher J. Hughes, Albert F. Harris III, Sarita V. Adve,
Douglas L. Jones, Robin H. Kravets, and Klara Nahrstedt, University of Illinois at Urbana-Champaign

Fine granularity

La
ye

r

OS

…

Hardware

Network

OS

hardware

network

OS

application

Time

App
lic

ati
on

Hardware

Network

Application 1

Application n

(1) Global cross-layer adaptation

Coarse granularity

Application i

Finer granularity

Hardware

Network

OS

Application

(2) Per-application cross-layer adaptation (3) Internal per-layer adaptation

Time

App
lic

ati
on

Figure A. Adaptation hierarchy. The framework’s three layers exploit different adaptation scopes and temporal granularities.

December 2003 57

23 to 1, which indicates that adaptive processing’s
energy savings compare favorably with its perfor-
mance cost. As discussed in the “GRACE: A Cross-
Layer Adaptation Framework for Saving Energy”
sidebar, combining these hardware adaptations
with adaptations in other layers of the system pro-
vides further benefits.

T o date, many adaptive processing techniques
have focused exclusively on reducing dynamic
power. In future process technologies, we

expect that leakage power will rival dynamic power
in magnitude—and adaptive techniques will be posi-
tioned to address both. For example, an adaptive
processing system can apply voltage-gating directly
to the issue queues, reorder buffer, and register files
because the system ensures disabled partitions are
empty before turning them off. This technique can
also be applied to the L1 I-cache, while an approach
such as drowsy caches6 can be used in the L1 D-
cache and L2 cache to preserve their state.

Adaptive processors require a modest amount of
additional transistors. Further, because adaptation
occurs only in response to infrequent trigger events,
the decision logic can be placed into a low-leakage

state until a trigger event occurs. These character-
istics make adaptive processing a promising
approach for saving both dynamic and leakage
energy in future CMOS technologies. �

References
1. D.H. Albonesi, “Dynamic IPC/Clock Rate Opti-

mization,” Proc. 25th Int’l Symp. Computer Archi-
tecture, IEEE CS Press, 1998, pp. 282-292.

2. D.H. Albonesi, “The Inherent Energy Efficiency of
Complexity-Adaptive Processors,” Proc. 1998 Power-
Driven Microarchitecture Workshop, 1998, pp. 107-
112.

3. B. Xu and D.H. Albonesi, “A Methodology for the
Analysis of Dynamic Application Parallelism and Its
Application to Reconfigurable Computing,” Proc.
SPIE Int’l Symp. Reconfigurable Technology: FPGAs
for Computing and Applications, SPIE Press, 1999,
pp. 78-86.

4. A. Buyuktosunoglu et al., “A Circuit-Level Imple-
mentation of an Adaptive-Issue Queue for Power-
Aware Microprocessors,” Proc. 11th Great Lakes
Symp. VLSI, ACM Press, 2001, pp. 73-78.

5. M.D. Powell et al., “Reducing Leakage in a High-

adaptation with lower overhead. As Figure A shows, GRACE
supports three levels of adaptation, exploiting the natural frame
boundaries in periodic real-time multimedia applications:

• Global adaptation considers all applications and system
layers together but only occurs on large changes in system
activity, such as application entry or exit.

• Per-application adaptation considers one application at a
time and is invoked every frame, adapting all system layers
to that application’s current demands.

• Internal adaptation adapts only a single system layer, pos-
sibly considering several applications simultaneously, and
is invoked several times per application frame—per net-
work packet, for example.

All adaptation levels are tightly coupled, ensuring that the lim-
ited-scope adaptations respect the resource allocation decisions
made through global coordination. Further, all adaptation levels
use carefully defined interfaces so that no application or system
layer needs to expose its internals to other parts of the system.

The initial GRACE-1 prototype1 combines global application
and CPU adaptations and internal scheduler and CPU adapta-
tions, providing an increase in battery lifetime of 33 to 66 per-
cent over previous systems. Separately, a combination of CPU
and application adaptation at the per-application level2 achieves
energy savings of up to 20 percent and 72 percent, respectively,
compared to either adaptation alone. Other experiments show
the benefit of hierarchical adaptation within a single layer;3 the

addition of internal adaptation gave an energy reduction of up
to 19 percent over a per-application CPU adaptation alone.

We are currently integrating these components along with an
adaptive network layer to form a complete coordinated adaptive
system.

Acknowledgment
This work is supported in part by the National Science

Foundation under grant no. CCR-0205638.

References
1. W. Yuan et al., “Design and Evaluation of a Cross-Layer

Adaptation Framework for Mobile Multimedia Systems,” Proc.
Multimedia Communications and Networking, SPIE—Int’l
Society for Optical Engineering, 2003, pp. 1-13.

2. D.G. Sachs, S.V. Adve, and D.L. Jones, “Cross-Layer Adaptive
Video Coding to Reduce Energy on General-Purpose
Processors,” Proc. Int’l Conf. Image Processing, Session WA-
S2, IEEE Press, 2003, pp. 25-28.

3. R. Sasanka, C.J. Hughes, and S.V. Adve, “Joint Local and Global
Hardware Adaptations for Energy,” Proc. 10th Int’l Conf.
Architectural Support for Programming Languages and
Operating Systems, ACM Press, 2002, pp. 144-155.

The authors are affiliated with the Computer Science and
Electrical and Computer Engineering Departments at the
University of Illinois at Urbana-Champaign. Contact them
at grace@cs.uiuc.edu.

58 Computer

Performance Deep-Submicron Instruction Cache,”
IEEE Trans. VLSI Systems, vol. 9, no. 1, 2001, pp.
77-89.

6. N.S. Kim et al., “Drowsy Instruction Caches—Leak-
age Power Reduction Using Dynamic Voltage Scal-
ing and Cache Sub-Bank Prediction,” Proc. Int’l
Symp. Microarchitecture, IEEE CS Press, 2002, pp.
219-230.

7. D. Ponomarev et al., “Reducing Power Requirements
of Instruction Scheduling through Dynamic Alloca-
tion of Datapath Resources for Low Power,” Proc.
Int’l Symp. Microarchitecture, IEEE CS Press, 2001,
pp. 90-101.

8. D. Folegnani and A. Gonzalez, “Energy-Effective
Issue Logic,” Proc. Int’l Symp. Computer Architec-
ture, IEEE CS Press, 2001, pp. 230-239.

9. M.C. Huang, J. Renau, and J. Torrellas, “Positional
Adaptation of Processors: Application to Energy
Reduction,” Proc. Int’l Symp. Computer Architec-
ture, IEEE CS Press, 2003, pp. 157-168.

10. R. Balasubramonian et al., “Memory Hierarchy
Reconfiguration for Energy and Performance in Gen-
eral-Purpose Processor Architectures,” Proc. 33rd
Int’l Symp. Microarchitecture, IEEE CS Press, 2000,
pp. 245-257.

11. A.S. Dhodapkar and J.E. Smith, “Managing Multi-
configuration Hardware via Dynamic Working Set
Analysis,” Proc. Int’l Symp. Computer Architecture,
IEEE CS Press, 2002, pp. 233-244.

12. R. Sasanka, C.J. Hughes, and S.V. Adve, “Joint Local
and Global Hardware Adaptations for Energy,” Proc.
Int’l Conf. Architecture Support for Programming
Languages and Operating Systems, ACM Press,
2002, pp. 144-155.

13. S. Dropsho et al., “Integrating Adaptive On-Chip Stor-
age Structures for Reduced Dynamic Power,” Proc.
11th Int’l Conf. Parallel Architectures and Compila-
tion Techniques, IEEE CS Press, 2002, pp. 141-152.

14. P. Bose et al., “Early-Stage Definition of LPX: A Low-
Power Issue-Execute Processor,” Proc. Workshop
Power-Aware Computer Systems, Springer, 2002, pp.
1-17.

David H. Albonesi is an associate professor in the
Department of Electrical and Computer Engineer-
ing at the University of Rochester. Contact him at
albonesi@ece.rochester.edu.

Rajeev Balasubramonian is an assistant professor
in the School of Computing at the University of
Utah. Balasubramonian received a PhD from the
University of Rochester. Contact him at rajeev@
cs.utah.edu.

Steven G. Dropsho is a postdoctoral researcher in
the Department of Computer Science at the Uni-
versity of Rochester. Contact him at dropsho@cs.
rochester.edu.

Sandhya Dwarkadas is an associate professor in
the Department of Computer Science at the Uni-
versity of Rochester. Contact her at sandhya@cs.
rochester.edu.

Eby G. Friedman is a distinguished professor in the
Department of Electrical and Computer Engineer-
ing at the University of Rochester. Contact him at
friedman@ece.rochester.edu.

Michael C. Huang is an assistant professor in the
Department of Electrical and Computer Engineer-
ing at the University of Rochester. Contact him at
michael.huang@ece.rochester.edu.

Volkan Kursun is a PhD candidate in the Depart-
ment of Electrical and Computer Engineering
at the University of Rochester. Contact him at
kursun@ece.rochester.edu.

Grigorios Magklis is a researcher at the Intel
Barcelona Research Center. Magklis received a
PhD from the University of Rochester. Contact him
at grigoriosx.magklis@intel.com.

Michael L. Scott is a professor in the Department
of Computer Science at the University of Rochester.
Contact him at scott@cs.rochester.edu.

Greg Semeraro is an assistant professor in the
Department of Computer Engineering at the
Rochester Institute of Technology. Semeraro
received a PhD from the University of Rochester.
Contact him at gpseec@ce.rit.edu.

Pradip Bose is a research staff member at the IBM
T. J. Watson Research Center. Contact him at bose@
us.ibm.com.

Alper Buyuktosunoglu is a research staff member
at the IBM T.J. Watson Research Center. Contact
him at alperb@us.ibm.com.

Peter W. Cook is a manager at the IBM T. J. Wat-
son Research Center. Contact him at pwcook@
us.ibm.com.

Stanley E. Schuster is a research staff member at
the IBM T.J. Watson Research Center. Contact him
at schustr@us.ibm.com.

