
Multi-level Shared State for Distributed Systems
�

DeQing Chen, Chunqiang Tang, Xiangchuan Chen,
Sandhya Dwarkadas, and Michael L. Scott

Computer Science Department, University of Rochester�
lukechen,sarrmor,chenxc,sandhya,scott � @cs.rochester.edu

Abstract

As a result of advances in processor and network speeds,
more and more applications can productively be spread
across geographically distributed machines. In this paper
we present a transparent system for memory sharing, In-
terWeave, developed with such applications in mind. In-
terWeave can accommodate hardware coherence and con-
sistency within multiprocessors (level-1 sharing), software
distributed shared memory (S-DSM) within tightly cou-
pled clusters (level-2 sharing), and version-based coher-
ence and consistency across the Internet (level-3 sharing).
InterWeave allows processes written in multiple languages,
running on heterogeneous machines, to share arbitrary
typed data structures as if they resided in local memory.
Application-specific knowledge of minimal coherence re-
quirements is used to minimize communication. Consis-
tency information is maintained in a manner that allows
scaling to large amounts of shared data. In C, operations
on shared data, including pointers, take precisely the same
form as operations on non-shared data. We demonstrate the
ease of use and efficiency of the system through an evalua-
tion of several applications. In particular, we demonstrate
that InterWeave’s support for sharing at higher (more dis-
tributed) levels does not reduce the performance of sharing
at lower (more tightly coupled) levels.

1 Introduction

Advances in processing speed and network bandwidth
are creating new interest in such ambitious distributed ap-
plications as interactive data mining, remote scientific visu-
alization, computer-supported collaborative work, and in-
telligent environments. These applications are character-
ized both by the need for high-end parallel computing and
by the need to coordinate widely distributed users, devices,
and data repositories. Increasingly, the parallel computing
part can make productive use of the parallelism afforded by
comparatively inexpensive and widely available clusters of�

This work was supported in part by NSF grants CCR–9702466,
CCR–9705594, EIA–9972881, CCR–9988361, EIA–0080124, and CCR–
0204344.

Remote Satellites

HW coherent
SMP node
(level 1)

Tightly coupled
cluster (level 2)

InterWeave seg-
ment (level 3)

Figure 1. InterWeave’s target environment.

symmetric multiprocessors (SMPs). The more distributed
components may need to span the Internet.

Conceptually, many of these applications seem easi-
est to describe in terms of some sort of shared state.
Many programmers—particularly those who are connect-
ing together components developed for small and mid-size
multiprocessors—would like to capture shared state with
a shared-memory programming model. In order to meet
this demand, we are developing a system, known as Inter-
Weave [8], that allows the programmer to map shared data
into program components regardless of location or machine
type, and to transparently access that data once mapped.

InterWeave represents a merger and extension of our
previous Cashmere [19, 20] and InterAct [15] projects.
Once shared data has been mapped, InterWeave can support
hardware coherence and consistency within multiproces-
sors (level-1 sharing), Cashmere-style software distributed
shared memory (S-DSM) within tightly coupled clusters
(level-2 sharing), and InterAct-style version-based coher-
ence and consistency across the Internet (level-3 sharing).
Figure 1 provides a pictorial representation of the target en-
vironment.

InterWeave has been designed to maximize the lever-

mls
ICPP '02



age of available hardware support, and to minimize the ex-
tent to which sharing at the higher (more distributed) levels
might impact the performance of sharing at the lower (more
tightly coupled) levels. At levels 1 and 2, InterWeave in-
herits Cashmere’s integration of intra-SMP hardware cache
coherence with cluster-level VM-based lazy release consis-
tency. In particular, it employs two-way diffing to avoid
the need for TLB shootdown when processes synchronize
across nodes [19], and relies on low-latency user-level mes-
sages for efficient synchronization, directory management,
and write-notice propagation [20]. In a similar vein, consis-
tency at level 3 employs the twins, diffs, write notices, and
home-node copies already maintained at level 2.

At the third level, data in InterWeave evolves through a
series of consistent versions. Application-specific knowl-
edge of minimal coherence requirements is used to mini-
mize communication. When beginning a read-only criti-
cal section on a logical grouping of data (a segment), In-
terWeave uses a programmer-specified predicate to deter-
mine whether the currently cached version, if any, is “recent
enough” to use. Several coherence models (notions of “re-
cent enough”) are built into the InterWeave system; others
can be defined by application programmers. When the ap-
plication desires consistency across segment boundaries, to
avoid causality loops, we invalidate mutually-inconsistent
versions using a novel hashing mechanism that captures the
history of a segment in a bounded amount of space. S-
DSM-like twins and diffs allow us to update stale segments
economically.

In keeping with wide-area distribution, InterWeave al-
lows processes at level 3 to be written in multiple languages
and to run on heterogeneous machine architectures, while
sharing arbitrary typed data structures as if they resided in
local memory [21]. In C, operations on shared data, in-
cluding pointers, take precisely the same form as opera-
tions on non-shared data. Like CORBA and many older
RPC systems, InterWeave employs a type system based
on a machine- and language-independent interface descrip-
tion language (IDL).1 When transmitting data between ma-
chines, we convert between the local data format (as deter-
mined by language and machine architecture) and a stan-
dard InterWeave wire format. We also swizzle pointers [23]
so that they can be represented locally using ordinary ma-
chine addresses.

Recognizing that the performance tradeoffs be-
tween function shipping and data migration/caching are
application-dependent, we have designed InterWeave to
complement existing RPC and RMI systems. Programmers
can choose on a function-by-function basis whether to
access data directly or to invoke an operation on a machine

1InterWeave’s IDL is currently based on Sun XDR, but this is not an
essential design choice. InterWeave could easily be modified to work with
other IDLs.

at which the data is believed to reside. When choosing
the latter option, the presence of the InterWeave library
allows a program to use genuine reference parameters as an
alternative to deep-copy value parameters.

We describe the design of InterWeave in more detail in
Section 2. We then describe our implementation in Sec-
tion 3, with an emphasis on the coherence, consistency, and
communication mechanisms. Performance results for ap-
plications in iterative, interactive data mining; remote sci-
entific visualization; and multi-user collaboration appear in
Section 4. We compare our design to related work in Sec-
tion 5 and conclude with a discussion of status and plans in
Section 6.

2 InterWeave Design

The InterWeave programming model assumes a dis-
tributed collection of servers and clients. Servers main-
tain persistent copies of shared data, and coordinate sharing
among clients. Clients in turn must be linked with a special
InterWeave library, which arranges to map a cached copy
of needed data into local memory, and to update that copy
when appropriate.

2.1 Data Allocation

The unit of sharing in InterWeave is a self-descriptive
data segment (a heap) within which programs allo-
cate strongly typed blocks of memory.2 Every seg-
ment is specified by an Internet URL. The blocks
within a segment are numbered and optionally named.
By concatenating the segment URL with a block name
or number and optional offset (delimited by pound
signs), we obtain a machine-independent pointer (MIP):
“foo.org/path#block#offset”. To accommodate
heterogeneous data formats, offsets are measured in prim-
itive data units—characters, integers, floats, etc.—rather
than in bytes.

Every segment is managed by an InterWeave server at
the IP address corresponding to the segment’s URL. Differ-
ent segments may be managed by different servers. Assum-
ing appropriate access rights, the IW open segment()
library call communicates with the appropriate server to
open an existing segment or to create a new one if the seg-
ment does not yet exist.3 The call returns an opaque han-

2Like distributed file systems and databases, and unlike systems such
as PerDiS [11], InterWeave requires manual deletion of data; there is no
automatic garbage collection. A web-based perusal tool, comparable to a
file-system browser, will allow a user or system administrator to search for
orphaned data.

3Authentication and access control in InterWeave are currently based
on a simple public key mechanism. Access keys can be specified at seg-
ment creation time or changed later by any client that successfully acquires
write access.



dle that can be passed as the initial argument in calls to
IW malloc():

IW_handle_t h = IW_open_segment(url);
IW_wl_acquire(h); /* write lock */
my_type* p = (my_type*)

IW_malloc(h, my_type_desc);
*p = ...
IW_wl_release(h);

As in multi-language RPC systems, the types of shared
data in InterWeave must be declared in IDL. The Inter-
Weave IDL compiler translates these declarations into the
appropriate programming language(s) (C, C++, Java, For-
tran). It also creates initialized type descriptors that spec-
ify the layout of the types on the specified machine. The
descriptors must be registered with the InterWeave library
prior to being used, and are passed as the second argument
in calls to IW malloc(). These conventions allow the
library to translate to and from wire format, ensuring that
each type will have the appropriate machine-specific byte
order, alignment, etc. in locally cached copies of segments.

Level-3 synchronization takes the form of reader-writer
locks. A process must hold a writer lock on a segment in
order to allocate, free, or modify blocks. The lock routines
take a segment handle as parameter. Within a tightly cou-
pled cluster or a hardware-coherent node, a segment that
is locked at level 3 may be shared using data-race-free [1]
memory semantics.

Given a pointer to a block in an InterWeave segment, or
to data within such a block, a process can create a corre-
sponding MIP:

IW_mip_t m = IW_ptr_to_mip(p);

This MIP can then be passed to another process through
a message, a file, or an argument of a remote procedure
in RPC-style systems. Given appropriate access rights,
the other process can convert back to a machine-specific
pointer:

my_type *p = (my_type*) IW_mip_to_ptr(m);

The IW mip to ptr call reserves space for the speci-
fied segment if it is not already locally cached (communi-
cating with the server if necessary to obtain layout infor-
mation for the specified block), and returns a local machine
address. Actual data for the segment will not be copied into
the local machine until the segment is locked.

It should be emphasized that IW mip to ptr() is pri-
marily a bootstrapping mechanism. Once a process has one
pointer into a data structure, any data reachable from that
pointer can be directly accessed in the same way as local
data, even if embedded pointers refer to data in other seg-
ments. InterWeave’s pointer-swizzling and data-conversion

mechanisms ensure that such pointers will be valid local
machine addresses. It remains the programmer’s responsi-
bility to ensure that segments are accessed only under the
protection of reader-writer locks.

2.2 Coherence

InterWeave’s goal is to support seamless sharing of data
using ordinary reads and writes, regardless of location. Un-
fortunately, given the comparatively high and variable la-
tencies of even local-area networks, traditional hardware-
inspired coherence and consistency models are unlikely to
admit good performance in a distributed environment. Even
the most relaxed of these models guarantees a consistent
view of all shared data among all processes at synchroniza-
tion points, resulting in significant amounts of communica-
tion. To reduce this overhead, InterWeave exploits the fact
that processes in a distributed application can often accept a
significantly more relaxed—and hence less communication-
intensive—notion of coherence. Depending on the applica-
tion, it may suffice to update a cached copy of a segment at
regular (temporal) intervals, or whenever the contents have
changed “enough to make a difference,” rather than after ev-
ery change. When updating data, we require that a process
have exclusive write access to the most recent version of the
segment. When reading, however, we require only that the
currently cached version be “recent enough” to satisfy the
needs of the application.

InterWeave currently supports six different definitions of
“recent enough”. It is also designed in such a way that ad-
ditional definitions (coherence models) can be added eas-
ily. Among the current models, Full coherence always ob-
tains the most recent version of the segment; Strict coher-
ence obtains the most recent version and excludes any con-
current writer; Null coherence always accepts the currently
cached version, if any (the process must explicitly override
the model on an individual lock acquire in order to obtain an
update); Delta coherence [17] guarantees that the segment
is no more than � versions out-of-date; Temporal coherence
guarantees that it is no more than � time units out of date;
and Diff-based coherence guarantees that no more than � %
of the primitive data elements in the segment are out of date.
In all cases, � can be specified dynamically by the process.
All coherence models other than Strict allow a process to
hold a read lock on a segment even when a writer is in the
process of creating a new version.

When a process first locks a shared segment, the Inter-
Weave library obtains a copy from the segment’s server. At
each subsequent read-lock acquisition, the library checks
to see whether the local copy of the segment is “recent
enough”. If not, it obtains a version update from the server.
An adaptive polling/notification protocol, described in Sec-
tion 3.3, often allows the implementation to avoid com-
munication with the server when updates are not required.



Twin and diff operations [6], extended to accommodate het-
erogeneous data formats, allow the implementation to per-
form an update in time proportional to the fraction of the
data that has changed.

Unless otherwise specified, lock acquisitions default to
Full coherence. The creator of a segment can specify an
alternative coherence model if desired, to be used by de-
fault whenever any process locks that particular segment.
An individual process may also establish its own default for
a given segment, and may override this default for individ-
ual critical sections. Different processes (and different frag-
ments of code within a given process) may therefore use
different coherence models for the same segment. These
models are entirely compatible: the server for a segment al-
ways has the most recent version; the model used by a given
process at a given time simply determines how it decides if
its own cached copy is recent enough.

The server for a segment need only maintain a copy
of the segment’s most recent version. The API specifies
that the current version of a segment is always acceptable
as an update to a client, and since processes cache whole
segments, they never need an “extra piece” of an old ver-
sion. To minimize the cost of segment updates, the server
maintains a timestamp on each block of each segment, so
that it can avoid transmitting copies of blocks that have not
changed. As partial protection against server failure, Inter-
Weave periodically checkpoints segments and their meta-
data to persistent storage. The implementation of real fault
tolerance is a subject of future work.

As noted in Section 1, an SDSM-style “level-2” shar-
ing system such as Cashmere can play the role of a single
node at level 3. Any process in a level-2 system that ob-
tains a level-3 lock does so on behalf of its entire level-2
system, and may share access to the segment with its level-
2 peers. If level-3 lock operations occur in more than one
level-2 process, the processes must coordinate their activi-
ties (using ordinary level-2 synchronization) so that opera-
tions are seen by the server in an appropriate order. Working
together, Cashmere and InterWeave guarantee that updates
are propagated consistently, and that protocol overhead re-
quired to maintain coherence is not replicated at levels 2 and
3. Further details appear in Section 3.

2.3 Consistency

Without additional mechanisms, in the face of multi-
version relaxed coherence, the versions of segments cur-
rently visible to a process might not be mutually consistent.
Specifically, let

���
refer to version � of segment

�
. If ���

was created using information found in
���

, then previous
versions of

�
are causally incompatible with ��� ; a process

that wants to use �	� (and that wants to respect causality)
should invalidate any cached segment version

�	

, ���� .

To support this invalidation process, we would ideally

like to tag each segment version, automatically, with the
names of all segment versions on which it depends. Then
whenever a process acquired a lock on a segment the library
would check to see whether that segment depends on newer
versions of any other segments currently locally cached. If
so, the library would invalidate those segments. The prob-
lem with this scheme, of course, is that the number of seg-
ments in the system—and hence the size of tags—is un-
bounded. In Section 3.2 we describe a mechanism based on
hashing that achieves the same effect in bounded space, at
modest additional cost.

To support operations on groups of segments, we allow
their locks to be acquired and released together. Locks that
are acquired together are acquired in a predefined total or-
der to avoid deadlock. Write locks released together make
each new segment version appear to be in the logical past
of the other, ensuring that a process that acquires the locks
together will never obtain the new version of one without
the other. To enhance the performance of the most relaxed
applications, we allow an individual process to “opt out” of
causality on a segment-by-segment basis. For sharing lev-
els 1 and 2 (hardware coherence within SMPs, and software
DSM within clusters), consistency is guaranteed for data-
race-free programs.

3 Implementation

The underlying implementation of InterWeave can be di-
vided into four relatively independent modules:
� the memory management module, which provides

address-independent storage for segments and their as-
sociated metadata;

� the modification detection module, which creates wire-
format diffs designed to accommodate heterogeneity
and minimize communication bandwidth;

� the coherence and consistency module, which obtains
updates from the server when the cached copy of a seg-
ment is no longer recent enough, or is inconsistent with
the local copies of other segments; and

� the communication module, which handles efficient
communication of data between servers and clients.

The memory management and modification detection mod-
ules are described in detail in a companion paper [21].
We describe them briefly in the first subsection below,
and then focus in the remaining subsections on the coher-
ence/consistency and communication modules.

3.1 Memory Management and Modification
Detection

As described in Section 2, InterWeave presents the pro-
grammer with two granularities of shared data: segments



and blocks. Each block must have a well-defined type,
but this type can be a recursively defined structure of ar-
bitrary complexity, so blocks can be of arbitrary size. Every
block has a serial number within its segment, assigned by
IW malloc(). It may also have a symbolic name, speci-
fied as an additional parameter. There is no a priori limit on
the number of blocks in a segment, and blocks within the
same segment can be of different types and sizes.

When a process acquires a write lock on a given segment,
the InterWeave client library asks the operating system to
write protect the pages that comprise the local copy of the
segment. When a page fault occurs, the SIGSEGV signal
handler, installed by the library at program startup time,
creates a pristine copy, or twin [6], of the page in which the
write fault occurred. It saves a pointer to that twin for future
reference, and then asks the operating system to re-enable
write access to the page.

When a process releases a write lock, the library per-
forms a word-by-word diff of modified pages and their
twins. It then converts this diff to a machine-independent
wire format that expresses changes in terms of segments,
blocks, and primitive data unit offsets, rather than pages
and bytes, and that compensates for byte order, word size,
and alignment. When a client acquires a lock and deter-
mines that its copy of the segment is not recent enough, the
server builds a similar diff that describes the data that have
changed between the client’s outdated copy and the master
copy at the server.

Both translations between local and wire format—for
updates to the server at write lock release and for updates
to the client at lock acquisition—are driven by type descrip-
tors, generated by the InterWeave IDL compiler, and pro-
vided to the InterWeave library via the second argument to
IW malloc() calls. The content of each descriptor speci-
fies the substructure and machine-specific layout of its type.

To accommodate reference types, InterWeave relies on
pointer swizzling [23]. Briefly, swizzling uses type de-
scriptors to find all (machine-independent) pointers within
a newly-cached or updated segment, and converts them
to pointers that work on the local machine. Pointers to
segments that are not (yet) locally cached point into re-
served but unmapped pages where data will lie once prop-
erly locked. The set of segments currently cached on a given
machine thus displays an “expanding frontier” reminiscent
of lazy dynamic linking.

3.2 Coherence and Consistency

Each server maintains an up-to-date copy of each of the
segments for which it is responsible, and controls access to
those segments. For each segment, the InterWeave server
keeps track of blocks and subblocks. Each subblock com-
prises a small contiguous group of primitive data elements
from the same block. For each modest-sized block in each

segment, and for each subblock of a larger block, the server
remembers the version number of the segment in which the
content of the block or subblock was most recently modi-
fied. This convention strikes a compromise between the size
of server-to-client diffs and the size of server-maintained
metadata.

At the time of a lock acquire, a client must decide
whether its local copy of the segment needs to be updated.
(This decision may or may not require communication with
the server; see Section 3.3.) If an update is required, the
client sends the server the (out-of-date) version number of
the local copy. The server then identifies the blocks and sub-
blocks that have changed since the last update to this client,
constructs a wire-format diff, and returns it to the client.

Hash-Based Consistency. To ensure inter-segment con-
sistency, we use a simple hash function to compress the
dependence history of segments. Specifically, we tag each
segment version � 
 with an � -slot vector timestamp, and
choose a global hash function � that maps segment identi-
fiers into the range � ����� �	��
� . Slot � in the vector indicates
the maximum, over all segments � whose identifiers hash
to � , of the most recent version of � on which � 
 depends.
When acquiring a lock on � 
 , a process checks each of its
cached segment versions � � to see whether � is less than
the value in slot ������� of � 
 ’s vector timestamp. If so, the
process invalidates � � . Hash collisions may result in un-
necessary invalidations, but these affect performance only,
not correctness.

To support the creation of segment timestamps, each
client maintains a local master timestamp. When the client
acquires a lock on any segment (read or write) that forces
it to obtain a new version of a segment from a server, the
library updates the master timestamp with any newer val-
ues found in corresponding slots of the timestamp on the
newly obtained segment version. When releasing a write
lock (thereby creating a new segment version), the process
increments the version number of the segment itself, up-
dates its local timestamp to reflect that number, and attaches
this new timestamp to the newly-created segment version.

Integration with 2-Level System. When a tightly cou-
pled cluster, such as a Cashmere-2L system, uses an Inter-
Weave segment, the cluster appears as a single client to the
segment server. The client’s local copy of the segment is
kept in cluster-wide shared memory.

Figure 2 pictorially represents a sequence of actions per-
formed by a level-2 system. (Details on our level-2 coher-
ence protocol can be found in previous work [19].) The
timelines in the figure flow from left to right, and represent
three processors within a tightly coupled cluster. In the cur-
rent implementation, we designate a single node within the
cluster to be the segment’s manager node (in this case pro-
cessor P0). All interactions between the level-2 system and



P0

P1

P2 L3
acquire

L2
release

L2
release

L3
release

collect diffs; convert 
to wire format; send 
to server

manager node;
home of page c

write a

twin(a) twin(b) twin(c)

write b

twin(b) write c

twin(c)

write notice(b)

diff(c)

Figure 2. Coherence actions at levels 2 and 3.

the segment’s InterWeave server go through the manager
node. During the period between a level-3 (InterWeave)
write lock acquire and release, the manager node ensures
that modifications made within the level-2 system can be
identified through the use of twins and diffs.

InterWeave achieves its goal of minimizing additional
coherence actions by piggybacking as far as possible on ex-
isting level-2 operations. Three different scenarios are illus-
trated in the figure. First, as illustrated on the P0 timeline,
the manager node creates a twin for a page if it experiences
a write fault. If the manager is not the level-2 home node for
the page, then this twin is used for both level-2 and level-
3 modification detection purposes. If the manager node is
the level-2 home node, then this twin is needed for level 3
only. Second, as illustrated by page � , the manager creates
a level-3 twin if it receives a write notice from another node
in the cluster (P2) and must invalidate the page. Third, as
illustrated by page � , the manager creates a twin for level-
3 purposes (only) if it receives a level-2 diff from another
node in the cluster (P1).

On a level-3 release, the manager node compares any
level-3 twins to the current content of the corresponding
pages in order to create diffs for the InterWeave server.
Overhead is thus incurred only for those pages that are mod-
ified and, in practice, the number of additional twins created
is fairly low.

3.3 Communication

In our current implementation each InterWeave server
takes the form of a daemon process listening on a well-
known port at a well-known Internet address for connection
requests from clients. The server keeps metadata for each
active client of each segment it manages, as well as a master
copy of the segment’s data.

Each InterWeave client maintains a pair of TCP connec-
tions to each server for which it has locally cached copies
of segments. One connection is used for client requests and
server responses. The other is used for server notifications.
Separation of these two categories of communication allows
them to be handled independently. All communication be-
tween clients and servers is aggregated so as to minimize

the number of messages exchanged (and thereby avoid ex-
tra per-message overhead).

Servers use a heartbeat mechanism to identify dead
clients. If a client dies while holding a write lock or a read
lock with Strict coherence, the server reverts to the previous
version of the segment. If the client was not really dead (its
heartbeat was simply delayed), its subsequent release will
fail.

Several protocol optimizations minimize communication
between clients and servers in important common cases.
(Additional optimizations, not described here, minimize the
cost of modification detection and conversion to and from
wire format [21].) First, when only one client has a copy of
a given segment, the client will enter exclusive mode, allow-
ing it to acquire and release locks (both read and write) an
arbitrary number of times, with no communication with the
server whatsoever. This optimization is particularly impor-
tant for high-performance clients such as Cashmere clus-
ters. If other clients appear, the server sends a message
requesting a summary diff, and the client leaves exclusive
mode.

Second, a client that finds that its local copy of a seg-
ment is usually recent enough will enter a mode in which
it stops asking the server for updates. Specifically, every
locally cached segment begins in polling mode: the client
will check with the server on every read lock acquire to see
if it needs an update (temporal coherence provides an ex-
ception to this rule: no poll is needed if the window has yet
to close). If three successive polls fail to uncover the need
for an update, the client and server will switch to notifica-
tion mode. Now it is the server’s responsibility to inform
the client when an update is required (it need only inform it
once, not after every new version is created). If three suc-
cessive lock acquisition operations find notifications already
waiting, the client and server will revert to polling mode.

Third, the server maintains a cache of diffs that it has
received recently from clients, or collected recently itself,
in response to client requests. These cached diffs can often
be used to respond to future requests, avoiding redundant
collection overhead.

Finally, as in the TreadMarks SDSM system [4], a client
that repeatedly modifies most of the data in a segment will
switch to a mode in which it simply transmits the whole seg-
ment to the server at every write lock release. This no-diff
mode eliminates the overhead of mprotects, page faults,
and the creation of twins and diffs.

4 Performance Results

InterWeave currently runs on Alpha, Sparc, x86, and
MIPS processors, under Windows NT, Linux, Solaris,
Tru64 Unix, and IRIX. Together, the server and client li-
brary comprise approximately 31,000 lines of heavily com-



mented C++ code. Our uniprocessor results were collected
on Sun Ultra 5 workstations with 400 MHz Sparc v9 pro-
cessors and 128 MB of memory, running SunOS 5.7, and
on 333 MHz Celeron PCs with 256 MB of memory, run-
ning Linux 6.2. Our Cashmere cluster is a collection of
AlphaServer 4100 5/600 nodes, each with four 600 MHz
21164A processors, an 8 MB direct-mapped board-level
cache with a 64-byte line size, and 2 GBytes of memory,
running Tru64 Unix 4.0F. The nodes are connected by a
Memory Channel 2 system area network, which is used for
tightly-coupled sharing. Connection to the local area net-
work is via TCP/IP over 100Mb Ethernet.

4.1 Coherence Model Evaluation

We use a data mining application [16] to demonstrate the
impact of InterWeave’s relaxed coherence models on net-
work bandwidth and synchronization latency. Specifically,
the application performs incremental sequence mining on
a remotely located database of transactions (e.g. retail pur-
chases). Each transaction in the database (not to be con-
fused with transactions on the database) comprises a set of
items, such as goods that were purchased together. Trans-
actions are ordered with respect to each other in time. The
goal is to find sequences of items that are commonly pur-
chased by a single customer in order over time.

In our experimental setup, the database server (itself an
InterWeave client) reads from an active database whose
content continues to grow. As updates arrive the server in-
crementally maintains a summary data structure (a lattice of
item sequences) that is used by mining queries. Each node
in the lattice represents a sequence that has been found with
a frequency above a specified threshold. The lattice is rep-
resented by a single InterWeave segment; each node is a
block in that segment. Each data mining client, represent-
ing a distributed, interactive interface to the mining system,
is also an InterWeave client. It executes a loop containing a
reader critical section in which it performs a simple query.

Our sample database is generated by tools from IBM re-
search [18]. It includes 100,000 customers and 1000 dif-
ferent items, with an average of 1.25 transactions per cus-
tomers and a total of 5000 item sequence patterns of average
length 4. The database size is 20MB.

The summary structure is initially generated using half
the database. The server then repeatedly updates the struc-
ture using an additional 1% of the database each time. Be-
cause the summary structure is large, and changes slowly
over time, it makes sense for each client to keep a local
cached copy of the structure and to update only the modi-
fied data as the database evolves. Moreover, since the data
in the summary are statistical in nature, their values change
slowly over time, and clients do not need to see each incre-
mental change. Delta or diff coherence will suffice, and can
dramatically reduce communication overhead. To illustrate

0

0.5

1

1.5

2

2.5

3

Full Diff-10 Diff-20 Delta-2 Delta-4

Coherence Models

M
B

 T
ra

ns
m

itt
ed

Figure 3. Sequence mining: bandwidth required
under different coherence models.

these effects, we measure the network bandwidth required
by each client for summary data structure updates as the
database grows and the database server finds additional se-
quences.

Figure 3 shows the total bandwidth requirement as the
client relaxes its coherence model. The leftmost bar repre-
sents the bandwidth requirement if the client uses the Full
coherence model (Section 2.2). The other four bars show
the bandwidth requirements if the client uses Diff and Delta
coherence with different thresholds. Using Diff coherence
with a threshold of 20% (i.e., consider a cached copy to be
“recent enough” if no more than 20% of its primitive data
elements are out of date), we see a savings of almost 75%.

4.2 3-Level System for Parallel Applications

To illustrate the interaction between InterWeave shared
state, managed across the Internet, and software distributed
shared memory, running on a tightly coupled cluster, we
collected performance measurements for remote visual-
ization and steering of two pre-existing scientific simula-
tions: the Splash-2 Barnes-Hut N-body benchmark, and a
CFD stellar dynamics application known as Astroflow [10].
Barnes-Hut is written in C. Astroflow is written in For-
tran. Both simulations run on four nodes of our AlphaServer
cluster. Barnes-Hut repeatedly computes new positions for
16,384 bodies. Astroflow computes on a ������������� dis-
cretized grid. In both cases, the progress of the simula-
tion can be observed and modified using a visualization and
steering “satellite” that runs on a remote workstation. The
Astroflow satellite is a pre-existing Java program, originally
designed to read from a checkpoint file, but modified for our
purposes to share data with the simulator via InterWeave.
The Barnes-Hut satellite was written from scratch (in C) for
this experiment.

In both applications, the simulator uses a write lock to
update the segment that it shares with the satellite. The
Barnes-Hut satellite uses a relaxed read lock with Tempo-
ral coherence to obtain an effective frame rate of 15 frames



per second. In Astroflow the simulation proceeds slowly
enough that Full coherence requires negligible bandwidth.

To assess the baseline overhead of InterWeave we linked
both simulators with the InterWeave library, but ran them
without connecting to a satellite. Though the cluster must
communicate with the InterWeave server to create its initial
copy of the simulation data, the exclusive mode optimiza-
tion (Section 3.3) eliminates the need for further interaction,
and the overall impact on performance is negligible.

To assess the overhead of InterWeave in the presence of
a satellite, we constructed, by hand, versions of the simula-
tors that use explicit messaging over TCP/IP to communi-
cate with the satellite (directly, without a server). We then
ran these versions on the standard Cashmere system, and
compared their performance to that of Cashmere working
with InterWeave. Results for Barnes-Hut appear in Fig-
ure 4. (For Astroflow, both the messaging and InterWeave
versions have such low communication rates that the impact
on performance is negligible.) In all cases the satellite was
running on another Alpha node, communicating with the
cluster and server, if any, via TCP/IP over 100Mb Ethernet.
Each bar gives aggregate wall-clock time for ten iteration
steps. The labels on pairs of bars indicate the number of
nodes and the total number of processors involved in each
experiment. In the first three pairs a single processor was
active in each node. In the final pair, four processors per
node were active. The “C” bars are for explicit messaging
code running on standard Cashmere; the “IW” bars are for
Cashmere working with InterWeave. The C bars are sub-
divided to show the overhead of communication; the IW
bars also show the (comparatively small) overhead of data
translation and the coherence protocol. For this particular
sharing scenario, much of the shared data is modified in ev-
ery interval. InterWeave therefore switches, automatically,
to no-diff mode to minimize the cost of tracking modifica-
tions.

4.3 API Ease-of-Use

The changes required to adapt Barnes-Hut and Astroflow
to work with InterWeave were small and isolated. No spe-
cial code is required to control the frequency of updates
(one can adjust this in the satellite simply by specifying
a temporal bound on relaxed coherence). No assumptions
need to be embedded regarding the number of satellites (one
can launch an arbitrary number of them, on multiple work-
stations, and each will connect to the server and monitor
the simulation). No knowledge of networking or connec-
tion details is required, beyond the character-string name
of the segment shared between the simulator and the satel-
lite. While the matter is clearly subjective, we find the Inter-
Weave code to be significantly simpler, easier to understand,
and faster to write than the message-passing version.

In a separate experiment, we used InterWeave to de-

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1(
C

)

1(
IW

)

2:
2(

C
)

2:
2(

IW
)

4:
4(

C
)

4:
4(

IW
)

4:
16

(C
)

4:
16

(I
W

)

Nodes:Processes

T
im

e(
se

c.
)

Translation
Communication
Protocol
Cashmere

Figure 4. Overhead of InterWeave library and com-
munication during Barnes-Hut remote visualiza-
tion.

velop, from scratch, a distributed calendar program. The
program was originally written with about two weeks of
part-time effort by a first-year graduate student. Subsequent
minor modifications served primarily to cope with changes
in the API as InterWeave evolved.

The program maintains appointment calendars for a dy-
namically changing group of individuals. Users can create
or delete a personal calendar; view appointments in a per-
sonal calendar or, with permission, the calendars of others;
create or delete individual appointments; propose a group
meeting, to be placed in the calendars of a specified group
of users; or accept or reject a meeting proposal.

A single global segment, accessed by all clients,
contains a directory of users. For each user, there is an
additional segment that contains the user’s calendar. Within
each user calendar there is a named block for each day
on which appointments (firm or proposed) exist. The
name of the block is a character string date. To obtain
a pointer to Jane Doe’s calendar for April 1, we say
IW mip to ptr("iw.somewhere.edu/cal/jane
#04-01-2001").

The calendar program comprises 1250 lines of C++
source, approximately 570 of which are devoted to a sim-
ple command-line user interface. There are 68 calls to
InterWeave library routines, spread among about a dozen
user-level functions. These calls include 3 reader and 10
writer lock acquire/release pairs, 17 additional lock releases
in error-checking code, and a dozen IW mip to ptr calls
that return references to segments.

In comparison to messaging code, the InterWeave calen-
dar program has no message buffers, no marshaling and un-
marshaling of parameters, and no management of TCP con-
nections. (These are all present in the InterWeave library, of
course, but the library is entirely general, and can be reused



by other programs.) Instead of an application-specific pro-
tocol for client-server interactions, the InterWeave code has
reader-writer locks, which programmers, in our experience,
find significantly more straightforward and intuitive.

5 Related Work

InterWeave finds context in an enormous body of related
work—far too much to document in this paper. We focus
here on some of the most relevant systems in the literature;
additional discussion can be found in the TR version of this
paper [9].

Dozens of object-based systems attempt to provide a
uniform programming model for distributed applications.
Many are language specific; many of the more recent
of these are based on Java. Language-independent dis-
tributed object systems include PerDiS [11], Legion [13],
Globe [22], Microsoft’s DCOM, and various CORBA-
compliant systems. Globe replicates objects for availabil-
ity and fault tolerance. PerDiS and a few CORBA sys-
tems (e.g. Fresco [14]) cache objects for locality of refer-
ence. Unfortunately, object-oriented update propagation,
typically supported either by invalidate and resend on ac-
cess or by RMI-style mechanisms, tends to be inefficient
(re-sending a large object or a log of operations). Equally
significant from our point of view, there are important ap-
plications (e.g. compute intensive parallel applications) that
do not employ an object-oriented programming style.

At least two early S-DSM systems provided support
for heterogeneous machine types. Toronto’s Mermaid sys-
tem [25] allowed data to be shared across more than one
type of machine, but only among processes created as part
of a single run-to-completion parallel program. All data
in the same VM page was required to have the same type,
and only one memory model—sequential consistency—was
supported. CMU’s Agora system [5] supported sharing
among more loosely-coupled processes, but in a signifi-
cantly more restricted fashion than in InterWeave. Pointers
and recursive types were not supported, all shared data had
to be accessed indirectly through a local mapping table, and
only a single memory model (similar to processor consis-
tency) was supported.

Friedman [12] and Agrawal et al. [2] have shown how
to combine certain pairs of consistency models in a non-
version-based system. Alonso et al. [3] present a general
system for relaxed, user-controlled coherence. Khazana [7]
also proposes the use of multiple consistency models. The
TACT system of Yu et al. [24] allows coherence and consis-
tency requirements to vary continuously in three orthogo-
nal dimensions. Several of InterWeave’s built-in coherence
models are similarly continuous, but because our goal is to
reduce read bandwidth and latency, rather than to increase
availability (concurrency) for writes, we insist on strong se-

mantics for writer locks. To the best of our knowledge, In-
terWeave is the first system to provide a general framework
in which the user can define application-specific coherence
models.

6 Conclusions and Future Work

We have described a run-time system, InterWeave, that
allows processes to access shared data transparently using
ordinary reads and writes. InterWeave is, to the best of
our knowledge, the first such system to seamlessly and effi-
ciently span the spectrum from hardware cache coherence
within SMP nodes, through software distributed shared
memory on tightly-coupled clusters, to relaxed, version-
based coherence across the Internet. It is also, we believe,
the first to fully support shared memory across heteroge-
neous machine types and languages.

We have demonstrated the efficiency and ease of use of
the system through an evaluation on both real applications
and artificial benchmarks. Experience to date indicates that
users find the API conceptually appealing, and that it allows
them to build new programs significantly more easily than
they can with RPC or other message passing paradigms.
For applications in which RPC-style function shipping is
required for good performance, InterWeave provides en-
hanced functionality via genuine reference parameters.

Quantitative measurements indicate that InterWeave is
able to provide sharing in a distributed environment with
minimal impact on the performance of more tightly-coupled
sharing. InterWeave facilitates the use of relaxed coherence
and consistency models that take advantage of application-
specific knowledge to greatly reduce communication costs,
and that are much more difficult to implement in hand-
written message-passing code. We are actively collaborat-
ing with colleagues in our own and other departments to
employ InterWeave in three principal application domains:
remote visualization and steering of high-end simulations
(enhancing the Astroflow visualization described in Sec-
tion 4.2), incremental interactive data mining (Section 4.1),
and human-computer collaboration in richly instrumented
physical environments.

Acknowledgments

Srinivasan Parthasarathy developed the InterAct system,
and participated in many of the early design discussions
for InterWeave. Eduardo Pinheiro wrote an earlier version
of InterWeave’s heterogeneity management code. We are
grateful to Amy Murphy and Chen Ding for their insightful
suggestions on the content of this paper.



References

[1] S. V. Adve and M. D. Hill. A Unified Formulation of Four
Shared-Memory Models. IEEE Trans. on Parallel and Dis-
tributed Systems, 4(6):613–624, June 1993.

[2] D. Agrawal, M. Choy, H. V. Leong, and A. K. Singh. Mixed
Consistency: A Model for Parallel Programming. In Proc. of
the 13th ACM Symp. on Principles of Distributed Comput-
ing, Los Angeles, CA, Aug. 1994.

[3] R. Alonso, D. Barbara, and H. Garcia-Molina. Data Caching
Issues in an Information Retrieval System. ACM Trans. on
Database Systems, 15(3):359–384, Sept. 1990.

[4] C. Amza, A. Cox, S. Dwarkadas, and W. Zwaenepoel. Soft-
ware DSM Protocols that Adapt between Single Writer and
Multiple Writer. In Proc. of the 3rd Intl. Symp. on High
Performance Computer Architecture, San Antonio, TX, Feb.
1997.

[5] R. Bisiani and A. Forin. Multilanguage Parallel Program-
ming of Heterogeneous Machines. IEEE Trans. on Comput-
ers, 37(8):930–945, Aug. 1988.

[6] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implemen-
tation and Performance of Munin. In Proc. of the 13th ACM
Symp. on Operating Systems Principles, pages 152–164, Pa-
cific Grove, CA, Oct. 1991.

[7] J. Carter, A. Ranganathan, and S. Susarla. Khazana: An In-
frastructure for Building Distributed Services. In Intl. Conf.
on Distributed Computing Systems, pages 562–571, May
1998.

[8] D. Chen, S. Dwarkadas, S. Parthasarathy, E. Pinheiro, and
M. L. Scott. InterWeave: A Middleware System for Dis-
tributed Shared State. In Proc. of the 5th Workshop on Lan-
guages, Compilers, and Run-time Systems for Scalable Com-
puters, Rochester, NY, May 2000.

[9] D. Chen, C. Tang, X. Chen, S. Dwarkadas, and M. L.
Scott. Beyond S-DSM: Shared State for Distributed Sys-
tems. TR 744, Computer Science Dept., Univ. of Rochester,
Mar. 2001.

[10] G. Delamarter, S. Dwarkadas, A. Frank, and R. Stets.
Portable Parallel Programming on Emerging Platforms. Cur-
rent Science Journal, 78(7), Indian Academy of Sciences,
Apr. 2000.

[11] P. Ferreira, M. Shapiro, X. Blondel, O. Fambon, J. Gar-
cia, S. Kloosterman, N. Richer, M. Roberts, F. Sandakly,
G. Coulouris, J. Dollimore, P. Guedes, D. Hagimont, and
S. Krakowiak. PerDiS: Design, Implementaiton, and Use
of a PERsistent DIstributed Store. Research Report 3525,
INRIA, Rocquencourt, France, Oct. 1998.

[12] R. Friedman. Implementing Hybrid Consistency with High-
Level Synchronization Operations. In Proc. of the 12th ACM
Symp. on Principles of Distributed Computing, Ithaca, NY,
Aug. 1993.

[13] A. S. Grimshaw and W. A. Wulf. Legion — A View from
50,000 Feet. In Proc. of the 5th Intl. Symp. on High Perfor-
mance Distributed Computing, Aug. 1996.

[14] R. Kordale, M. Ahamad, and M. Devarakonda. Object
Caching in a CORBA Compliant System. Computing Sys-
tems, 9(4):377–404, Fall 1996.

[15] S. Parthasarathy and S. Dwarkadas. InterAct: Virtual Shar-
ing for Interactive Client-Server Applications. In 4th Work-
shop on Languages, Compilers, and Run-time Systems for
Scalable Computers, May 1998.

[16] S. Parthasarathy, M. J. Zaki, M. Ogihara, and S. Dwarkadas.
Incremental and Interactive Sequence Mining. In Intl. Conf.
on Information and Knowledge Management, Nov. 1999.

[17] A. Singla, U. Ramachandran, and J. Hodgins. Temporal No-
tions of Synchronization and Consistency in Beehive. In
Proc. of the 9th Annual ACM Symp. on Parallel Algorithms
and Architectures, Newport, RI, June 1997.

[18] R. Srikant and R. Agrawal. Mining Sequential Patterns. IBM
Research Report RJ9910, IBM Almaden Research Center,
Oct. 1994. Expanded version of paper presented at the Intl.
Conf. on Data Engineering, Taipei, Taiwan, Mar. 1995.

[19] R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kon-
tothanassis, S. Parthasarathy, and M. Scott. Cashmere-2L:
Software Coherent Shared Memory on a Clustered Remote-
Write Network. In Proc. of the 16th ACM Symp. on Operat-
ing Systems Principles, St. Malo, France, Oct. 1997.

[20] R. Stets, S. Dwarkadas, L. I. Kontothanassis, U. Rencu-
zogullari, and M. L. Scott. The Effect of Network Total Or-
der, Broadcast, and Remote-Write Capability on Network-
Based Shared Memory Computing. In Proc. of the 6th
Intl. Symp. on High Performance Computer Architecture,
Toulouse, France, Jan. 2000.

[21] C. Tang, D. Chen, S. Dwarkadas, and M. L. Scott. Support
for Machine and Language Heterogeneity in a Distributed
Shared State System. Submitted for publication, May 2002.
Expanded version available as TR 783, Computer Science
Dept., Univ. of Rochester.

[22] M. van Steen, P. Homburg, and A. S. Tanenbaum. Globe: A
Wide-Area Distributed System. In IEEE Concurrency, pages
70–78, Jan.-Mar. 1999.

[23] P. R. Wilson. Pointer Swizzling at Page Fault Time: Effi-
ciently and Compatibly Supporting Huge Address Spaces on
Standard Hardware. In International Workshop on Object
Orientation in Operating Systems, page 244ff, Paris, France,
Sept. 1992.

[24] H. Yu and A. Vahdat. Design and Evaluation of a Continu-
ous Consistency Model for Replicated Services. In Proc. of
the 4th Symp. on Operating Systems Design and Implemen-
tation, San Diego, CA, Oct. 2000.

[25] S. Zhou, M. Stumm, K. Li, and D. Wortman. Heterogeneous
Distributed Shared Memory. In IEEE Trans. on Parallel and
Distributed Systems, pages 540–554, 1992.




