
JVM for a Heterogeneous Shared Memory System
�

DeQing Chen, Chunqiang Tang,
Sandhya Dwarkadas, and Michael L. Scott

Computer Science Department, University of Rochester

Abstract

InterWeave is a middleware system that supports the shar-
ing of strongly typed data structures across heterogeneous
languages and machine architectures. Java presents spe-
cial challenges for InterWeave, including write detection,
data translation, and the interface with the garbage col-
lector. In this paper, we discuss our implementation of
J-InterWeave, a JVM based on the Kaffe virtual machine
and on our locally developed InterWeave client software.

J-InterWeave uses bytecode instrumentation to detect
writes to shared objects, and leverages Kaffe’s class ob-
jects to generate type information for correct transla-
tion between the local object format and the machine-
independent InterWeave wire format. Experiments in-
dicate that our bytecode instrumentation imposes less
than 2% performance cost in Kaffe interpretation mode,
and less than 10% overhead in JIT mode. Moreover, J-
InterWeave’s translation between local and wire format is
more than 8 times as fast as the implementation of ob-
ject serialization in Sun JDK 1.3.1 for double arrays. To
illustrate the flexibility and efficiency of J-InterWeave in
practice, we discuss its use for remote visualization and
steering of a stellar dynamics simulation system written
in C.

1 Introduction

Many recent projects have sought to support distributed
shared memory in Java [3, 16, 24, 32, 38, 41]. Many
of these projects seek to enhance Java’s usefulness for
large-scale parallel programs, and thus to compete with
more traditional languages such as C and Fortran in the
area of scientific computing. All assume that application
code will be written entirely in Java. Many—particularly
those based on existing software distributed shared mem-
ory (S-DSM) systems—assume that all code will run on
instances of a common JVM.

�
This work was supported in part by NSF grants CCR-9988361,

CCR-0204344, and EIA-0080124, and by the U.S. Department of En-
ergy Office of Inertial Confinement Fusion under Cooperative Agree-
ment No. DE-FC03-92SF19460.

�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������

Figure 1: A Heterogeneous Shared Memory System

We believe there is a growing need to share state among
heterogeneous JVM nodes, and between Java applications
and code written in other programming languages. Fig-
ure 1 illustrates this sharing. It shows a an environment
in which a simulation (written in Fortran, say) runs on
a high-performance cluster consisting of multiple SMP
nodes and a low-latency interconnect. Connected to the
cluster via the Internet are one or more satellite machines,
located on the desktops of researchers physically distant
from the cluster. These satellites run visualization and
steering software written in Java and running on top of
a JVM, operating system, and hardware architecture alto-
gether different from those of the compute cluster.

In the current state of the art, the satellite nodes must
communicate with the compute cluster using either a net-
work file system or an application-specific sockets-based
message passing protocol. Existing systems for shared
memory in Java cannot help, because the simulator itself
was written in Fortran, and is unlikely to be re-written. Al-
though Java has many advantages from the point of view
of safety, reusability, maintainability, etc. (many of which
are appealing for scientific computing [32]), Java imple-
mentations still lag significantly behind the performance
of C and Fortran systems [18]. Moreover the fact that C

1

mls
Wkshp. on Caching, Coherence, and Consistency (WC3),New York, NY, June 2002



has yet to displace Fortran for scientific computing sug-
gests that Java will be unlikely to do so soon.

Even for systems written entirely in Java, it is appealing
to be able to share objects across heterogeneous JVMs.
This is possible, of course, using RMI and object serial-
ization, but the resulting performance is poor [6].

The ability to share state across different languages and
heterogeneous platforms can also help build scalable dis-
tributed services in general. Previous research on var-
ious RPC (remote procedure call) systems [21, 29] in-
dicate that caching at the client side is an efficient way
to improve service scalability. However, in those sys-
tems, caching is mostly implemented in an ad-hoc man-
ner, lacking a generalized translation semantics and co-
herence model.

Our on-going research project, InterWeave [9, 37], aims
to facilitate state sharing among distributed programs
written in multiple languages (Java among them) and run-
ning on heterogeneous machine architectures. InterWeave
applications share strongly-typed data structures located
in InterWeave segments. Data in a segment is defined
using a machine and platform-independent interface de-
scription language (IDL), and can be mapped into the ap-
plication’s local memory assuming proper InterWeave li-
brary calls. Once mapped, the data can be accessed as
ordinary local objects.

In this paper, we focus on the implementation of In-
terWeave support in a Java Virtual Machine. We call our
system J-InterWeave. The implementation is based on an
existing implementation of InterWeave for C, and on the
Kaffe virtual machine, version 1.0.6 [27].

Our decision to implement InterWeave support directly
in the JVM clearly reduces the generality of our work.
A more portable approach would implement InterWeave
support for segment management and wire-format trans-
lation in Java libraries. This portability would come, how-
ever, at what we consider an unacceptable price in perfor-
mance. Because InterWeave employs a clearly defined
internal wire format and communication protocol, it is at
least possible in principle for support to be incorporated
into other JVMs.

We review related work in Java distributed shared state
in Section 2 and provide a brief overview of the Inter-
Weave system in Section 3. A more detailed description
is available elsewhere [8, 37]. Section 4 describes the J-
InterWeave implementation. Section 5 presents the results
of performance experiments, and describes the use of J-
InterWeave for remote visualization and steering. Sec-
tion 6 summarizes our results and suggests topics for fu-
ture research.

2 Related Work

Many recent projects have sought to provide distributed
data sharing in Java, either by building customized
JVMs [2, 3, 24, 38, 41]; by using pure Java implementa-
tions (some of them with compiler support) [10, 16, 32];
or by using Java RMI [7, 10, 15, 28]. However, in all
of these projects, sharing is limited to Java applications.
To communicate with applications on heterogeneous plat-
forms, today’s Java programmers can use network sock-
ets, files, or RPC-like systems such as CORBA [39]. What
they lack is a general solution for distributed shared state.

Breg and Polychronopoulos [6] have developed an al-
ternative object serialization implementation in native
code, which they show to be as much as eight times faster
than the standard implementation. The direct compari-
son between their results and ours is difficult. Our exper-
iments suggest that J-Interweave is at least equally fast in
the worst case scenario, in which an entire object is mod-
ified. In cases where only part of an object is modified,
InterWeave’s translation cost and communication band-
width scale down proportionally, and can be expected to
produce a significant performance advantage.

Jaguar [40] modifies the JVM’s JIT (just-in-time com-
piler) to map certain bytecode sequences directly to na-
tive machine codes and shows that such bytecode rewrit-
ing can improve the performance of object serialization.
However the benefit is limited to certain types of objects
and comes with an increasing price for accessing object
fields.

MOSS [12] facilitates the monitoring and steering of
scientific applications with a CORBA-based distributed
object system. InterWeave instead allows an application
and its steerer to share their common state directly, and in-
tegrates that sharing with the more tightly coupled sharing
available in SMP clusters.

Platform and language heterogeneity can be supported
on virtual machine-based systems such as Sun JVM [23]
and Microsoft .NET [25]. The Common Language Run-
time [20] (CLR) under the .NET framework promises sup-
port for multi-language application development. In com-
parison to CLR, InterWeave’s goal is relatively modest:
we map strongly typed state across languages. CLR seeks
to map all high-level language features to a common type
system and intermediate language, which in turn implies
more semantic compromises for specific languages than
are required with InterWeave.

The transfer of abstract data structures was first pro-
posed by Herlihy and Liskov [17]. Shasta [31] rewrites bi-
nary code with instrumentation for access checks for fine-
grained S-DSM. Midway [4] relies on compiler support to
instrument writes to shared data items, much as we do in
the J-InterWeave JVM. Various software shared memory
systems [4, 19, 30] have been designed to explicitly asso-

2



ciate synchronization operations with the shared data they
protect in order to reduce coherence costs. Mermaid [42]
and Agora [5] support data sharing across heterogeneous
platforms, but only for restricted data types.

3 InterWeave Overview

In this section, we provide a brief introduction to the
design and implementation of InterWeave. A more de-
tailed description can be found in an earlier paper [8].
For programs written in C, InterWeave is currently avail-
able on a variety of Unix platforms and on Windows NT.
J-InterWeave is a compatible implementation of the In-
terWeave programming model, built on the Kaffe JVM.
J-InterWeave allows a Java program to share data across
heterogeneous architectures, and with programs in C and
Fortran.

The InterWeave programming model assumes a dis-
tributed collection of servers and clients. Servers maintain
persistent copies of InterWeave segments, and coordinate
sharing of those segments by clients. To avail themselves
of this support, clients must be linked with a special In-
terWeave library, which serves to map a cached copy of
needed segments into local memory. The servers are the
same regardless of the programming language used by
clients, but the client libraries may be different for differ-
ent programming languages. In this paper we will focus
on the client side.

In the subsections below we describe the application
programming interface for InterWeave programs written
in Java.

3.1 Data Allocation and Addressing

The unit of sharing in InterWeave is a self-descriptive data
segment within which programs allocate strongly typed
blocks of memory. A block is a contiguous section of
memory allocated in a segment.

Every segment is specified by an Internet URL and
managed by an InterWeave server running at the host indi-
cated in the URL. Different segments may be managed by
different servers. The blocks within a segment are num-
bered and optionally named. By concatenating the seg-
ment URL with a block number/name and offset (delim-
ited by pound signs), we obtain a machine-independent
pointer (MIP): “foo.org/path#block#offset”.

To create and initialize a segment in Java, one can ex-
ecute the following calls, each of which is elaborated on
below or in the following subsections:

IWSegment seg = new IWSegment(url);
seg.wl_acquire();
MyType myobj =

new MyType(seg, blkname);
myobj.field = ... ...
seg.wl_release();

In Java, an InterWeave segment is captured as an
IWSegment object. Assuming appropriate access rights,
the new operation of the IWSegment object communi-
cates with the appropriate server to initialize an empty
segment. Blocks are allocated and modified after acquir-
ing a write lock on the segment, described in more detail
in Section 3.3. The IWSegment object returned can be
passed to the constructor of a particular block class to al-
locate a block of that particular type in the segment.

Once a segment is initialized, a process can convert be-
tween the MIP of a particular data item in the segment and
its local pointer by using mip to ptr and ptr to mip
where appropriate.

It should be emphasized that mip to ptr is primar-
ily a bootstrapping mechanism. Once a process has one
pointer into a data structure (e.g. the root pointer in a lat-
tice structure), any data reachable from that pointer can
be directly accessed in the same way as local data, even
if embedded pointers refer to data in other segments. In-
terWeave’s pointer-swizzling and data-conversion mech-
anisms ensure that such pointers will be valid local ma-
chine addresses or references. It remains the program-
mer’s responsibility to ensure that segments are accessed
only under the protection of reader-writer locks.

3.2 Heterogeneity

To accommodate a variety of machine architectures, In-
terWeave requires the programmer to use a language-
and machine-independent notation (specifically, Sun’s
XDR [36]) to describe the data types inside an InterWeave
segment. The InterWeave XDR compiler then translates
this notation into type declarations and descriptors appro-
priate to a particular programming language. When pro-
gramming in C, the InterWeave XDR compiler generates
two files: a .h file containing type declarations and a .c
file containing type descriptors. For Java, we generate a
set of Java class declaration files.

The type declarations generated by the XDR compiler
are used by the programmer when writing the application.
The type descriptors allow the InterWeave library to un-
derstand the structure of types and to translate correctly
between local and wire-format representations. The lo-
cal representation is whatever the compiler normally em-
ploys. In C, it takes the form of a pre-initialized data struc-
ture; in Java, it is a class object.
3.2.1 Type Descriptors for Java

A special challenge in implementing Java for InterWeave
is that the InterWeave XDR compiler needs to gener-
ate correct type descriptors and ensure a one-to-one cor-
respondence between the generated Java classes and C
structures. In many cases mappings are straight forward:
an XDR struct is mapped to a class in Java and a struct
in C, primitive fields to primitive fields both in Java and

3



C, pointers fields to object references in Java and pointers
in C, and primitive arrays to primitive arrays.

However, certain “semantics gaps” between Java and C
force us to make some compromises. For example, a C
pointer can point to any place inside a data block; while
Java prohibits such liberties for any object reference.

Thus, in our current design, we make the following
compromises:

� An InterWeave block of a single primitive data item
is translated into the corresponding wrapped class
for the primitive type in Java (such as Integer, Float,
etc.).

� Embedded struct fields in an XDR struct definition
are flattened out in Java and mapped as fields in its
parent class. In C, they are translated naturally into
embedded fields.

� Array types are mapped into a wrapped IW Array
with a static final integer field for array length and a
corresponding array field in Java.

Each Java class generated from the InterWeave XDR
compiler for Java is derived from a root InterWeave class
IW Object (including the IW Array class). Each such
class is generated with a default constructor with param-
eters for its parent segment object and the block name.
The constructor is called once when a block of this type is
allocated in an InterWeave segment.

Before a type descriptor is used to allocate data blocks,
it must first be registered with the InterWeave run-time
system through a call to RegisterClass.

3.3 Coherence

Once mapped, InterWeave segments move over time
through a series of internally consistent states un-
der the protection of reader-writer locks (static func-
tions wl acquire, wl release, rl acquire,
and rl release in IWSegment). Within a tightly-
coupled cluster or a hardware-coherent node, data can be
shared using data-race-free [1] shared memory semantics.

Unfortunately, strict coherence models usually require
more network bandwidth than the Internet can provide.
To adapt to different network conditions, InterWeave em-
ploys two bandwidth-reducing techniques: relaxed coher-
ence models and the use of diffs to update segment ver-
sions.

First, we observe that many applications do not always
need the very most recent version of a shared segment;
one that is “recent enough” will suffice. When writing
to a segment, an application must acquire exclusive write
access to the most recent version. When reading from a
segment, it only needs to fetch a new version if its local
cached copy is no longer “recent enough”. InterWeave

supports six different definitions of recent enough [8], and
is designed in such a way that additional definitions can be
added.

The second bandwidth reducing technique relies on
diffs to update segment versions. In InterWeave a server
always keeps the most recent version of a segment. When
a client acquires a lock on the segment and needs a more
recent version, the server computes the differences be-
tween the client’s current version and its own most recent
version. It then sends these differences (and nothing else)
to the client. Conversely, when a client releases a write
lock on a segment, it computes a diff and sends only its
modifications to the segment server.

3.4 InterWeave library

InterWeave has additional features that cannot be de-
scribed in the space available here. Among these are
mechanisms for persistence, security, notification of asyn-
chronous events, and 3-level sharing—SMP (level-1), S-
DSM within tightly coupled cluster (level-2), and version-
based coherence and consistency across the Internet
(level-3). All of this functionality has been implemented
in its C library with about 25,000 lines of code, upon
which the Java implementation is built.

4 J-InterWeave Implementation

In an attempt to reuse as much code as possible, we
have implemented the J-InterWeave system using the C
InterWeave library and the Kaffe virtual machine. The
implementation comprises three interacting components:
IWSegment class and its Java native interface (JNI) li-
brary, the Kaffe component, and the existing InterWeave
C library.

The IWSegment class functions as the interface be-
tween J-InterWeave applications and the underlying Kaffe
and C InterWeave library. The Kaffe component modifies
the original Kaffe bytecode execution engine and garbage
collector to cooperate with InterWeave objects. The Inter-
Weave C library implements InterWeave functionality.

4.1 IWSegment Class and its JNI Library

In J-InterWeave, the basic InterWeave functionality de-
scribed in Section 3 is provided to Java applications
with the IWSegment class (see Figure 2). InterWeave’s
segment-wise operations (e.g. lock acquire and release)
are defined as public methods. System-wide operations
(e.g. segment creation or dereference of a MIP) are static
member functions. All are native functions, implemented
in a JNI system library.

The IWSegment constructor is generated by the J-
InterWeave XDR compiler. An InterWeave programmer
can override it with customized operations.

4



public class IWSegment {
public IWSegment(String URL,

Boolean iscreate);
public native static

int RegisterClass(Class type);
public native static

Object mip_to_ptr(String mip);
public native static

String ptr_to_mip(IWObject Ob-
ject obj);

... ...
public native int wl_acquire();
public native int wl_release();
public native int rl_acquire();
public native int rl_release();
... ...

}

Figure 2: IWSegment Class

4.1.1 JNI Library for IWSegment Class

The native library for the IWSegment class serves as an
intermediary between Kaffe and the C InterWeave library.
Programmer-visible objects that reside within the IWSeg-
ment library are managed in such a way that they look like
ordinary Java objects.

As in any JNI implementation, each native method has
a corresponding C function that implements its function-
ality. Most of these C functions simply translate their pa-
rameters into C format and call corresponding functions
in the C InterWeave API. However, the creation of an In-
terWeave object and the method RegisterClass need
special explanation.

Mapping Blocks to Java Objects Like ordinary Java
objects, InterWeave objects in Java are created by “new”
operators. In Kaffe, the “new” operator is implemented
directly by the bytecode execution engine. We modi-
fied this implementation to call an internal function new-
Block in the JNI library and newBlock calls the Inter-
Weave C library to allocate an InterWeave block from the
segment heap instead of the Kaffe object heap. Before
returning the allocated block back to the “new” operator,
newBlock initializes the block to be manipulated cor-
rectly by Kaffe.

In Kaffe, each Java object allocated from the Kaffe heap
has an object header. This header contains a pointer to the
object class and a pointer to its own monitor. Since C
InterWeave already assumes that every block has a header
(it makes no assumption about the contiguity of separate
blocks), we put the Kaffe header at the beginning of what
C InterWeave considers the body of the block. A correctly
initialized J-InterWeave object is shown in Figure 3.

block type descriptor

Kaffe object header

block data
follows

block header

object start

Figure 3: Block structure in J-InterWeave

After returning from newBlock, the Kaffe engine
calls the class constructor and executes any user cus-
tomized operations.

Java Class to C Type Descriptor Before any use of a
class in a J-InterWeave segment, including the creation of
an InterWeave object of the type, the class object must
be first registered with RegisterClass. Register-
Class uses the reflection mechanism provided by the
Java runtime system to determine the following informa-
tion needed to generate the C type descriptor and passes it
to the registration function in the C library.

1. type of the block, whether it is a structure, array or
pointer.

2. total size of the block.

3. for structures, the number of fields, each field’s off-
set in the structure, and a pointer to each field’s type
descriptor.

4. for arrays, the number of elements and a pointer to
the element’s type descriptor.

5. for pointers, a type descriptor for the pointed-to data.

The registered class objects and their corresponding C
type descriptors are placed in a hashtable. The new-
Block later uses this hashtable to convert a class object
into the C type descriptor. The type descriptor is required
by the C library to allocate an InterWeave block so that
it has the information to translate back and forth between
local and wire format (see Section 3).

4.2 Kaffe

J-InterWeave requires modifications to the byte code in-
terpreter and the JIT compiler to implement fine-grained
write detection via instrumentation. It also requires
changes to the garbage collector to ensure that InterWeave
blocks are not accidentally collected.

5



lock

1dispatch table

shift value

modification status
Kaffe
header

Figure 4: Extended Kaffe object header for fine-grained
write detection

4.2.1 Write Detection

To support diff-based transmission of InterWeave segment
updates, we must identify changes made to InterWeave
objects over a given span of time. The current C ver-
sion of InterWeave, like most S-DSM systems, uses vir-
tual memory traps to identify modified pages, for which it
creates pristine copies (twins) that can be compared with
the working copy later in order to create a diff.

J-InterWeave could use this same technique, but only
on machines that implement virtual memory. To enable
our code to run on handheld and embedded devices, we
pursue an alternative approach, in which we instrument
the interpretation of store bytecodes in the JVM and JIT.

In our implementation, only writes to InterWeave block
objects need be monitored. In each Kaffe header, there is
a pointer to the object method dispatch table. On most
architectures, pointers are aligned on a word boundary so
that the least significant bit is always zero. Thus, we use
this bit as the flag for InterWeave objects.

We also place two 32-bit words just before the Kaffe
object header, as shown in Figure 4. The second word—
modification status—records which parts of the
object have been modified. A block’s body is logically
divided into 32 parts, each of which corresponds to one
bit in the modification status word. The first extended
word is pre-computed when initializing an object. It is the
shift value used by the instrumented store bytecode
code to quickly determine which bit in the modification
status word to set (in other words, the granularity of the
write detection). These two words are only needed for In-
terWeave blocks, and cause no extra overhead for normal
Kaffe objects.

4.2.2 Garbage Collection

Like distributed file systems and databases (and unlike
systems such as PerDiS [13]) InterWeave requires man-
ual deletion of data; there is no garbage collection. More-
over the semantics of InterWeave segments ensure that an
object reference (pointer) in an InterWeave object (block)
can never point to a non-InterWeave object. As a result,
InterWeave objects should never prevent the collection of
unreachable Java objects. To prevent Kaffe from acci-

dentally collecting InterWeave memory, we modify the
garbage collector to traverse only the Kaffe heap.

4.3 InterWeave C library

The InterWeave C library needs little in the way of
changes to be used by J-InterWeave. When an existing
segment is mapped into local memory and its blocks are
translated from wire format to local format, the library
must call functions in the IWSegment native library to
initialize the Kaffe object header for each block. When
generating a description of modified data in the write lock
release operation, the library must inspect the modifi-
cation bits in Kaffe headers, rather than creating diffs from
the pristine and working copies of the segment’s pages.

4.4 Discussion

As Java is supposed to be “Write Once, Run Anywhere”,
our design choice of implementing InterWeave support
at the virtual machine level can pose the concern of the
portability of Java InterWeave applications. Our current
implementation requires direct JVM support for the fol-
lowing requirements:

1. Mapping from InterWeave type descriptors to Java
object classes.

2. Managing local segments and the translation be-
tween InterWeave wire format and local Java objects.

3. Supporting efficient write detection for objects in In-
terWeave segments.

We can use class reflection mechanisms along with
pure Java libraries for InterWeave memory management
and wire-format translation to meet the first two require-
ments and implement J-InterWeave totally in pure Java.
Write detection could be solved using bytecode rewrit-
ing techniques as reported in BIT [22], but the resulting
system would most likely incur significantly higher over-
heads than our current implementation. We didn’t do this
mainly because we wanted to leverage the existing C ver-
sion of the code and pursue better performance.

In J-InterWeave, accesses to mapped InterWeave
blocks (objects) by different Java threads on a single VM
need to be correctly synchronized via Java object monitors
and appropriate InterWeave locks. Since J-InterWeave is
not an S-DSM system for Java virtual machines, the Java
memory model(JMM) [26] poses no particular problems.

5 Performance Evaluation

In this section, we present performance results for the J-
InterWeave implementation. All experiments employ a J-
InterWeave client running on a 1.7GHz Pentium-4 Linux
machine with 768MB of RAM. In experiments involving

6



0

20

40

60

80

100

120

_2
01

_c
om

pr
es

s

_2
02

_je
ss

_2
05

_r
ay

tra
ce

_2
09

_d
b

_2
13

_ja
va

c

_2
22

_m
pe

ga
ud

io

_2
27

_m
trt

_2
28

_ja
ck

JVM98 Benchmarks

T
im

e(
se

c.
)

Kaffe (intrp.)

J-InterWeave (intrp.)

Figure 5: Overhead of write-detect instrumentation in
Kaffe’s interpreter mode

0
1
2
3
4
5
6
7

_2
01

_c
om

pr
es

s

_2
02

_je
ss

_2
05

_r
ay

tra
ce

_2
09

_d
b

_2
13

_ja
va

c

_2
22

_m
pe

ga
ud

io

_2
27

_m
trt

_2
28

_ja
ck

JVM98 Benchmarks

T
im

e(
se

c.
)

Kaffe (JIT3)

J-InterWeave (JIT3)

Figure 6: Overhead of write-detect instrumentation in
Kaffe’s JIT3 mode

data sharing, the InterWeave segment server is running on
a 400MHz Sun Ultra-5 workstation.

5.1 Cost of write detection

We have used SPEC JVM98 [33] to quantify the perfor-
mance overhead of write detection via bytecode instru-
mentation. Specifically, we compare the performance of
benchmarks from JVM98 (medium configuration) run-
ning on top of the unmodified Kaffe system to the per-
formance obtained when all objects are treated as if they
resided in an InterWeave segment. The results appear in
Figures 5 and 6.

Overall, the performance loss is small. In Kaffe’s inter-
preter mode there is less than 2% performance degrada-
tion; in JIT3 mode, the performance loss is about 9.1%.
The difference can be explained by the fact that in inter-
preter mode, the per-bytecode execution time is already
quite high, so extra checking time has much less impact
than it does in JIT3 mode.

The Kaffe JIT3 compiler does not incorporate more re-
cent and sophisticated technologies to optimize the gener-
ated code, such as those employed in IBM Jalepeno [35]

and Jackal [38] to eliminate redundant object reference
and array boundary checks. By applying similar tech-
niques in J-InterWeave to eliminate redundant instrumen-
tation, we believe that the overhead could be further re-
duced.

5.2 Translation cost

As described in Sections 3, a J-InterWeave application
must acquire a lock on a segment before reading or writ-
ing it. The acquire operation will, if necessary, ob-
tain a new version of the segment from the InterWeave
server, and translate it from wire format into local Kaffe
object format. Similarly, after modifying an InterWeave
segment, a J-InterWeave application must invoke a write
lock release operation, which translates modified por-
tions of objects into wire format and sends the changes
back to the server.

From a high level point of view this translation re-
sembles object serialization, widely used to create per-
sistent copies of objects, and to exchange objects between
Java applications on heterogeneous machines. In this sub-
section, we compare the performance of J-InterWeave’s
translation mechanism to that of object serialization in
Sun’s JDK v.1.3.1. We compare against the Sun im-
plementation because it is significantly faster than Kaffe
v.1.0.6, and because Kaffe was unable to successfully se-
rialize large arrays in our experiments.

We first compare the cost of translating a large array of
primitive double variables in both systems. Under Sun
JDK we create a Java program to serialize double arrays
into byte arrays and to de-serialize the byte arrays back
again. We measure the time for the serialization and de-
serialization. Under J-InterWeave we create a program
that allocates double arrays of the same size, releases (un-
maps) the segment, and exits. We measure the release
time and subtract the time spent on communication with
the server. We then run a program that acquires (maps) the
segment, and measure the time to translate the byte arrays
back into doubles in Kaffe. Results are shown in Figure 7,
for arrays ranging in size from 25000 to 250000 elements.
Overall, J-InterWeave is about twenty-three times faster
than JDK 1.3.1 in serialization, and 8 times faster in dese-
rialization.

5.3 Bandwidth reduction

To evaluate the impact of InterWeave’s diff-based wire
format, which transmits an encoding of only those bytes
that have changed since the previous communication, we
modify the previous experiment to modify between 10 and
100% of a 200,000 element double array. Results appear
in Figures 8 and 9. The former indicates translation time,
the latter bytes transmitted.

7



0

20

40

60

80

100

120

140

25
00

0

50
00

0

75
00

0

10
00

00

12
50

00

15
00

00

17
50

00

20
00

00

22
50

00

25
00

00

Size of double array (in elements)

T
im

e 
(m

se
c.

)
JDK�1.3�Serialization
JDK�1.3�deserialization
J-IW�to�wire-format
J-IW�from�wire-format

Figure 7: Comparison of double array translation between
Sun JDK 1.3.1 and J-InterWeave

0
10
20
30
40
50
60
70
80
90

100

100 90 80 70 60 50 40 30 20 10

Percentage�of�changes

T
im

e 
(m

se
c.

) JDK�1.3�Serialization

J-IW�to�wire-format

Figure 8: Time needed to translate a partly modified dou-
ble array

It is clear from the graph that as we reduce the per-
centage of the array that is modified, both the translation
time and the required communication bandwidth go down
by linear amounts. By comparison, object serialization is
oblivious to the fraction of the data that has changed.

5.4 J-InterWeave Applications

In this section, we describe the Astroflow application,
developed by colleagues in the department of Physics and
Astronomy, and modified by our group to take advan-
tage of InterWeave’s ability to share data across hetero-
geneous platforms. Other applications completed or cur-
rently in development include interactive and incremental
data mining, a distributed calendar system, and a multi-
player game. Due to space limitations, we do not present
these here.

The Astroflow [11] [14] application is a visualization
tool for a hydrodynamics simulation actively used in the
astrophysics domain. It is written in Java, but employs
data from a series of binary files that are generated sepa-
rately by a computational fluid dynamics simulation sys-

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

100 90 80 70 60 50 40 30 20 10

Percentage�of�changes�

T
ra

ns
m

is
si

on
�s

iz
e�

(M
B

)

JDK�1.3�Serialization
J-IW�to�wire-format

Figure 9: Bandwidth needed to transmit a partly modified
double array

0

20

40

60

80

100

120

140

1 2 4 16
Number�of�CPUs

T
im

e 
(s

ec
.)

Astroflow�simulator�with
file�dump
Astroflow�simulator�with
InterWeave

Figure 10: Simulator performance using InterWeave in-
stead of file I/O

tem. The simulator, in our case, is written in C, and runs
on a cluster of 4 AlphaServer 4100 5/600 nodes under
the Cashmere [34] S-DSM system. (Cashmere is a two-
level system, exploiting hardware shared memory within
SMP nodes and software shared memory among nodes.
InterWeave provides a third level of sharing, based on dis-
tributed versioned segments. We elaborate on this three-
level structure in previous papers [8].)

J-InterWeave makes it easy to connect the Astroflow vi-
sualization front end directly to the simulator, to create an
interactive system for visualization and steering. The ar-
chitecture of the system is illustrated in Figure 1 (page 1).

Astroflow and the simulator share a segment with one
header block specifying general configuration parameters
and six

�������������
arrays of doubles. The changes required

to the two existing programs are small and limited. We
wrote an XDR specification to describe the data structures
we are sharing and replaced the original file operations
with shared segment operations. No special care is re-
quired to support multiple visualization clients or to con-
trol the frequency of updates. While the simulation data

8



Kaffe with File I/O J-InterWeave
Per frame operation 74 msec. 25 msec.

Table 1: Astroflow Java visualization client performance
using J-InterWeave

is relatively simple (and thus straightforward to write to a
file), a simulator with more complex data structures would
need no special code when using InterWeave. In compar-
ison to writing an application-specific message protocol
for the simulator and the satellite, we find data sharing to
be a much more appealing mechanism for many applica-
tions, leading to code that is shorter, faster to write, and
easier to understand.

Figure 10 shows the performance of the simulator us-
ing InterWeave, rather than writing its results to files. The
time is measured on different configurations of the Cash-
mere cluster, from 1 CPU on a single node to four CPUs
on each of 4 SMP nodes. The InterWeave version of the
code uses temporal coherence [8], in which the server
“pulls” updates from the simulator at the same frame rate
that the file-based version of the code writes to disk. This
represents the worst-case scenario in which the visualiza-
tion client requires the latest values. Particularly at large
configurations, InterWeave has a smaller impact on run
time than does the file I/O.

In the visualization front end, Table 1 compares the
time required to read a frame of data from a file to the
time required to lock the segment and obtain an update
from the server. For a typical frame J-InterWeave is three
times faster than the file-based code. (In this particular
application the use of diffs in wire format doesn’t lead to
much savings in bandwidth: most of the simulation data
is modified in every frame.)

Performance differences aside, we find the qualitative
difference between file I/O and InterWeave segments to
be compelling in this application. Our experience chang-
ing Astroflow from an off-line to an on-line client high-
lighted the value of letting InterWeave hide the details of
network communication, multiple clients, and the coher-
ence of transmitted simulation data.

6 Conclusion

In this paper, we have described the design and implemen-
tation of a run-time system, J-InterWeave, which allows
Java applications to share information directly with appli-
cations potentially written using multiple languages and
running on heterogeneous platforms, using ordinary reads
and writes. To the best of our knowledge, J-InterWeave is
the first system to support a shared memory programming
model between Java and non-Java applications.

We have demonstrated the efficiency and ease of use
of the system through an evaluation on both real applica-
tions and artificial benchmarks. Quantitative data shows
that the overhead incurred by our implementation is small
and that the implementation is much faster in translating
data than the object serialization implementation in stan-
dard JDK. Experience also indicates that J-InterWeave
provides a convenient interface for programmers writing
distributed applications in a heterogeneous environment
by hiding the details of data translation, coherence, and
low-level message exchange.

We are actively collaborating with colleagues in our
own and other departments to employ InterWeave in three
principal application domains: remote visualization and
steering of high-end simulations (enhancing the Astroflow
simulation visualization we demonstrated in Section 5),
incremental interactive data mining, and human-computer
collaboration in richly instrumented physical environ-
ments.

References
[1] S. V. Adve and M. D. Hill. A unified formulation of four

shared-memory models. IEEE TPDS, 4(6):613–624, June
1993.

[2] G. Antoniu, L. Boug, P. Hatcher, M. MacBeth,
K. McGuigan, and R. Namyst. The Hyperion system:
Compiling multithreaded Java bytecode for distributed ex-
ecution. Parallel Computing, March 2001.

[3] Y. Aridor, M. Factor, A. Teperman, T. Eilam, and
A. Schuster. A High Performance Cluster JVM Present-
ing a Pure Single System Image. In JAVA Grande, 2000.

[4] B. N. Bershad and M. J. Zekauskas. Midway: Shared
memory parallel programming with entry consistency for
distributed memory multiprocessors. Technical Report
CMU-CS-91-170, Pittsburgh, PA (USA), 1991.

[5] R. Bisiani and A. Forin. Arichitecture Support for Mul-
tilanguage Parallel Programming on Heterogeneous Sys-
tems. In Proc. ASPLOS II, 1987.

[6] F. Breg and C. D. Polychronopoulos. Java virtual machine
support for object serialization. In Java Grande/ISOPE’01,
pages 173–180, 2001.

[7] P. Cappello, B. Christiansen, M. Ionescu, M. Neary,
K. Schauser, and D.Wu. JavaLin: Internet Based Paral-
lel Computing Using Java. In 1997 ACM Workshop on
Java for Science and Engineering Computation, Las Ve-
gas, June 1997.

[8] D. Chen, C. Tang, X. Chen, S. Dwarkadas, and M. L.
Scott. Beyond S-DSM: Shared State for Distributed Sys-
tems. Technical Report 744, URCS, 2001.

[9] D. Chen, C. Tang, X. Chen, S. Dwarkadas, and M. L. Scott.
Multi-level Shared State for Distributed Systems. In Pro-
ceedings of the 2002 International Conference on Parallel
Processing, Vancouver, BC, Canada, August 2002.

9



[10] G. Cohen, J. Chase, and D. Kaminsky. Automatic Pro-
gram Transformation with JOIE. In 1998 USENIX Annual
Technical Symposium.

[11] G. Delamarter, S. Dwarkadas, A. Frank, and R. Stets.
Portable Parallel Programming on Emerging Platforms.
Current Science Journal published by the Indian Academy
of Sciences, April 2000.

[12] G. Eisenhauer and K. Schwan. An object-based infras-
tructure for program monitoring and steering. In 2nd SIG-
METRICS Symposium on Parallel and Distributed Tools
(SPDT’98), pages 10–20.

[13] P. Ferreira and et. al. PerDis: Design, Implementation and
Use of a PERsistent DIstributed Store. Technical Report
3532, INRIA, Oct 1998.

[14] A. Frank, G. Delamarter, R. Bent, and B. Hill. As-
troflow simulator. http://astro.pas.rochester.edu/ � dela-
mart/Research/Astroflow/Astroflow.html.

[15] D. Hagimont and D. Louvegnies. Javanaise: distributed
shared objects for Internet cooperative applications. In
Middleware’98, The Lake District, England, 1998.

[16] M. Herlihy. The Aleph Toolkit: Support for Scalable Dis-
tributed Shared Objects. In WCAA, Jan 1999.

[17] M. Herlihy and B. Liskov. A Value Transmission Method
for Abstract Data Types. ACM Transactions on Program-
ming Languages and Systems, 4(4):527–551, Oct 1982.

[18] J.M.Bull, L. Smith, L. Pottage, and R. Freeman. Bench-
marking Java against C and Fortran for Scientific Appli-
cations. In Java Grande/ISOPE’01, pages 97–105, Palo
Alto, CA USA, 2001.

[19] K. L. Johnson, M. F. Kaashoek, and D. A. Wallach. CRL:
high-performance all-software distributed shared memory.
In Proceedings of the 15th ACM Symposium on Operating
Systems Principles (SOSP), 1995.

[20] A. Kennedy and D. Syme. Design and implementation
of generics for the .net common language runtime. In
PLDI’01.

[21] R. Kordale and M. Abamad. Object Caching in a CORBA
Compliant System. Computing Systems, (4):377–404, Fall
1996.

[22] H. B. Lee and B. G. Zorn. BIT: A Tool for Instrumenting
Java Bytecodes. In The USENIX Symposium on Internet
Technologies and Systems, 1997.

[23] T. Lindholm and F. Yellin. The Java Virtual Machine Spec-
ification. Addison-Wesley, second edition, 1999.

[24] M. J. M. Ma, C.-L. Wang, F. C. M. Lau, and Z. Xu. JES-
SICA: Java-enabled single system image computing archi-
tecture. In ICPDPTA, pages 2781–2787, June 1999.

[25] E. Meijer and C. Szyperski. What’s in a name: .NET as
a Component Framework. In 1st OOPSLA Workshop on
Language Mechanisms for Programming Software Com-
ponents, pages 22–28, 2001.

[26] J. Meyer and T. Downing. Java Virtual Machine. O’Reilly,
1997.

[27] K. Organization. Kaffe Virtual Machine.
http://www.kaffe.org.

[28] M. Philppsen and M. Zenger. JavaParty – Transparent Re-
mote Objects in Java. Concurrency: Practice and Experi-
ence, 9(11):1225–1242, Nov. 1997.

[29] T. Sandholm, S. Tai, D. Slama, and E. Walshe. Design of
object caching in a CORBA OTM system. In Conference
on Advanced Information Systems Engineering, 1999.

[30] H. S. Sandhu, B. Gamsa, and S. Zhou. The shared region
approach to software cache coherence on multiprocessors.
In Proc. of the Fourth ACM SIGPLAN Symp. on Principles
and Practice of Parallel Programming (PPOPP’93), pages
229–238, 1993.

[31] D. J. Scales and K. Gharchorloo. Towards Transparent and
Efficient Software Distributed Shared Memory. In SOSP,
1997.

[32] Y. Sohda, H. Nakada, and S. Matsuoka. Implemen-
tation of a portable software DSM in Java. In Java
Grande/ISOPE’01, pages 163–172, Palo Alto, CA USA,
2001.

[33] Standard Performance Evaluation Corporation. Spec
JVM98. http://www.specbench.org/osg/jvm98/.

[34] R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kon-
tothanassis, S. Parthasarathy, and M. Scott. Cashmere-
2L: Software Coherent Shared Memory on a Clustered
Remote-Write Network. In Proc. of the 16th ACM Symp.
on Operating Systems Priciples, St. Malo, France, Oct.
1997.

[35] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue,
M. Kawahito, K. Ishizaki, H. Komatsu, and T. Nakatani.
Overview of the IBM Java Just-In-Time Compiler. IBM
Systems Journal, 39(1), 2000.

[36] Sun Microsystems, Inc. Network Programming Guide —
External Data Representation Standard: Protocol Specifi-
cation, 1990.

[37] C. Tang, D. Chen, S. Dwarkadas, and M. L. Scott. Support
for Machine and Language Heterogeneity in a Distributed
Shared State System. Technical Report 783, URCS, 2002.
Submitted for publication.

[38] R. Veldema, R. Hofman, R. Bhoedjang, and H. Bal. Run-
time optimizations for a Java DSM implementation. In
Java Grande/ISOPE’01, pages 153–162, 2001.

[39] S. Vinoski. CORBA: Integrating Diverse Applications
with Distributed Heterogeneous Environments. IEEE
Communication Magazine, Feb. 1997.

[40] M. Welsh and D. Culler. Jaguar: enabling efficient com-
munication and I/O in Java. Concurrency - Practice and
Experience, 12(7):519–538, 2000.

[41] W. Yu and A. Cox. Java/DSM: A Platform for Heteroge-
neous Computing. Concurrency – Practice and Experi-
ence, 9(11), 1997.

[42] S. Zhou, M. Stumm, M. Li, and D. Wortman. Heteroge-
neous Distributed Shared Memory. IEEE Trans. on Par-
allel and Distributed Systems, 3(5):540–554, September
1992.

10




