
IncreasingDisk Burstinessfor Energy Efficiency

AthanasiosE. Papathanasiouand MichaelL. Scott

TheUniversityof Rochester
ComputerScienceDepartment
Rochester, New York 14627

TechnicalReport792

Abstract

Hard disksfor portabledevices,andthe operatingsystemsthat managethem, incorporatespin-down
policiesthat idle thedisk aftera certainperiodof inactivity. In essence,thesepoliciesusea recentperiod
of inactivity to predict that the disk will remaininactive in the near future. We proposean alternative
strategy, in which the operatingsystemdeliberatelyseeksto cluster disk operationsin time, to maximize
the utilization of the disk when it is spunup and the time that the disk canbe spundown. In order to
clusterdisk operationswe postponethe serviceof non-urgent operations,anduseaggressive prefetching
andfile predictionto reducethe likelihoodthatsynchronousreadswill have to go to disk. In addition,we
presenta novel predictive spin-down/spin-uppolicy that exploits high level operatingsystemknowledge
to decreasedisk idle time prior to spin-down, andapplicationwait time dueto spin-up. We evaluateour
strategy throughtrace-drivensimulationof severaldifferentworkloadscenarios.Ourresultsindicatethatthe
deliberatecreationof burstyactivity cansaveupto 55%of theenergy consumedby anIBM TravelStardisk,
while simultaneouslydecreasingsignificantly the negative impact of disk spin-uplatency on application
performance.

Thiswork wassupportedin partby NSFgrantsCCR–9988361,CCR–0204344,andEIA–0080124,andby DARPA/ITO under
AFRL contractF29601-00-K-0182.

mls
Nov. 2002

1 Intr oduction

Powerefficiency hasbecomeamajorconcernfor computingsystems.ProcessorssuchastheTransmeta
Crusoe[Halfhill, 2000a;Halfhill, 2000b]andthe Intel StrongARM[Intel Corporation]supportfrequency
andvoltagescaling,allowing aclever schedulingalgorithmto save energy by “squeezingout theidle time”
in rate-basedapplications.Memory, harddisk, andnetworking devicestypically supporta small number
of discretestates,with varying power consumptionandperformancecharacteristics.The device typically
operatesonly in thehighestenergy state;otherstatesconsumeprogressively lesspower, but take increasing
amountsof time,andoftenenergy, to returnto theactive state.

Traditionalpowermanagementpoliciesattemptto moveadevice into oneof its low powerstatesduring
periodsof idle time. Theprincipalchallengeis to identify thestatethatwill maximizeenergy savingsfor a
given level of acceptableperformancedegradation.Sincetheoptimalpower statedependsnot only on the
device’s characteristics,but alsoon the lengthof the idle period,which is not known in advance,choosing
the optimal statebecomesa difficult predictionproblem. The mostcommonpolicies employ a fixed or
adaptive threshold, moving to a low power stateaftera certainperiodof device inactivity. More complex
policiesmonitor theutilization patternof theunderlyingdevice, keeptrackof the lengthandfrequency of
idle periods,andattemptto selecta power modebasedon predictionof thedurationof theupcomingidle
period.

Unfortunately, power managementpoliciesthatsimply react to observed accesspatternssuffer from a
fundamentallimitation: if the time betweendevice accessesis too small to justify moving to a low power
mode,thenthemostefficient reactive policy will keepthedevice constantlyactive, andno energy will be
saved. A morepromisingapproach,we believe, is to change the accesspattern.Specifically, we propose
that theoperatingsystemdeliberatelyattemptsto createbursty accesspatternsfor deviceswith low power
modes.In thispaperwe focusin particularon harddisks.

Thoughmostdisk requestsaredriven by applications,the temporaldistribution of thoserequestsis to
a largeextentanartifactof thescheduling,memorymanagement,andbuffering decisionsmadeby theOS
kernel.Operatingsystemshave traditionallyattemptedto generateassmoothanaccesspatternaspossible,
by spreadingrequestsover time. This smoothingreducesthe likelihood of I/O bottlenecks,and can be
expectedto maximizethroughputfor I/O intensive workloads,but it hidesopportunitiesto save energy. If
the operatingsystemattemptedinsteadto clusterrequestsin time it might often be ableto merge several
shortintervalsof inactivity into asingle,longerinterval, duringwhichthediskcouldprofitablybemovedto
a low power (“spundown”) state.

In the remainderof the paper, we presentandevaluatemechanismsto increasethe burstinessof disk
usagepatterns,by delayingasynchronousreadandwrite requests(moving themforward in time) andby
prefetchingaggressively to reduceasmuchaspossiblethenumberof synchronousreadsthathave to come
from disk (moving thembackward in time). We focus in our currentwork on interactive workloadsand
workloadsconsistingof rate-basedandmultimediaapplications.We alsopresentpreliminaryresultsthat
quantify thepositive impactof file predictionon energy efficiency. Ongoingwork (not reportedhere)will
accommodatemorerandomandinteractive accesspatterns,usingmoresophisticatedprefetchingmecha-
nisms,andspoolingsynchronouswrites throughFLASH RAM. To quantify thebenefitsof burstiness,we
modeltheenergy consumedby astandardlaptopharddisk,drivenby diskaccesspatternsfrom multimedia
applications.

To identify opportunitiesto move requestsin time, we argue that a power managementsystemmust
track the accesspatternsof applicationsover time, generatingapplication-specificpredictionsof future
accesses[Pattersonet al., 1995], and must integrate the power stateand performancecharacteristicsof

2

underlyingdevices into suchtraditional resourcemanagementpoliciesasmemorymanagementanddisk
scheduling.

For mobilesystems,whoseworkloadsarenot usuallyI/O intensive, theprincipaldownsideto a bursty
accesspatternis apotentialincreasein theapplication-perceived latency of synchronousreads,dueto spin-
up operations.For interactive applicationsaggressive prefetchingserves to reducethe numberof visible
delays. For rate-basedand non-interactive applications,the sameinformation that allows the operating
systemto identify opportunitiesfor spin-down canalsobe usedto predict appropriatetimesfor spin-up,
renderingthedevice availablejust in time to servicerequests.It canalsobeuseddeactivatethedisk after
theendof aburstof activity.

Datausagepredictionandprefetchinghave beenstudiedextensively in thepastasamethodto improve
systemperformance.Thenatureof power management,however, suggestsa significantlymoreaggressive
approach.Whenthegoalis simply to minimizeapplicationperceivedlatency, thebenefitsof prefetchingare
limited by theapplication’s dataconsumptionrate[Pattersonet al., 1995]: it is uselessto prefetchearlier
than the point at which a future accesswill yield a zerostall time. With respectto power management,
however, any futuredataaccessthatdoesnot hit in memoryis equallycostlyafter thedevice hasentereda
low powerstate,sinceit will leadto aspin-upoperation.To maximizeenergy efficiency weshouldprefetch
asaggressively aspossible,aslong asprefetchingdoesnot exceedour memorycapacity, or evict datathat
will beusedsoonerthantheprefetcheddata.

Therestof thispaperis structuredasfollows. Section2 providesthemotivationfor anenergy-conscious
file system,while Section3 describesthedesignof ourprefetchingandrequestdeferringmechanisms.Sec-
tion 4 presentsexperimentalresults. In a seriesof experimentswe report on (1) delayingasynchronous
requestsfor mixed workloads,(2) prefetchingfor applicationswith sequentialaccesspatterns,and (3)
prefetchingin moregeneralapplications.Our resultsindicatethat thedeliberatecreationof burstyactivity
cansave up to 55%of theenergy consumedby an IBM TravelStardisk, while simultaneouslydecreasing
significantlythe negative impactof disk spin-uplatency on applicationperformance.Section5 discusses
previouswork. Section6 summarizesourconclusions.

2 Moti vation

2.1 Energy Efficiency of Hard Disks

Following the guidelinesof the AdvancedConfigurationand Power Interface Specification(ACPI)
[ACPI, 2000], modernhard disks for mobile systemssupportfour different power states: Active, Idle,
Standby, andSleep.In theIdle statethedisk is still spinning,but theelectronicsmaybepartially unpow-
ered,andtheheadsmaybeparkedor unloaded.In theStandbystatethedisk is spundown. TheSleepstate
powersoff all remainingelectronics;a hardresetis requiredto returnto higherstates.Individual devices
maysupportadditionalstates.The IBM TravelStar, for example,hasthreedifferentIdle sub-states[IBM,
1999].

The time and energy requiredto move from Idle to Active stateare minimal for most devices. We
thereforeassumein therestof this paperthat thedisk movesautomaticallyto Idle statewhenthereareno
pendingrequests.Thetime andenergy requiredto move from Sleepto any otherstatearehigh enoughthat
weassumethatstateis usedonly whenthemachineis shutdown or hasbeenidle for asignificantperiodof
time. Standbystatelies in themiddle. Contemporarydisksrequireon theorderof oneto threesecondsto
transitionfrom Standbyto Active state.During thatspin-uptime they consume1.5–2Xasmuchpower as
they dowhenActive. Thetypical laptopdiskmustthereforeremainin Standbystatefor acertainamountof

3

Disk M-1994 IBM-2000 T-2001 IBM-micro
Capacity 105MB 6-18GB 2GB 340MB-1GB
Active 1.95W 2.1W 1.3W 0.73W
Idle 1.0W 1.85W 0.7W 0.5W

Active Idle NA 0.85W NA NA
Low Power Idle NA 0.65W 0.5W 0.22W

Standby 0.025W 0.25W 0.23W 0.066W
Spinup 3.0W 3.33W 3.0W 0.66W

Spindown 0.025W NA NA NA
Spinup time 2.0s 1.8s 1.2s 0.5s

Spindown time 1.0s NA NA NA
Breakeventime 6.2s 6.2s 7.6–13.3s 0.7–2s

Table1: Energy consumptionparametersfor variousdisks. M-1994 standsfor MAXT OR MXL-105 III
(1994),IBM-200 standsfor IBM Travelstar(2000),T-2001standsfor ToshibaMK5002 MPL (2001),and
IBM-micro standsfor IBM Microdrive DSCM.

time to justify theenergy costof thesubsequentspin-up.This break-even time is currentlyon theorderof
5–15secondsfor laptopdisks. Table1 presentsthebreak-even time andthepower characteristicsfor one
olderandthreemorerecentharddisks.NotethattheIBM Microdrive,aone-inchdevice intendedfor usein
camerasandPDAs, is smallerthanthetypical laptopdisk.

The principal taskof an energy-consciousdisk managementpolicy is to force transitionsto Standby
statewhenthis is likely to save significantenergy. Inappropriatespin-downs canwasteenergy (if thedisk
remainsidle for lessthanthebreak-even time), frustratethehumanuser(if thecomputermustfrequently
spinup thedisk in orderto servicean interactive application),andreducethe lifetime of thedisk through
wearandtear. On theotherhand,evensignificantamountsof unnecessarydisk traffic (e.g. prefetchingof
datathatareneveractuallyused)canbejustifiedif they allow usto avoid spin-upoperations,or to leave the
disk spundown for longerperiodsof time. Our goalsarethusto (1) maximize the length of idle phases by
prefetchingaggressively andby postponingwrite requests,(2) minimize wait time in the Idle stateduring
idle phaseslong enoughto justify spin down, (3) avoid unnecessary spin downs duringshortidle phases,
and(4) minimize application perceived delays throughdiskpre-activation.

2.2 Linux Delayed-Write and PrefetchingAlgorithms

As a concreteexampleof disk managementpoliciesorientedtowardsmoothing,considerthedelayed-
write andprefetchingalgorithmsemployed in Linux. Like many modernoperatingsystems,Linux usesa
unified virtual memoryandfile buffer systemto cachedisk contentsin memory. Write operationscreate
dirty pagesin memory, but unlesstheapplicationexplicitly requestsa synchronousoperation,they do not
immediatelyaccessdisk. Rather, a kerneldaemoncalledKupdate executesevery five secondsandinitiates
write requestsfor every buffer that hasbeendirty for morethanthirty seconds.The 30 seconddelayde-
creasesthe system’s write activity: files that aredeletedwithin 30 secondsnever actuallyreachthe disk.
The 5 secondrepeatinterval serves to spreaddisk traffic over time, andensuresthat a systemcrashcan
neverdestroy datamorethan35secondsold. (In anon-preemptive kernelsuchasLinux, frequentexecution
of Kupdate alsopreventsthework associatedwith creatingdisk requestsfrom becominga noticeable“hic-
cup” in userresponsiveness.In ourenergy-awareversionof Linux, thedaemonstill runsfrequently, but we
postponetheactivationtimeof thedisk requestqueue.)

4

0

500

1000

1500

2000

2500

3000

0 50 10
0

15
0

20
0

D
at

a
C

on
su

m
pt

io
n

R
at

e
(K

B
/s

ec
)

�

Time (seconds)

FS
DISK

Figure1: Dataproductionrateasseenby the Linux
disk andthefile systemduringa CD copy operation.
Differencesaredueto thebehavior of Kupdate.

0

20

40

60

80

100

0 5 10 15 20 25 30 35

P
er

ce
nt

ag
e

of
 T

ot
al

 Id
le

 T
im

e

�

Idle Interval Length (seconds)

Linux

Figure 2: Distribution of idle time intervals for the
Linux diskduringaCD copy operation.

0

20

40

60

80

100

120

140

0 50 10
0

15
0

20
0

D
at

a
C

on
su

m
pt

io
n

R
at

e
(K

B
/s

ec
)

�

Time (seconds)

FS
DISK

Figure3: Dataconsumptionrateasseenby theLinux
disk and file systemduring mp3 playback. Differ-
encesaredueto prefetching.

0

20

40

60

80

100

0 5 10 15 20 25

P
er

ce
nt

ag
e

of
 T

ot
al

 Id
le

 T
im

e

�

Idle Interval Length (seconds)

Linux

Figure 4: Distribution of idle time intervals for the
Linux diskduringmp3playback.

Kupdate hasa negative effect on energy consumption. Unlessthe systemis completelyidle, write
requestsaregeneratedalmostevery timethedaemonruns.Theresultcanbeseenin Figures1 and2, which
show dataproductionratesanddisk idle timeswhile copying a CD-ROM to disk. No idle time interval
is longer than five seconds,leaving no opportunity to save energy by spinningdown the disk. This is
unfortunategiventhatthesustainablebandwidthof thedisk significantlyexceedsthatof theCD drive.

For sequentialreadaccesses,Linux supportsa conservative prefetchingalgorithmthat readsup to 128
KB (324KB pages)in advance.Figures3 and4 illustratetheresultingdiskbehavior for mp3playback.The
applicationconsumesfile datasequentiallyatarateof approximately16KB/s (1MB/min), whichthekernel
translatesinto readrequestsfor 128KBevery8 seconds.Sincemostmodernlaptopdiskshaveabreak-even
time greaterthan8 seconds,thereis againno opportunityto save energy by spinningdown thedisk. In our
experiment66%of thetotal disk idle time (194secondsout of 292)appearsin intervals of lessthaneight
seconds,andonly 15%appearsin intervals thatarelargerthan12seconds(thebreak-eventime for anIBM
TravelStardisk).

5

Assumingthereis enoughavailablememory, anenergy consciousprefetchingalgorithmcouldincrease
theamountof prefetcheddata.Doublingit to 256KBwouldmovetheinter-requestinterval above thebreak-
even point for spin-down of many laptopdisks. Additional increaseswould permit substantiallygreater
energy savings.Moreover, adiskschedulingalgorithmthathasaccessto theadditionalinformationthatthe
mp3playbackis theonly currentlyactive taskcanspindown thedisk immediatelyafterservicingthe last
requestandspinit upagainjust in time to servicethenext bunchof prefetchingrequests.

Thepreviousexamplesillustratecaseswheresmoothingconflictswith energy efficiency. They suggest
thefollowing guidelinesfor energy efficient design:

1. Delayed updates: Updatepoliciesshouldbe modified in order to increasethe burstinessof write
activity. A simpleway to increasewrite burstinesswould be to increasetheexecutionperiodof the
kernel’s updatethread,but suchachangecouldleadto decreasedsystemresponsiveness.

2. Aggressive Prefetching: Depth of dataprefetchingshouldbe increasedbeyond an application’s
prefetchhorizonin order to reducethe frequency with which readrequestshave to be servicedby
the disk. File predictionshouldalsobe employed. The risks of aggressive prefetchingmay be de-
creasedby theuseof hints.Hintsmaybegeneratedautomaticallyby keepingtrackof pastapplication
accesspatterns.

3. Urgency-basedscheduling: Increasedburstinesscanleadto diskcongestion.To avoid increasedap-
plicationperceiveddelaysandreducedsystemreliability, urgentrequests(mostlysynchronousreads
associatedwith foregroundapplicationsandsynchronouswrites)shouldnot wait for thecompletion
of earliernon-urgent requests.To make urgency informationavailable to the low-level disk driver,
requestsshouldbeannotatedwhenoriginally generatedin higherlevelsof thesystem.

4. Device Awareness: Power consumptionandperformancecharacteristicsof devicesshouldbe inte-
gratedinto theoperatingsystemalgorithmsthatdeterminethedevice’s usagepattern.In thecaseof
harddisks,the memorymanagementsystem—specificallythe prefetchingandupdatealgorithms—
shouldreflectthebreak-eventimesfor eachlow powerstate.

3 Designof an Energy-ConsciousFile System

Following theguidelinessuggestedin Section2,weproposethefollowing kernelsubsystemsfor energy-
consciousdisk management(Figure5):

� The monitoring systemtracksfile accessesof applicationsover time (including multiple runs), to
learn their accesspatterns. It noteswhich files are readandwritten, at what rates,andwith what
recurringpatterns(sequentialor randomaccess,onceor multiple times).

� Using informationfrom themonitoringsystem,thehint generationsystempredictsfuturedisk ac-
cesseson thepartof currentlyrunningapplications,andpassesthesepredictionsashintsto themem-
ory managementandfile system. A similar approachto prefetchingwasproposedby Pattersonet
al. [Pattersonet al., 1995],but in a lessaggressive form. As notedin section1, attemptsto maximize
performancedo not leadto thedepthof prefetchingrequiredto produceaburstydiskusagepattern.

� Basedonthecurrentlyavailablememoryandinformationfrom thehintingsystem,thememory man-
agementsystemandfile systemmustdecidewhichdatabuffersto keepin memoryin orderto max-
imize the lengthof idle phases.To accomplishthesetasks,they areaugmentedwith algorithmsfor

6

Hint Generation Monitoring

File System

Idle Phase Length
Estimation

Disk Driver

User−level
Kernel

Access
Database

Task 1 Task 2 Task 3

Task / File

Memory Management

Generation
Prefetch Request

Figure5: Designof theProposedSystem.

prefetch requestgeneration and idle phaselength estimation. During eachbrief periodof disk
activity, thesealgorithmsdeterminewhich memorypagesaregoing to be accessedin the next idle
phase,which files and how many buffers from eachfile have to be prefetched,which dirty pages
have to beflushedin orderto providespacefor new dataandmeetapplicationexpectationsregarding
synchronouswrites,andhow many pageshave to be reserved in orderto hold the datathat will be
producedduringthenext idle phase.All requestsareannotatedwith anindicationof their urgency.

� Basedon information from the prefetchrequestgenerationand idle phaselengthestimationalgo-
rithms, the disk dri ver decideswhetherto keepthe device active or placeit in a low power state.
Non-urgentrequeststhatareissuedaftera disk deactivationdo not leadto animmediatedisk reacti-
vation.

3.1 Annotations for DelayingRequests

As a first steptowardsthe implementationof theproposeddesignwe presenta schemefor annotating
I/O requestsin the Linux kernel. As mentionedabove, requestannotationscan facilitatean efficient re-
shapingof the disk usagepatternandavoid significantperformancedegradationdue to disk congestion.
Particularlyfor applicationswith unpredictableaccesspatterns,whereprefetchingcannotbeusedto increase
diskburstiness,delayingselectively requestscanavoid undesirabledisk reactivations.

Thedecisionto delaytheservicetimeof asynchronousrequestandtheamountof time for which it can
bedelayeddependson its criticality or urgency andon thecurrentstatusof thesystem.1 Suchinformation
is availablein thehigherlevelsof theoperatingsystemwheretherequest’s origin andthecausesthat lead
to the requestareknown, but it is lost beforeit reachesthe level at which power-managementpoliciesare
typically implemented.Thedisk driver mayknow thetypeof theoperation(reador write), thesizeof the

1As anexampleof theeffectof thesystem’sstatusonrequestcriticality, considerwrite requeststhataregeneratedduringperiods
of low memoryavailability. Suchrequestsaremoreurgentthansimilar requestsgeneratedduringperiodsof low memorydemand.

7

data,andtheblocksof thedisk thathave to bewritten, but it doesnot know thepurposeof the requestor
the identity of theprocessthat initiated it. This informationis unimportantto a purethreshold-basedspin-
down policy, but it may help us to distinguishurgentoperationsor operationsthat shouldnot be delayed
significantlyfrom lessimportantrequests.

An inventoryof I/O operationsin theLinux 2.4 kernelsuggestssevendifferentcategoriesof requests,
listedherein increasingorderof urgency:

1. Asynchronousrequestsfrom user-level processes.2

2. Synchronousrequestsfrom non-interactive user-level processes.

3. Asynchronousrequestsfrom kernelthreads.

4. Synchronousrequestsfrom interactive user-level processes.

5. Synchronousrequestsfrom kernelthreads.

6. Requestscreatedby a sync operation.

7. Requeststhathave to beservicedin orderto freesystemresourcesunderheavy load.

Becausethe Linux schedulerdoesnot attemptto distinguishbetweeninteractive andnon-interactive
processes,our initial implementationis unableto distinguishbetweenrequestsin categories(2) and(4).
We considerdelayingrequestsin categories(1) and (3) (“non-urgent requests”),but servicerequestsin
categories(2) and(4)–(7)(“urgentrequests”)immediately. More specifically, our implementationemploys
two parameters:thespin-down threshold

�
andthemaximumdelaytime � . Wespinthediskdown after

�
secondsin which no requestsarepending.We spinthedisk up whenthereis anurgentrequest,or whena� secondshave elapsedsincetheoldeststill-unservicednon-urgentrequest.Oncethedisk is spunup, we
serviceall outstandingrequests,from all categories,andcontinueto servicenewly arriving requests(from
all categories)until we againexceedthespin-down threshold

�
.

It is importantto notethatthegenerationof requestsis independentof thetime thatthelow-level driver
will servicethe request.Synchronousrequestsaregeneratedin direct responseto an applicationsystem
call. Asynchronousrequestsaregeneratedby upperlevelsof thekernelperiodicallyor whentheprocessor
is idle. Additional requestsaregeneratedby variousmodulesof thekernelitself. The initiation of request
servicingdependsontheloadof theharddiskandthepowermanagementpolicy. Requestannotationskeep
thegenerationof requestsindependentof their actualservicetime andprovide enoughinformationto the
low-level driver to respecttherequest’s semantics.

The Linux I/O Mechanisms

I/O requestsin Linux may be initiated througheitherthememorymanagementsystemor thefile sys-
tem. Independentof thesource,all I/O requestsendup in a call to the functiongeneric make request() in
drivers/block/ll rw blk.c. The function insertsthe requestinto a privatequeueassociatedwith thedevice.
After the insertioninto thetaskqueuehascompleted,thebottomhalf of thedevice driver visits thequeue
andservicesevery pendingrequestuntil thequeuebecomesempty.

2Currently, Linux doesnot supportasynchronousI/O by user-level processes.All userlevel readrequestswill block until the
requesteddatahave beenloadedinto memory. Write systemcallsareeffectively asynchronous:they returncallsreturnassoonas
therequesthasbeenplacedin thedriver’s queue.

8

Linux supportsdeferredprocessingthroughthe notion of a task queue. Specifically, requestsmay be
placedin a requestqueuewithout invoking thebottomhalf of theassociateddevice driver. Thebottomhalf
of thedriver maybeactivatedat a latertime. Thefunctionrun task queue() is usedin orderto activatethe
bottomhalvesof all thedriversthathave requestsassociatedwith themin the taskqueue.An examplein
which deferredprocessingis usedis delayingI/O requeststo theharddisk so that they maybemergedor
re-orderedwith new requests.

Deferredprocessingis supportedby thekernelthroughamechanismcalledplugging. Any devicedriver
that supportsdeferredprocessingregistersa plug functionwith thekernelat initialization time. The plug
functionis responsiblefor insertingtherequestqueueof thedevice driver into thetaskqueue,anddelaying
arriving requestsuntil a call to run task queue() takes place. A plug function is alwaysassociatedwith
a correspondingunplug function, which is responsiblefor activating the bottom half of the driver, and
removing its requestqueuefrom thetaskqueue.

After initialization, plugging worksasfollows. Uponthearrival of a requestto a driver with anempty
requestqueue,its requestqueueis pluggedinto thetaskqueue.Additional requestsarestoredin theplugged
requestqueue,but no processingtakesplace.A call to the function run task queue() by somecomponent
of thesystemhasasa resulta call to theassociatedunplug functionandhencetheactivationof thebottom
half of thedriver. Processingof therequestsis initiatedandnew requestsareplacedinto therequestqueue
until servicedby thebottomhalf of thedriver. Whenadriver’s queuebecomesemptythebottomhalf of the
driver is deactivated.A new requestwill resultin re-pluggingtherequestqueueof thedriver.

Plugging for Power Savings

The pluggingmechanismof Linux may be usedin orderto implementdelayedprocessingof disk re-
quests.Thekey ideabehindthe implementationis to substitutethedefault unplug routineassociatedwith
thedisk driver with a new routine,calledpower saving unplug device(), which unplugsits requestqueue
andactivatesthe bottomhalf of the driver only if a requestthat hasto be processedimmediatelyhasen-
teredthe requestqueueor theharddisk hasnot yet spundown. Using this method,requestsdirectedto a
spun-down disk maybedelayeduntil it becomesurgentto servicethem.

Sinceall requestsdirectedto a specificdevice areplacedinto thesamerequestqueue,andsinceonce
the hard disk is spunup thereis no reasonto delay other pendingrequests,it is not necessaryto keep
importanceinformationperrequest.Insteadtherequestqueuemaykeeptrackof theimportanceof themost
urgent requestcurrently in the queue. Consequently, the requestqueuestructureis augmentedwith two
additionalfields.Thefirst one,calledps unplug priority shows thecurrentlevel of importance(priority) of
therequestqueue,andtakesany of thevaluespresentednearthebeginningof thissection.Thesecondfield,
namedps queue max delay indicatesthetime at which therequestqueueshouldbeunplugged,andhence
determinesthemaximumtime for which theprocessingof therequestqueuemaybedelayed.

Insertioninto a device’s requestqueuetakesplaceat the lowestlevel of theblock device driver, where
informationrelatedto theurgency of the requestis not known. A methodthat couldbeusedto make this
informationavailableat the low level driver implementationwould be to make the urgency of the request
a parameterin all functionsfoundin thecontrolflow pathfrom thefunctionthatgeneratestherequest(for
examplethe implementationof the write() systemcall) to the routine that insertsrequestsinto a device
requestqueue.However, suchan implementationwould requiremodifying a significantnumberof kernel,
file systemanddriver functions,whichmakesthissolutionundesirable.

Thefactthattherequestinsertionroutinerunsin theprocesscontext thatgeneratedtherequestprovides
a moreelegantalternative solution. The taskstructureof a processor threadis usedto communicatethe
informationaboutthe urgency of a requestto the low level driver implementation.For this purposethe

9

taskstructureis augmentedwith two fields. Thefield ps unplug priority is a pair that indicatesif andfor
how long thecurrentrequestmaybedelayed.An additionalfield, namedps unplug priority init, provides
default valuesfor this pair, andis usedto re-initialize it after therequesthasbeeninsertedinto therequest
queue.Note that a field describingthe time periodfor which a requestmay be delayedis not necessary,
sincein ourcurrentimplementationrequestsof thesameurgency have thesamemaximumdelayperiod.

Similar annotationsareusedfor the run task queue() function,which unplugsa device requestqueue.
Suchannotationsarenecessarybecausein certainsituations,suchascasesof limited resourceavailability
or acall to thesync() systemcall, therun task queue() functionis invokedin orderto unplugdevices,force
theprocessingof any pendingI/O andhencereclaimresourcesimmediately. In orderto avoid delayingthe
processingof any pendingrequestsin suchcases,theannotationsin thetaskstructureareupdatedto indicate
theincreasedimportanceof thenew request.Theunplugfunctionpower saving unplug device() checksthe
urgency annotationsof thecurrentprocess.If thoseannotationsindicatethat theprocess’s currentrequest
is urgent, the queueis unpluggedandthe bottomhalf of the driver is activatedregardlessof annotations
alreadyin therequestqueue.

3.2 Prefetchingfor Applications with SequentialAccessPatterns

In an initial attemptto evaluatethe benefitsof aggressive prefetching,we have focusedon I/O inten-
sive applicationswith a moreor lesssteadyrateof sequentialaccessesandno reuse. Suchapplications
includemp3 andmpeg playbackandencoding,compressionanddecompressionprograms,anddatacopy
applications(ftp, cd copying). Theseapplicationsmake it easyto generatehints that predict future I/O
requests.Hint generationfor morecomplex applicationsis a subjectof futurework (seesection3.3). We
believe it to be feasible,particularlygiven thenumbersinvolved: asnotedin section1, an algorithmthat
prefetcheslarge amountsof extraneousdatacanstill save energy if it avoids expensive spin-ups. In this
respect,energy-consciousdisk prefetchingmorecloselyresemblesprefetchingfor disconnectedoperation
in remotefile systems[Kistler andSatyanarayanan,1992]thanit doesdataprefetchingin processors.

Knowing in advancethatanapplicationaccessesfilesonly onceallowsthememorymanagementsystem
to evict pagesimmediatelyafteruse,ratherthanevicting themoreuseful,but lessrecentlyused,datathat
mightbechosenby a traditionalLRU replacementpolicy. In addition,knowing thatanapplicationaccesses
files sequentiallyallows usto prefetchmoreaggressively, sinceit is almostcertainthatprefetcheddataare
goingto beused.Theprefetchhorizonis constrainedonly by theavailablememory. As longasprefetching
doesnot causeadditionaldisk activity, becauseof swappingor paging,it will have a beneficialeffect both
on latency andenergy consumption.For the restof this descriptionwe assumethat a portion of physical
memoryof known sizeis usedto servicethe requestsof all applicationsunderconcern. In Section4 we
presentresultsfor variousmemorysizes.

Our disk managementalgorithmoperatesin two phases.During a request generation phase thedisk is
activatedandprefetchingrequestsfor eachactive file andwrite requestsfor dirty pagesaregenerated.The
amountof prefetcheddatafor eachactive file is determinedby thedataconsumptionrateof theapplication
accessingthe file. Intuitively, a larger amountof memoryshouldbe reserved for prefetchingthe dataof
applicationsthatexhibit a higherdataconsumptionrate,so thatall applicationsrun out of prefetcheddata
at aboutthesametime. A certainportionof memoryis alsoreservedfor datathatwill beproducedduring
theupcomingidle phase.

Uponcompletionof a requestgenerationphase,an idle phase begins.Duringanidle phaseaprediction
algorithmpredictsthe lengthof the idle phase.Thepredictionalgorithmexecutesperiodicallyin orderto
updatethedataratesassociatedwith eachactive file andto recalculatethepredictedidle phaselengthbased

10

on thenew rates.If at any point during the idle phasethepredictedlengthis larger thanthedisk’s break-
even time, thenthe disk is spundown. Moreover, after a disk spin down the predictionalgorithmkeeps
recalculatingthe idle phaselengthin orderto pre-activatethedisk andinitiate thenext requestgeneration
phase,sothatapplicationsdo notexperiencedelaydueto thespin-uptime overhead.

Duringeachrequestgenerationphase,theprefetchingalgorithm:

1. Computesthe dataproductionor consumptionratefor eachopenfile for which a sequentialaccess
patternhasbeendetected.

2. Calculatestheaggregaterateimposedby all filesunderconsideration.

3. Setsa targetvaluefor thelengthof theupcomingidle phase basedon theaggregatedatarateandthe
availablememory.

4. Initiatesprefetchingfor files associatedwith readactivity for a total sizeequalto thefile’s datacon-
sumptionratemultiplied by the predicteddurationof theupcomingidle phase.For files associated
with write activity, no additionalaccessesarenecessary. Dirty pagesproducedduringtheidle phase
will bestoredin memoryandflushedto thediskat thebeginningof thenext requestgenerationphase.

Theidle phase length prediction algorithm is similar to theprefetchingalgorithm.Wheninvokedduring
theactive phaseit:

1. Updatesthedataproductionor consumptionrateof eachactive file.

2. Computesthecumulative dataproductionrateof all filesassociatedwith write activity. Basedon this
rateit calculatesthetime at which all freememoryresourceswill beconsumed(andhencea request
generationphasewill beinitiatedin orderto freememorypages).

3. For all files associatedwith readactivity, computesthe minimum time at which the first accessfor
which thedataarenot in memorywill take place,basedon eachfile’s dataconsumptionrateandthe
amountof datathathasbeenprefetched.

4. Setsthepredictionof idle phaselengthto theminimumof thevaluescalculatedin steps2 and3.

As mentionedabove thepredictionalgorithmattemptsto initiate a requestgenerationphasebeforeanap-
plication accessesdatathat have not beenfetchedin memoryin order to avoid performancedegradation.
Two maincausescanleadto decreasedperformance.First, thereactivationof a spun-down disk is associ-
atedwith a significanttime overhead.Second,our algorithmfor increasingtheburstinessof thedisk usage
patterncanleadto increaseddisk congestion.Consequently, applicationsassociatedwith readrequeststhat
areplacedat theendof a heavily loadeddisk requestqueuesuffer increaseddelay. In orderto avoid such
delays,thepredictionalgorithmgeneratesprefetchingrequestsbeforethe last in-memorypageof a file is
consumed.In orderto calculatethefile accessat which prefetchingshouldstart,the following equationis
used: � ���
	���
���������� ���������

� �"!$#&%'!)(*�,+&(-�/.
��0214365 (0�785�9;: (1)

where

�
is thefile pageat which prefetchinghasto beinitiatedin orderto avoid any applicationperceived

delays,�
	���
�� and � representthelast in-memorypageandthedataconsumptionraterespectively for the
file beingaccessed,

� �<���
is theactivationtimefor thefile beingchecked,

�=�"!$#>%�!)(*�,+&(-�/.
denotesthenumber

of pagesfor which disk requestsarepending,and
�?0214365 (0478589

representstheaveragedisk throughputin
pages/second.To minimizethelikelihoodthatany applicationwill runoutof databeforeany morehasbeen
prefetched,readrequestsfor multiplefilesareprioritized,anddataarereadfirst for files thataremostlikely
to runout.

11

3.3 File Prediction

Aggressive prefetchingwithin a singlefile canincreasedisk file systemburstinessin caseswhererela-
tively largefiles arebeingaccessed.However, many applicationsaccessmultiple smallfiles. Suchapplica-
tions includecompilers,computergamesandeditors.For theseapplicationsa moreefficient re-shapingof
thediskusagepatternmaybeachievedthroughfile prediction.

Currently, we do not have a completesolutionthatsolvestheproblemof accuratefile prediction.How-
ever, webelievethatefficientfile predictionmaybeachievedbymonitoringpastfile accessesof applications.
Upon initiation of theexecutionof an applicationits working setof files canbe loadedinto memory. An
alternative methodis to aggressively loadinto memoryall smallfiles foundin theworking directoryof the
application.In Section4.3,we presenttheenergy savings thatcanbeachievedby the latterfile prediction
methodduringagameplayingworkloadscenario.

4 Experimental Evaluation

This sectionevaluatesthe benefitsof usingthe proposedalgorithms. In threesetsof experimentswe
present:

1. Theeffect of delayingtheservicetime of asynchronouswrite requestson energy consumption(Sec-
tion 4.1).

2. The effect of aggressive prefetchingandpostponingwrites for workloadsconsistingof multimedia
andrate-basedapplications(Section4.2).

3. Theimpactof file predictionandprefetchingonthediskenergy consumptionof applicationsaccessing
multiple smallfiles (Section4.3).

Weassumethatafixedthresholdpolicy (spindown afterafixednumberof secondsof idle time) is used
asthediskpowermanagementpolicy. In thefirst andthird setsof experiments,weusealargerangeof spin-
down thresholds,rangingfrom zeroseconds(immediatespin-down if thereareno pendingdisk requests)
to sevenminutes.In thesecondset,we focuson themostaggressive thresholds,in therangeof oneto ten
seconds.Larger thresholdpoliciesleadto no or very smallenergy savings for theworkloadswe consider.
In all cases,thebasecasefor comparisonis theNo-spin-down policy, in which thedisknever spinsdown.

Themetricsusedin thecomparisonsare:

Length of Idle Periods Longer idle periodscanbe exploited by morepower efficient device states. In-
creasingthelengthof idle periodscanimprove any underlyingpowermanagementpolicy.3

Energy Consumption We comparethe energy savings achieved by all techniquesagainstthe No-spin-
down policy.

Number and Typeof Spin-Down Operations Spin-upoperationshave a negative effect on a disk’s life-
time. In addition,if a spin-down operationresultsin spinningup thedisk beforethebreak-eventime
for thedisk haselapsed,theoperationleadsto increasedenergy consumption.Hence,it is important
to minimizethenumberof unnecessaryspin-down operations.

12

State Energy(J) Power(J) Latency
Active NA 2.1W NA
Idle NA 0.65W NA

Standby NA 0.25W NA
Sleep NA 0.1W 2.8s

Spinup 6 3.33W 1.8s
Spindown 0 0 0s
Breakeven NA NA 12.0s

Table2: Disk Model Characteristics.TransitionsbetweentheActive stateandtheIdle stateareassumedto
beinstantaneousanddonot requireany additionalenergy consumption.Thebreak-eventime for transition-
ing to thestandbystateis 12.08seconds.

In orderto evaluateourdiskmanagementpolicies,we usetracesthatcontaininformationfrom boththe
file systemandthedisk driver. For eachfile systemor disk requestthetracerecordstherequestgeneration
time, thecompletiontime,thetype(reador write), thegeneratingprocess,andthenameof therelevantfile.
Traceswerecollectedduringactualexecutionof our workloads.Theexecutionimagesof theapplications
wereloadedinto memorybeforetheinitiation of thetracecollectionprocess,in orderto avoid disk activity
dueto pagefaults. In addition,we madesurethanno otherdisk activity wasgeneratedduring the trace
collectionasa resultof pagingor swapping.

For thefirst andthird setsof experiments,resultsweregeneratedby runningthedisk tracesthrougha
trace-driven disk simulatorthatemulateseachof thefixed-thresholdpower managementpolicies. For the
secondsetof experimentsthe file systemtraceswererun througha simplememory/filesystemsimulator
thatexecutedon top of our disk simulator. We experimentwith variousbuffer memorysizesrangingfrom
2 MB to 128 MB. In addition to the fixed-thresholdpolicies,we emulatea predictive policy that makes
spin-down decisionsusingour idle phaselengthpredictionalgorithm.

Weusea diskmodelwith four power statesbasedon theIBM TravelStardisk. Wedo not usetheSleep
state,andweassumethatthediskenterstheIdle stateassoonastherearenopendingrequests.Becausethe
realdisk transitionsinto its variouslevelsof Idle statesomewhatmoreslowly, our resultsareappropriately
conservative: they underestimatetheenergy consumedby thebase(No-Spin-Down) policy. Theparameters
of ourdisk modelareshown in Table2.

4.1 DelayingAsynchronousOperations

Thissectionpresentstheimpactof delayingasynchronousoperationsonenergy consumptionfor various
fixed-thresholdpolicies.Ourexperimentsemploy a tracerepresenting220minutesof interactive laptopuse
by aCSgraduatestudent.Theworkloadincludesamix of programming(editing),debuggingandcompiling
code.

All figuresin thissectionpresentresultsfor fivedifferentpolicies:

No-SD: TheNo-Spin-Down policy.

Linux: Theoriginal Linux diskschedulerwith a fixed-thresholdspindown policy.

3An exceptionis thecaseof fixed-thresholdpoliciesthatuseinappropriatethresholds.For example,usinga fixedspin-down
thresholdof fifteensecondsona disk with a tensecondbreak-eventime will exhibit increasedenergy consumptionif thelengthof
idle periodsis increasedfrom tensecondsto twentyseconds.

13

M-NoLimit: Our disk schedulerwith a fixed-thresholdspindown policy without any limit on thetime for
which a requestmay be delayed.This strategy resultsin delayingall asynchronousrequestsfor an
indefiniteperiodof time. Postponedrequestsareservicedat thearrival time of thenext synchronous
request.Thispolicy providesanupperboundof theenergy savingsthata load-changediskscheduler
mayachieve.

M-10, M-20, M-30, M-60: Our disk schedulerwith a fixed-thresholdspin down policy. Synchronousre-
questsarenever delayed;asynchronousrequestsmaybedelayedfor up to 10,20,30,or 60 seconds,
respectively.4

Energy Savings

Figure6 displaysthe relative energy savings of the spin down policieswith respectto the No-Spin-
Down Policy. Figure7 providesa closeup for thresholdsin therangeof 0–60seconds.Table3 shows the
bestcaseenergy savings. Thepoliciesthatdelayasynchronouswrite requestsachieve their largestsavings
with aggressive thresholdsin therangeof 1–6seconds.In additionthey provide 0.7%–24.6%moreenergy
savings thana strategy that doesnot rearrangethe disk requestload. A limit on the periodof time that a
requestmaybedelayedof 30secondsleadsto averageenergy savingsof 25.0%,or 14.1%additionalenergy
savingswhencomparedto theoriginalLinux diskschedulingalgorithm.

Slowdown

Figure 8 shows the slowdown of variouspolicies in comparisonto the No-Spin-Down policy. The
measurementsarebasedon thetotal time requiredby theharddisk in orderto completetheworkload.We
assumethatthedisk requestswill bescheduledin thesameorderevenin thepresenceof disk re-activation
overheads.For all thresholdsshorterthan five seconds,our load-changealgorithmsperform betterthan
the original Linux scheduler. The reasonbehindthis performanceimprovementis that the clusteringof
requestsachievedby ourload-changestrategy resultsin fewerspin-down operations.A 10secondthreshold,
which for the original Linux disk schedulerproducesthe bestaverageenergy savings (10.9%),leadsto a
slowdown of 4%. For thesamethreshold,our loadchangestrategy with a 30 secondwrite delayresultsin
a comparableaverageslowdown (3.9%)with 16.5%energy savings. A 60 secondwrite delayleadsto an
averageslowdown of 4.3%andaverageenergy savingsof 25.5%.Increasedenergy savingsareobtainedby
our load-changealgorithm,whenmoreaggressive thresholdsin therangeof 2–5secondsareused,but with
aslowdown in therangeof 4.5–7.6%.

Spin-Down Operations

Figure 9 presentsthe numberand type of spin down operations.As write delay increases,the total
numberof spin down operationsand the numberof spin down operationsthat lead to increasedenergy
consumption,labeledBad, decrease.Thenumberof beneficialspindown operationsalsodecreasesasthe
write delay increases.The reasonis that by increasingthe write delay, the total numberof idle phaseis
reduced. For thresholdsin the rangeof 1–10 seconds,which provide the bestenergy savings, the load
changealgorithmswith write delaysof 20 secondsor moresubstantiallydecreasethenumberof spindown
operations.

4Thedelayimposedby ourdisk scheduleris in additionto thethirty seconddelayof theKupdatedaemon.Hence,a 60 second
delaylimit in our loadchangestrategy mayleadto amaximumof a 90seconddelay.

14

-5

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300

E
ne

rg
y

S
av

in
gs

Threshold (seconds)

Linux
M-10
M-20

M-30
M-60

M-NoLimit

Figure6: Energy savingsof thesimulatedstrategiesduringthemixedworkload.

-10
-5
0
5

10
15
20
25
30
35
40

0 10 20 30 40 50 60

E
ne

rg
y

S
av

in
gs

Threshold (seconds)

Linux
M-10
M-20

M-30
M-60

M-NoLimit

Figure7: Energy savingsof thesimulatedstrategiesfor thresholdsof 0–60seconds.

15

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35 40

S
lo

w
do

w
n

(%
)

@

Threshold (seconds)

Linux
M-10
M-20

M-30
M-60

M-NoLimit

Figure8: Slowdown relative to theNo-Spin-Down policy duringthemixedworkload.

0

200

400

600

800

Li
nu

x

M

-1
0

M
-2

0

M

-3
0

M
-6

0

M

-N
oL

im
it

Li
nu

x

M

-1
0

M
-2

0

M

-3
0

M
-6

0

M

-N
oL

im
it

Li
nu

x

M

-1
0

M
-2

0

M

-3
0

M
-6

0

M

-N
oL

im
it

Li
nu

x

M

-1
0

M
-2

0

M

-3
0

M
-6

0

M

-N
oL

im
it

Li
nu

x

M

-1
0

M
-2

0

M

-3
0

M
-6

0

M

-N
oL

im
it

Li
nu

x

M

-1
0

M
-2

0

M

-3
0

M
-6

0

M

-N
oL

im
it

1 1 1 1 1 1 2 2 2 2 2 2 5 5 5 5 5 5 10 10 10 10 10 10 30 30 30 30 30 30 60 60 60 60 60 60

Policy

S
pi

n-
D

ow
n

Good Bad

Figure9: Numberof “good” and“bad” spindown operationsduringthemixedworkload.

16

Policy Savings Thres.
Original 10.8% 15
M-10 18.0% 5
M-20 22.3% 5
M-30 25.9% 1
M-60 29.4% 1

M-NoLimit 33.9% 1

Table3: Bestcaseenergy savings for eachpolicy. Thepoliciesthat delayasynchronousrequestsachieve
their largestenergy savingswith aggressive thresholdsin therangeof 1-6seconds.In additionthey provide
7.2%-23.1%moreenergy savings thana strategy that doesnot rearrangethe disk requestload. A low 30
secondlimit on theperiodof timethatarequestmaybedelayedleadsto 25.9%,or 15.1%additionalenergy
savingswhencomparedto theoriginalLinux diskschedulingalgorithm.

Name Description
NoSD Neverspin-down

T1 Fixedthresholdof 1 second
T2 Fixedthresholdof 2 seconds
T5 Fixedthresholdof 5 seconds
T10 Fixedthresholdof 10 seconds
Pred Proposedpredictive policy
Opt Optimal: usesfutureknowledge

Bursty Proposedload-changealgorithm
Linux Linux prefetching/update algorithms

Table4: Power managementpoliciesandpattern-shapingalgorithmsusedin theprefetchingexperiments.
Throughouttheevaluationeachpowermanagementpolicy iscombinedwith apattern-shapingalgorithm(for
exampleLinux-Optor Bursty-T1).NotethattheBurstyalgorithmsalwaysoperatewith a limited amountof
memorywhile we do not seta limit on theLinux prefetchingandperiodicupdatealgorithms.

4.2 Prefetchingfor Multimedia and Rate-basedApplications

In this section,we compareour energy-conscious (Bursty) memory/diskmanagementpolicy, which
attemptsto increasetheburstinessof thedisk’s usagepatternthroughaggressive prefetchingandpostpon-
ing writes to the standardLinux policy. The Linux resultsrepresentthe disk usagepatterncreatedby the
workloadsusedon a 512MB (total) system.For theBursty algorithmswe experimentwith variousbuffer
memorysizesrangingfrom 2 to 128MB. Sincethe dataproducedby theapplicationsusedarenot asso-
ciatedwith strict reliability constraints,5 the limit on theperiodof time thatwrite requestscanbedelayed
is determinedonly by theamountof availablememory. We assumea fixed thresholdpower management
policy andexperimentwith aggressive thresholdsin therange1 to 10 seconds.Theuseof suchaggressive
thresholdsis risky, sinceit canleadto a significantnumberof unnecessarydisk spin-downs. However, for
theusagepatternsstudiedonly aggressive thresholdscanleadto substantialenergy savings. Conservative
thresholdpoliciesdegenerateto theNo-Spin-Down policy. In all instancesof theBursty algorithm,prefetch-
ing is initiated in advancein orderto minimizeapplicationperceived delays.We alsopresentresultsfor a

5Thewritten datacanbereproducedagainautomaticallyin caseof a systemcrashfor all theapplicationstested.

17

Applications Files
Read

Files
Written

BytesRead BytesWritten Time
(sec)

Disk Idle
Time(sec)

Mp3 Playback 1 0 4.6MB 0.0MB 293.1 291.6
CD Ripping 0 15 0.0MB 705.8MB 1359.2 1190.5
Mp3 Encoding 15 15 705.8MB 64.1MB 1106.7 912.2
Mp3 Enc/Play 20 15 724.3MB 64.1MB 1227.4 1027.1

Table5: Workloadscenariosusedin theexperimentalevaluation. Only thefiles/datathatwereassociated
with disk activity areshown.

0

20

40

60

80

100

0 50 100 150 200 250 300

P
er

ce
nt

ag
e

of
 T

ot
al

 Id
le

 T
im

e

�

Idle Interval Length (seconds)

Linux
Bursty-2MB

Bursty-4MB
Bursty-8MB

Figure10: Cumulative Percentageof idle time inter-
valsduringmp3playback.

0

20

40

60

80

100

0 20 40 60 80 100
P

er
ce

nt
ag

e
of

 T
ot

al
 Id

le
 T

im
e

�

Idle Interval Length (seconds)

Linux
Bursty-8MB

Bursty-16MB

Bursty-24MB
Bursty-32MB
Bursty-64MB

Figure11: Cumulative Percentageof idle time inter-
valsduringCD-ROM ripping.

predictive algorithm,whichspinsdown thedisk immediatelywhenthepredictedidle phaselengthis greater
thanthedisk’s break-even time (but doesnot alter theaccesspattern),andfor anoptimal algorithm,which
usesfutureknowledgein orderto decidewhetherto spindown thedisk. Our goalsareto show how usage
patternre-shapingcanfacilitateaggressivepowermanagementpolicies,leadingto increasedenergy savings
andminimizing thenumberof unnecessarypower statetransitions,andto evaluatetheefficiency of predic-
tive techniquesthatbasetheir predictionson high level operatingsystemknowledge. Table4 summarizes
theabove information.

Workload Scenarios

In the experimentalevaluationwe usefour differentworkloadscenarioswith differentdegreesof I/O
intensity. The first, mp3 Playbackof onefile, representsa light readworkload. The second,CD ripping,
representsa write-intensive workloadduring which 15 files with a total sizeof 705.8MB werewritten to
disk. Thethird scenario,mp3encoding,is a readandwrite intensive workloadduringwhich 15 WAV files
with a total sizeof 705.8MB areencodedinto mp3format,producing64.1MB of data.Finally, our most
intensive benchmarkinvolvesconcurrentmp3encodingandmp3playback.The input to themp3encoder
is thesameasin thethird scenario.During themp3encodingprocess,themp3playeraccesses5 files with
a total sizeof 18.5MB. Table5 summarizestheabove information. It alsoindicatesthedurationof each
workloadscenario(from thefirst to the lastdisk access—nottheapplicationexecutiontime) andthe total
disk idle time duringtheexecutionof theworkload.

18

0

20

40

60

80

100

0 10 20 30 40 50 60 70

P
er

ce
nt

ag
e

of
 T

ot
al

 Id
le

 T
im

e

�

Idle Interval Length (seconds)

Linux
Bursty-8MB

Bursty-16MB

Bursty-24MB
Bursty-32MB
Bursty-64MB

Figure12: Cumulative Percentageof idle time inter-
valsduringmp3encoding.

0

20

40

60

80

100

0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 T

ot
al

 Id
le

 T
im

e

�

Idle Interval Length (seconds)

Linux
Bursty-8MB

Bursty-16MB

Bursty-24MB
Bursty-32MB
Bursty-64MB

Figure13: Cumulative Percentageof idle time inter-
valsduringmp3encodingandMp3 playback.

Idle PhaseLength

Figures10-13show the distribution of idle time intervals for our workloadscenarios.We presentre-
sultsfor thestandardLinux algorithmandour Bursty algorithmusingvariousmemorysizes.For themp3
playbackworkloadthememorysizerangesfrom 2 MB to 8 MB. Usinglargermemorysizeshasthesame
effect asthe8 MB case,sincethewholefile (4.6MB) is prefetchedin a singledisk operation.For therest
of theworkloadscenarios,we presentgraphsfor memorysizesrangingfrom 8 MB to 64 MB. Using less
than8 MB of memoryfor thesescenariosleadsto very shortidle phases.In all graphsthestraightvertical
line representsthe12 secondbreak-evenpoint of our disk model.Themainconclusionfrom theidle phase
lengthgraphsis thatwhenasufficientamountof memoryis available,ouralgorithmcontrolsthediskusage
patternso that idle time appearsin intervals of approximatelyequallengththat arelongerthanthosethat
aregeneratedby a standardLinux kernel. Ideally, the graphsfor the idle phaselengthdistribution of our
algorithmwould bea straightvertical line. Variationsfrom thestraightvertical line aredueto accessesto
new files thatcausedisk activations,sinceno dataareavailablein memoryfor suchfiles at thetime of the
first access.

Energy Consumption

Figures14-17presentthe energy savings results. For the Linux algorithms,we only presentenergy
savings for the Optimal andthebestrealisticpolicy, which is the No-Spin-Down policy for all workloads
excepttheCD-copy scenario,wherethe10-secondthresholdpolicy performsbetter. It is importantto note
that for thedisk usagepatternsof theLinux algorithmstheenergy savingsarenever morethan1.2%,even
whentheoptimalpolicy is used.Thesavings achieved by the Bursty algorithmdependon theunderlying
policy and the amountof available memory. When the memoryis limited (lessthan 16 MB), the fixed
thresholdpoliciesleadto increasedenergy consumption,becausethe lengthof idle phasesis usually less
thanthe disk’s break-even time. However, with larger memorysizes,idle phaselengthsincreaseandthe
aggressive fixed-thresholdpolicies lead to significantenergy savings rangingup to 55%. The Predictive
algorithmmanagesto avoid the mistaken spin-down operationsof the fixed thresholdpolicies,whenthe
availablememoryis limited, andstill providescomparableenergy savings for increasedmemorysizes. It
follows very closely the behavior of the Optimal policy, achieving savings that arealwayswithin 5% of
thoseachieved by the Optimal policy. For increasedmemorysizesit leadsto decreasedenergy savings

19

whencomparedwith theoneandtwo secondfixedthresholdpolicies.Theexplanationis thatwhenafile is
first accessed,thepredictivealgorithmrequiresacertainperiodof time,usuallygreaterthantwo seconds,in
orderto stabilize.Duringthatperiodthediskis keptin theidle statein orderto avoid unnecessaryspin-down
operations.

Number and Typeof Spin-Down Operations

Figures18-20presentthenumberandtypeof spin-down operationsundervariouspower-management
policiesandmemorysizes.We do not show theresultsfor themp3playbackworkload,becauseit leadsto
asmallnumberof spin-down operationsfor all policies(lessthanthree).Also we do notpresentresultsfor
theLinux algorithms:undertheusagepatterncreatedby Linux thestaticthresholdalgorithmsdegenerate
to theNo-Spin-Down policy in mostcases.

For eachcasepresentedin thegraphs,we show thenumberof spin-down operationsthatleadto energy
savings,labeledGood, thenumberof counterproductive spin-down operations,labeledBad, andthenumber
of occasionswherethe idle phaselengthwaslongerthanthe disk’s break-even time, but the power man-
agementpolicy failedto spindown thedisk, labeledMissed. ThePredictive policy hastheleastnumberof
mistakenspin-down operationsacrossall experimentsandmakesa comparablenumberof energy efficient
spin-down operationsasthemostaggressive fixedthresholdpolicies. It missesa few opportunitiesto spin
the disk down, the missedopportunitiescorrespondto relatively short idle phasesthat could leadto only
minor energy savings.

Application Perceived Delay

Currently, our simulatoris not accurateenoughto predict the effect of our aggressive prefetchingal-
gorithmson applicationexecutiontime. However, we wereableto capturetheeffectsof spin-upoverhead
anddiskcongestion.Theprincipalresultis thatapplicationsreadingfiles for whichat leastoneprefetching
cycle hascompleteddo not suffer any performancepenaltiesdueto disk activation overheador disk con-
gestion.However, thefirst readaccessto a file suffersa significantpenaltyof 1.9 to 3 seconds,depending
on theamountof memorybeingused.Thefirst 1.8secondsof thedelayarecausedby thedisk reactivation
overheadof our disk model,while theremainingpenaltyis causedby congestionin thedisk queues.In ad-
dition, thepenaltyfor thefirst readaccessto a file increasesslightly asthememorysizeincreases,because
largermemorysizesallow anincreasednumberof requeststo remainin thedisk queue.Usingaprioritized
diskqueuethatgivespriority to synchronousreadsoverasynchronouswriteswill decreasetheeffectof disk
congestionon thecompletiontimeof readmisses.

4.3 File Prediction

Thelimit on energy savingsachievedfor theapplicationsin Section4.2wascausedby accessesto new
files. In addition,mostof theapplication-perceiveddelayswereexperiencedduringthefirst accessto afile.
Additionalenergy savingsandimprovedsystemresponsivenessmaybepossibleby readingfiles in advance
during periodsthat the disk is spinning. Sincefile accesstendsto exhibit spatialand temporallocality,
we believe thataggressively prefetchingfiles foundin thesamedirectoryor eventhesamedirectorytreeas
currentlyaccessedfilesmayleadto significantdiskpowersavings. In orderto getafirst orderapproximation
of thepossibleenergy savings,we useda 95 minutetracecollectedduringplayinga commercialcomputer
game(Sid Meier’s Alien CrossfireDemo– Version6.0by Loki SoftwareInc.6). We assumethatall files in

6Loki SoftwareInc. portscommercialcomputergamesproducedfor MicrosoftWindows platformsto Linux platforms.

20

0

10

20

30

40

50

60

2 3 4 5 6 7 8 9 10

E
ne

rg
y

S
av

in
gs

 (
%

)

A

Memory Size (MB)

Bursty-T1
Bursty-T2
Bursty-T5

Bursty-T10

Bursty-Pred
Bursty-Opt

Linux-NoSD
Linux-Opt

Figure14: Energy savingsduringthemp3playbackworkloadscenario.

-30

-20

-10

0

10

20

30

20 40 60 80 100 120

E
ne

rg
y

S
av

in
gs

 (
%

)

A

Memory Size (MB)

Bursty-T1
Bursty-T2
Bursty-T5

Bursty-T10

Bursty-Pred
Bursty-Opt
Linux-T10
Linux-Opt

Figure15: Energy savingsduringtheCD copy workloadscenario.

21

-30

-20

-10

0

10

20

30

20 40 60 80 100 120

E
ne

rg
y

S
av

in
gs

 (
%

)

A

Memory Size (MB)

Bursty-T1
Bursty-T2
Bursty-T5

Bursty-T10

Bursty-Pred
Bursty-Opt

Linux-NoSD
Linux-Opt

Figure16: Energy savingsduringthemp3encodingworkloadscenario.

-30

-20

-10

0

10

20

30

20 40 60 80 100 120

E
ne

rg
y

S
av

in
gs

 (
%

)

A

Memory Size (MB)

Bursty-T1
Bursty-T2
Bursty-T5

Bursty-T10

Bursty-Pred
Bursty-Opt

Linux-NoSD
Linux-Opt

Figure17: Energy savingsduringthemp3encoding/mp3playbackworkloadscenario.

22

0

20

40

60

80

100

T
1

T
2

T
5

T
1

0

P
R

E
D

T
1

T
2

T
5

T
1

0

P
R

E
D

T
1

T
2

T
5

T
1

0

P
R

E
D

T
1

T
2

T
5

T
1

0

P
R

E
D

T
1

T
2

T
5

T
1

0

P
R

E
D

8 8 8 8 8 16 16 16 16 16 24 24 24 24 24 32 32 32 32 32 48 48 48 48 48

Policy

S
pi

n-
D

ow
n

Good Bad Missed

Figure18: Numberof spin-down operationsduringtheCD copy workloadscenario.

172

195

0

20

40

60

80

100

T
1

T
2

T
5

T
1

0

P
R

E
D

T
1

T
2

T
5

T
1

0

P
R

E
D

T
1

T
2

T
5

T
1

0

P
R

E
D

T
1

T
2

T
5

T
1

0

P
R

E
D

T
1

T
2

T
5

T
1

0

P
R

E
D

8 8 8 8 8 16 16 16 16 16 24 24 24 24 24 32 32 32 32 32 48 48 48 48 48

Policy

S
pi

n-
D

ow
n

Good Bad Missed

Figure19: Numberof spin-down operationsduringthemp3encodingworkloadscenario.

23

194

254

0

20

40

60

80

100

120

T
1

T
2

T
5

T
1

0

P
R

E
D

T
1

T
2

T
5

T
1

0

P
R

E
D

T
1

T
2

T
5

T
1

0

P
R

E
D

T
1

T
2

T
5

T
1

0

P
R

E
D

T
1

T
2

T
5

T
1

0

P
R

E
D

8 8 8 8 8 16 16 16 16 16 24 24 24 24 24 32 32 32 32 32 48 48 48 48 48

Policy

S
pi

n-
D

ow
n

Good Bad Missed

Figure20: Numberof spin-down operationsduringthemp3encoding/playbackscenario.

0

10

20

30

40

50

60

0 10 20 30 40 50 60

E
ne

rg
y

S
av

in
gs

Threshold (seconds)

Linux
Linux-P

M-30
M-30-P

M-60
M-60-P

M-NoLimit
M-NoLimit-P

Figure21: Disk Energy Savingsundervariouspolicieswhile playingacomputergame.

24

thedirectoryholdingthedataof thegameareprefetchedat thebeginningof theexecution.Suchaggressive
prefetchingrequirestheuseof a40MB memorybuffer. Figure21shows theenergy savingsachievedby the
original Linux disk scheduler(Linux) andour disk scheduler(M-30, M-60, M-NoLimit for 30,60 seconds
andunlimited write delayrespectively) undervariousfixed thresholdpolicies,with (Linux-P, M-30-P, M-
60-P, M-NoLimit-P) andwithoutprefetching.Notethatin thecaseof unlimitedwrite delaywith prefetching
theenergy savingsincrease45%for anaggressive thresholdof 1 second.Sincethewrite activity produced
while playingagamedoesnothavesignificantreliability constraints,delayingit for asignificantamountof
timewill notcauselossof importantdatain caseof asystemcrash.

In thisexperiment,theentiregamewasloadedinto memoryat start-up.In largergames,whosedatado
not fit in memory, smartpoliciescouldusegamelocality to prefetchneighboringscenes.

5 RelatedWork

5.1 Power Management

The researchcommunityhasbeenvery active in the areaof power-conscioussystemsduring the last
few years.Ellis et al. [Ellis, 1999][Vahdatet al., 2000]emphasizedtheimportanceof energy efficiency as
a primary metric in the designof operatingsystems.ECOSystem[Zeng et al., 2002b]providesa model
for accountingandfairly allocatingthe availableenergy amongcompetingapplicationsaccordingto user
preferences.In amorerecentreport,Zenget al. [Zenget al., 2002a]proposepricingandbiddingtechniques
basedon the currentcy metric usedin ECOSystem,in order to coordinatedisk accessesandincreasethe
energy efficiency of theharddisk. Odyssey [Flinn andSatyanarayanan,1999][Nobleet al., 1997]provides
operatingsystemsupportfor application-aware resourcemanagement.Thekey ideais theability to trade
qualitywith resourceavailability. Both Odyssey andECOSystemaim to achieve a targetbatterylifetime.

Severalpoliciesfor decreasingthepower consumptionof processorsthatsupportdynamicvoltageand
frequency scalinghavebeenproposed.Thekey ideain suchcasesis allowing acleverschedulingalgorithm
to save energy by “squeezingout theidle time” in rate-basedapplications.Proposedschedulersfor general
purposesystemsareeitherinterval-based [Govil et al., 1995] [Grunwald et al., 2000][Weiseret al., 1994]
or process-based [Flautneret al., 2001][Peringet al., 2000]. Voltageschedulingalgorithmshave alsobeen
designedfor real-timesystemsandhave achieved significantenergy savings both for uniprocessor[Pillai
andShin,1999]andmultiprocessorsystems[Zhu et al., 2002]

Lebecket al. [Lebecket al., 2000]explorepower-awarepageallocationin orderto makeamoreefficient
useof memorychipssupportingmultiple power states,suchastheRambus DRAM chips. They compare
policies for selectingwhere(in which memorychip) a pageshouldbe storedin termsof an B

!C� 1 (*D �
�
�FEG+&D

metric. The idea of increasingthe burstinessof the usagepatterncan be appliedin the caseof
memoryaccessesandleadto additionalsavings. For example,anenergy-consciouscompilercouldreorder
instructions,so that load or storeoperationsto the samememorychip appearin shortbursts. Tradeoffs
betweenenergy andperformancein suchacasearebeyondthescopeof thispaper.

In theareaof power managementfor harddisks,mostof the relatedwork studiestransitionstrategies
for changingthepower stateof theharddisk with a minimal impacton performance.Dougliset al. com-
paredpredictive transitionpolicies,fixedthresholdtransitionpoliciesusingvariousthresholds,andanop-
timal policy that usesfuture knowledgein order to decidewhen to spin down and when to spin up the
disk [Dougliset al., 1994].Their resultsshowedthatfixedthresholdpolicieswith shortthresholdsapproach
thepower consumptionachievedby theoptimalpolicy, but thenumberof delayedoperationsmayincrease
substantially. Moreover, thebestcompromisebetweenpower consumptionandresponsetime is workload

25

dependent.The predictive policiesperformedslightly worsethanthe fixed thresholdpoliciesin termsof
powerbothconsumptionandresponsetime. Douglis’ resultsarealsosupportedby Li et al. [Li et al., 1994],
who foundthattheoptimalthresholdfor a 1994Maxtor MXL-105 III harddisk is only two seconds,while
theindustryrecommendedthresholdis threeto fiveminutes.

An alternative to fixed thresholdand predictive techniquesis an adaptive thresholdpolicy. Douglis
et al. [Douglis et al., 1995] suggesta policy that attemptsto reducethe frequency of short spin-down
periods,on theassumptionthat thesearethemostannoying to theuser. Helmboldet al. [Helmboldet al.,
1996]suggesttheuseof amachinelearningalgorithmthatdynamicallyre-weightstherecommendationsof
severalpredictionalgorithms.Our work differs from suchpreviousapproachesin thatwe modify thedisk
usagepatternratherthansimply adaptingto it. Moreover, our predictiontechniqueis basedon high-level
operatingsystemknowledgeandapplicationbehavior, insteadof low level diskusagepatterns.

Lu et al. [Lu et al., 2000;Lu et al., 2002]proposedtheideato basepowerstatetransitionsonthebehavior
of thecurrentlyrunningprocesses.They suggestmonitoringtheutilizationof everyavailabledeviceby each
runningtask,andcombiningtheindividualutilizationvaluesin orderto predictthefutureutilizationfor each
device. In addition,they describeaprocessschedulerthattakesinto accountthepredicteddeviceutilization
for eachrunningtask,andattemptsto scheduletasksin away thatmaximizesutilizationof acertaindevice
andminimizesthe utilization of another. We believe that our work complementsLu’s. Both ideastry to
modify theusagepatternobservedby a power-awaredevice in orderto reduceits energy consumption,but
they attemptit at a differentlevel of thesystem.We believe thatcombiningthetwo algorithmswill leadto
additionalenergy savings.

Heathet al. [Heathet al., 2002a]investigatedthepotentialbenefitsof applicationsupporteddeviceman-
agementfor optimizingenergy andperformance.Possibleapplicationtransformationincludegroupingread
requestsin orderto increasethetimebetweenrequestsandproviding theoperatingsystemwith hintsabout
future readrequests.In a morerecentpaper[Heathet al., 2002b],they presenta compilerframework for
transformingapplicationsautomatically. Experimentsbasedon a real implementationandphysicalmea-
surementssuggestenergy savings on theorderof 55%to 89%. Their approachis complementaryto ours.
They suggestapplicationmodificationsin order to clusterrequests,while we attemptto solve the same
problemat theoperatingsystemlevel. Their approachcanachieve significantenergy savingsfor workloads
consistingof a singleexecutingapplication. For workloadswheremultiple I/O intensive applicationsare
executingconcurrently, we believe thata moregeneralmemorymanagementalgorithmin thekernelof the
operatingsystemthatcancoordinatethegenerationof disk requestsis required.

Finally, Weisselet al. [Weisselet al., 2002]arealsoaddressingtheissuesof diskusagepatternreshaping
for energy efficiency in the “Cooperative I/O” project. They show that by providing an API that allows
applicationsto characterizetheir requestsasdeferrableor abortableandby increasingtheburstinessof the
updatepolicy significantenergy savingsmaybeachieved.

5.2 Buffer CacheManagement

Prefetchinghasbeensuggestedby several researchersasa methodto decreaseapplicationperceived
delayscausedby the storagesubsystem.Previous work hassuggestedthe useof hints as a methodto
increaseprefetchingaggressivenessfor workloadsconsistingof both single [Pattersonet al., 1995] and
multiple applications[Tomkins et al., 1997]. Cao et al. [Cao et al., 1994][Caoet al., 1995] proposea
two-level pagereplacementschemethatallows applicationsto control their own cachereplacement,while
the kernel controls the allocationof cachespaceamongprocesses.Sucha schemeleadsto significant
performanceimprovementsfor applicationsthat have knowledgeof their future accesspatternsthrough

26

aggressive prefetching.Curewitz et al. [Curewitz et al., 1993]exploredatacompressiontechniquesin order
to increasetheamountof prefetcheddata.

In the bestof our knowledge, previously proposedprefetchingalgorithmsdo not addressimproved
energy efficiency. In general,they assumea non-congesteddisk subsystem,andthey allow prefetchingto
proceedin a conservative way resultingin a relatively smoothdisk usagepattern.They avoid prefetching
beyondanapplication’s prefetchhorizonin mostcases,andthey do not dealwith increaseddisk overheads
causedby diskreactivations.Prefetchingfor energy efficiency requiresaveryaggressiveprefetchingscheme
able to cover the datademandsof applicationsfor periodslonger than 5–15 seconds,dependingon the
disk’s specifications,to coordinateprefetchingrequestsfrom multipleapplications,andto take into account
overheadsassociatedwith diskcongestionanddisk reactivationwhendecidingwhenprefetchingshouldbe
initiated.

Several methodshave beenexploredin order to disclosefuture applicationaccesspatternsto the op-
eratingsystem.Changet al. suggestgeneratinghints automaticallythroughspeculative executionduring
periodsof idle processortime [ChangandGibson,1999]. Suchanapproachcannotbeusedwhenthegoal
is energy efficiency, sincespeculative executionwill increasetheamountof energy consumedby thepro-
cessor. Griffioen et al. proposea futureaccesspredictiontechniquebasedon pastfile accesses[Griffioen
andAppleton,1994].Yehet al. describea methodfor improvedfile predictions,basedon pastassociations
amongfiles [Yehet al., 2001b].They alsonotethepositive impactof moreaccuratepredictionschemeson
energy efficiency [Yehet al., 2001a],without however makinganattemptto createa morepower-friendly
diskaccesspatternor takinginto accounttheunderlyingpower managementpolicies.

Previous work hasalso explored periodic updatetechniquesand comparedthem with write-through
policies[CarsonandSetia,1992][Mogul,1994]. Themainconclusionwasthatperiodicupdatescanlead
to degradedperformanceif they increasesignificantlytheburstinessof thedisk usagepattern.Solutionsin
suchcasesfocuson methodsto smooththeusagepatterngeneratedby periodicupdates.However, in the
caseof energy efficiency thegoal is to increasetheburstinessof thedisk usagepattern.Theperformance
shortcomingsof increasedburstinessshouldbeavoidedthroughpriority or criticality baseddiskscheduling
algorithms[GangerandPatt,1998],aggressive prefetchingandaccuratefile prediction.Weexploreaggres-
sive prefetchingin our currentwork. We will focuson criticality-baseddisk schedulingandfile prediction
in thefuture.

6 Conclusion

In our study, we investigatedthepotentialbenefitsof increasingtheburstinessof disk usagepatternsin
order to improve the energy efficiency of the disk spin-down policy. We suggestedthe useof aggressive
prefetchingand the postponementof non-urgent requestsin order to increasethe averagelengthof idle
phases.Theprefetchingalgorithmis guidedby hintsfrom higherlevelsof theOS,which monitorprogram
behavior. Annotationsarebeingusedin orderto notify thelow driver aboutthemaximumdelaythatcanbe
employedon non-urgentrequests.

In addition,we presentedamethodto coordinateaccessesof severalconcurrentlyexecutingtaskscom-
peting for limited memoryresourcesso that requestsaregeneratedandarrive at the disk at roughly the
sametime. Basedon our aggressive prefetchingstrategy we proposedanalgorithmto preactivatethedisk,
so that applicationperceived delaysdueto disk reactivation anddisk congestionareminimized. Finally,
we designeda predictive algorithmfor immediatedisk deactivationthat takesinto accountthestatusof the
memorymanagementsystemandtheaccesspatternsof theexecutingapplications.

27

Weevaluatedtheproposedalgorithmsthroughtrace-drivensimulations.Our resultsshow thatour tech-
niquescanincreasethelengthof idle phasessignificantlycomparedto astandardLinux kernel.Postponing
asynchronousrequestslead to energy savings of up to 30% and aggressive prefetchingcan increasethe
savingsup to 55%. Thesavingsdependon theamountof theavailablememoryandtheurgency/reliability
constraintsof the requests.They increaseasthe memorysize increasesanddecreaseasrequesturgency
increases.Thelimit on theachievedenergy savingscomesfrom therequirementto serviceunpredictedsyn-
chronousreadrequests.A significantnumberof suchrequestsfor theworkloadstestedis createdby thefirst
accessto a file, andcanbeavoidedthroughfile prediction.We show thatfile predictionduringworkloads
thataccessmultiplesmallfiles,suchasgameplaying,canachieve upto 55%energy savings. In ourcurrent
designweconsiderall synchronousrequeststo havehighurgency. Additionalsavingscouldbeachievedby
recognizingnon-urgentsynchronousrequestsanddelayingthemif necessary.

Thoughwefocusedondisksin thispaper, webelievethatburstinesscanhelptosaveenergy in any device
with low power modes,suchasthewirelessnetwork. Currentlywe areworking on an implementationof
our ideasin theLinux kernel.In our futurework weplanto experimentwith applicationsthathave irregular
accesspatternsandstricterrequirementsfor synchronouswrites. For the latter, we expectto exploit non-
volatile (e.g.FLASH) RAM.

Webelievethatin orderto improvethepowerefficiency of computingsystemssignificantly, powerman-
agementpoliciesshouldexploit high level operatingsystemknowledge. In addition,traditionaloperating
systemalgorithms,suchasdisk schedulingandmemoryandbuffer cachemanagement,shouldtake into
accountthepowerandperformancespecificationsof underlyingdevices,in orderto generateusagepatterns
thatfacilitatepower management.

28

References

[ACPI,2000] “AdvancedConfigurationandPower InterfaceSpecification(ACPI),” July 2000, Compaq
ComputerCorporation,Intel Corporation,Microsoft Corporation,PhoenixTechnologiesLtd., Toshiba
Corporation.

[Caoet al., 1994] Pei Cao, Edward W. Felten, and Kai Li, “Implementation and Performanceof
Application-ControlledFile Caching,” In Proc. of the 1st USENIX Symposium on Operating Systems
Design and Implementation (OSDI’94), pages165–177,November1994.

[Caoet al., 1995] PeiCao,EdwardW. Felten,andKai Li, “A Studyof IntegratedPrefetchingandCaching
Strategies,” In Proc. of the 1995 ACM Joint International Conference on Measurement and Modeling of
Computer Systems (SIGMETRCIS’95/PERFORMANCE’95), pages188–197,1995.

[CarsonandSetia,1992] ScottD. CarsonandSanjeev Setia,“Analysisof thePeriodicUpdateWrite Policy
For Disk Cache,” IEEE Transactions on Software Engineering, 18(1):44–54,January1992.

[ChangandGibson,1999] Fay Changand Garth A. Gibson, “Automatic I/O Hint GenerationThrough
Speculative Execution,” In Proc. of the 3rd USENIX Symposium on Operating Systems Design and
Implementation (OSDI’99), February1999.

[Curewitz et al., 1993] KennethM. Curewitz, P. Krishnan,andJeffrey ScottVitter, “PracticalPrefetching
via DataCompression,” In Proc. of the 1993 ACM SIGMOD International Conference on Management
of Data (SIGMOD’93), pages257–266,May 1993.

[Douglis et al., 1995] FredDouglis,PillaipakkamnattKrishnan,andBrian Bershad,“Adaptive Disk Spin-
down Policiesfor Mobile Computers,” In Proc. of the 2nd USENIX Symposium on Mobile and Location-
Independent Computing, April 1995.

[Douglis et al., 1994] FredDouglis,PillaipakkamnattKrishnan,andBrian Marsh, “Thwarting thePower-
HungryDisk,” In Proc. of the 1994 Winter USENIX Conference, pages293–306,January1994.

[Ellis, 1999] CarlaS.Ellis, “The Casefor HigherLevel PowerManagement,” In Proc. of the 7th Workshop
on Hot Topics in Operating Systems (HotOS VII), March1999.

[Flautneret al., 2001] Krisztian Flautner, Steve Reinhardt,andTrevor Mudge, “Automatic Performance
Settingfor DynamicVoltageScaling,” In Proc. of the 7th Annual International Conference on Mobile
Computing and Networking (MobiCom’01), May 2001.

[Flinn andSatyanarayanan,1999] JasonFlinn andMahadev Satyanarayanan,“Energy-aware adaptation
for mobile applications,” In Proc. of the 17th ACM Symposium on Operating Systems Principles, De-
cember1999.

[GangerandPatt,1998] Gregory R. GangerandYale N. Patt, “Using System-Level Models to Evaluate
I/O SubsystemDesigns,” IEEE Transactions on Computers, 47(6):667–678,June1998.

[Govil et al., 1995] Kinshuk Govil, Edwin Chan,andHal Wasserman,“ComparingAlgorithms for Dy-
namicSpeed-Settingof a Low-Power CPU,” In Proc. of the 1st Annual International Conference on
Mobile Computing and Networking (MobiCom’95), November1995.

[GriffioenandAppleton,1994] JamesGriffioenandRandyAppleton, “ReducingFile SystemLatency us-
ing aPredictive Approach,” In Proc. of the USENIX Summer 1994 Technical Conference, June1994.

29

[Grunwald et al., 2000] Dirk Grunwald, Philip Levis, Keith I. Farkas,CharlesB. Morey III, andMichael
Newufeld, “Policiesfor DynamicClock Scheduling,” In Proc. of the 4th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI’00), October2000.

[Halfhill, 2000a] Tom R. Halfhill, “Top PCVendorsAdopt Crusoe,” Microprocessor Report, 14(7):8–12,
October2000.

[Halfhill, 2000b] Tom R. Halfhill, “TransmetaBreaksx86 Low-Power Barrier,” Microprocessor Report,
14(2):9–18,February2000.

[Heathet al., 2002a] Taliver Heath,EduardoPinheiro,and RicardoBianchini, “Application Supported
Device Management,” In Proc. of the 2002 Workshop on Power-Aware Systems (PACS’02), pages114–
123,February2002.

[Heathet al., 2002b] Taliver Heath,EduardoPinheiro,JerryHom, Ulrich Kremer, andRicardoBianchini,
“Application Transformationsfor Energy andPerformance-Aware Device Management,” In Proc. of
the 11th International Conference on Parallel Architectures and Compilation Techniques (PACT’02),
September2002.

[Helmboldet al., 1996] David P. Helmbold,Darrell D. E. Long, andBruceSherrod, “A DynamicDisk
Spin-down Techniquefor Mobile Computing,” In Proc. of the 2nd Annual International Conference on
Mobile Computing and Networking (MobiCom’96), November1996.

[IBM, 1999] “InternationalBusinessMachineCorporation(IBM). OEM Hard Disk Drive Specifications
for DARA-2xxxxx (6 GB – 25 GB). 2.5-InchHard Disk Drive with ATA Interface.Revision (2.1),”
November1999.

[Intel Corporation] “Intel SA-1110Processor. Intel Corporation”.

[Kistler andSatyanarayanan,1992] JamesJ. Kistler andMahadev Satyanarayanan,“DisconnectedOper-
ation in theCodaFile System,” ACM Transactions on Computer Systems, 10(1):3–25,February1992,
Earlierversionpresentedat the13TH SOSP, Oct.1991.

[Lebecket al., 2000] Alvin R. Lebeck,Xiaobo Fan,HengZeng,andCarlaS. Ellis, “Power AwarePage
Allocation,” In Proc. of the 9th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS’00), pages105–116,November2000.

[Li et al., 1994] KesterLi, RogerKumpf, Paul Horton,andThomasAnderson,“Quantitative Analysisof
Disk Drive Power Managementin PortableComputers,” In Proc. of the 1994 Winter USENIX Confer-
ence, pages279–291,January1994.

[Lu et al., 2000] Yang-HsiangLu, Luca Benini, andGiovani De Micheli, “Requester-Aware Power Re-
duction,” In Proc. of the 13th International Symposium on System Synthesis (ISSS 2000), pages18–23,
September2000.

[Lu et al., 2002] Yang-HsiangLu, Luca Benini, andGiovani De Micheli, “Power-AwareOperatingSys-
temsfor InteractiveSystems,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 10(1),
April 2002.

[Mogul, 1994] Jeffrey C. Mogul, “A BetterUpdatePolicy,” In Proc. of the USENIX Summer 1994 Techni-
cal Conference, June1994.

30

[Noble et al., 1997] Brian Noble,Mahadev Satyanarayanan,DushyanthNarayanan,JamesEric Tilton, Ja-
sonFlinn, andKevin R. Walker, “Agile Application-AwareAdaptationfor Mobility,” In Proc. of the
16th ACM Symposium on Operating Systems Principles, October1997.

[Pattersonet al., 1995] R. HugoPatterson,GarthGibson,EkaGinting,DanielStodolsky, andJimZelenka,
“Informed PrefetchingandCaching,” In Proc. of the 15th ACM Symposium on Operating Systems Prin-
ciples, pages79–95,December1995.

[Peringet al., 2000] Trevor Pering,Tom Burd, andRobertBrodersen,“VoltageSchedulingin thelpARM
MicroprocessorSystem,” In Proc. of the 2000 International Symposium on Low Power Electronics and
Design (ISLPED’00), pages96–101,July 2000.

[Pillai andShin,1999] PadmanabhanPillai andKang G. Shin, “Real-Time DynamicVoltageScalingfor
Low-PowerEmbeddedOperatingSystems,” In Proc. of the 18th ACM Symposium on Operating Systems
Principles, pages89–102,October1999.

[Tomkinset al., 1997] Andrew Tomkins,R. Hugo Patterson,andGarthGibson, “Informed multi-process
prefetchingandcaching,” In Proc. of the 1997 ACM Joint International Conference on Measurement and
Modeling of Computer Systems (SIGMETRCIS’97), pages100–114.ACM Press,1997.

[Vahdatet al., 2000] Amin Vahdat,Alvin R. Lebeck,andCarlaS.Ellis, “Every Jouleis Precious:A Case
for Revisiting OperatingSystemDesignfor Energy Efficiency,” In Proc. of the 9th ACM SIGOPS Euro-
pean Workshop, September2000.

[Weiseret al., 1994] Mark Weiser, Brent Welch, Alan Demers,andScottShenker, “Schedulingfor Re-
ducedCPUEnergy,” In Proc. of the 1st USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI’94), November1994.

[Weisselet al., 2002] AndreasWeissel,Bjorn Beutel,andFrankBellosa, “Cooperative I/O: A Novel I/O
Semanticsfor Energy-AwareApplications,” In Proc. of the 5th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI’02), December2002.

[Yehet al., 2001a] TsozenYeh,DarrellLong,andScottBrandt, “ConservingBatteryEnergy throughMak-
ing Fewer IncorrectFile Predictions,” In Proc. of the IEEE Workshop on Power Management for Real-
Time and Embedded Systems at the IEEE Real-Time Technology and Applications Symposium, pages
30–36,May 2001.

[Yehet al., 2001b] TsozenYeh,Darrell Long,andScottBrandt, “Using ProgramandUserInformationto
ImproveFile PredictionPerformance,” In Proc. of the International Symposium on Performance Analysis
of Systems and Software (ISPASS ’01), November2001.

[Zenget al., 2002a] HengZeng,Xiaobo Fan, CarlaS. Ellis, Alvin R. Lebeck,andAmin Vahdat, “Cur-
rentcy: Unifying Policiesfor ResourceManagement,” May 2002.

[Zenget al., 2002b] HengZeng,XiaoboFan,CarlaS.Ellis, Alvin R.Lebeck,andAmin Vahdat,“ECOSys-
tem: ManagingEnergy asa First ClassOperatingSystemResource,” In Proc. of the 10th International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’02),
October2002.

[Zhu et al., 2002] Dakai Zhu, Rami Melhem, and Bruce Childers, “Schedulingwith Dynamic Volt-
age/SpeedAdjustmentUsingSlackReclamationin Multi-ProcessorReal-Time System,” June2002.

31

