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Abstract

As clock frequency increases and feature size decreases,
clock distribution and wire delays present a growing chal-
lenge to the designers of singly-clocked, globally syn-
chronous systems. We describe an alternative approach,
which we call a Multiple Clock Domain (MCD) processor,
in which the chip is divided into several (coarse-grained)
clock domains, within which independent voltage and fre-
quency scaling can be performed. Boundaries between do-
mains are chosen to exploit existing queues, thereby min-
imizing inter-domain synchronization costs. We propose
four clock domains, corresponding to the front end (in-
cluding L1 instruction cache), integer units, floating point
units, and load-store units (including L1 data cache and L2
cache). We evaluate this design using a simulation infras-
tructure based on SimpleScalar and Wattch. In an attempt
to quantify potential energy savings independent of any
particular on-line control strategy, we use off-line analysis
of traces from a single-speed run of each of our benchmark
applications to identify profitable reconfiguration points
for a subsequent dynamic scaling run. Dynamic runs in-
corporate a detailed model of inter-domain synchroniza-
tion delays, with latencies for intra-domain scaling simi-
lar to the whole-chip scaling latencies of Intel XScale and
Transmeta LongRun technologies. Using applications from
the MediaBench, Olden, and SPEC2000 benchmark suites,
we obtain an average energy-delay product improvement
of 20% with MCD compared to a modest 3% savings from
voltage scaling a single clock and voltage system.
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1. Introduction

The continuing push for higher microprocessor perfor-
mance has led to unprecedented increases in clock frequen-
cies in recent years. While the Pentium III microprocessor
broke the 1GHz barrier in 2000, the Pentium IV is currently
shipping at 2GHz. At the same time, due to issues of relia-
bility and performance, wire dimensions have been scaled
in successive process generations more conservatively than
transistor dimensions. The result of these frequency and di-
mensional trends is that microprocessor clock speeds have
become increasingly limited by wire delays, so much so
that some of the more recent microprocessors, e.g., the Pen-
tium IV [14], have pipeline stages solely dedicated to mov-
ing signals across the chip. Furthermore, a growing chal-
lenge in future systems will be to distribute the clock across
a progressively larger die to increasing numbers of latches
while meeting a decreasing clock skew budget. The in-
evitable conclusion reached by industrial researchers is that
in order to continue the current pace of clock frequency in-
creases, microprocessor designers will eventually be forced
to abandon singly-clocked globally synchronous systems in
favor of some form of asynchrony [8, 24].

Although purely asynchronous systems have the poten-
tial for higher performance and lower power compared to
their synchronous counterparts, major corporations have
been reluctant to fully migrate to asynchronous design
methodologies. Two major reasons for this reluctance are
the immaturity of asynchronous design tools relative to
those in the synchronous domain, and the cost and risk of
moving away from the mature design infrastructures that
have been successfully used to create many generations of
microprocessor products. Yet many existing synchronous
designs do incorporate a limited amount of asynchrony. For
example, several multiprocessor systems run the memory
bus off of a different clock than the processor core in or-
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der to allow a single system to accommodate processors of
different frequencies. In such dual clock domain systems,
the logic in each of the two clock domains is designed us-
ing conventional synchronous design methodologies. Well-
known and highly-reliable techniques are used to synchro-
nize communication between the two domains, albeit at the
cost of extra delay.

An additional trend due to the wire scaling dilemma is to
replace microarchitectural techniques requiring long global
wires with alternatives requiring only local wiring. This
approach improves both clock frequency and the scalabil-
ity of the design in future process generations. For exam-
ple, in several microprocessors including the Alpha 21164
and 21264 [11, 20] and the UltraSPARC III [17], the use
of global wires to stall early pipeline stages has been re-
placed by the use of replay traps that cancel instructions
and restart the pipeline. Although flushing the pipeline in
this manner requires additional cycles for reloading, it re-
sults in a higher clock frequency and more scalable imple-
mentation due to the elimination of global wires. The de-
signers of the UltraSPARC III fully embraced this approach
by creating six functional blocks that run relatively inde-
pendently of one another, with most long wires eliminated
between units [17].

An approach that allows for aggressive future frequency
increases, maintains a synchronous design methodology,
and exploits the trend towards making functional blocks
more autonomous, is a multiple clock domain (MCD)
microarchitecture, which uses a globally-asynchronous,
locally-synchronous (GALS) clocking style. In an MCD
microprocessor each functional block operates with a sepa-
rately generated clock, and synchronizing circuits ensure
reliable inter-domain communication. Thus, fully syn-
chronous design practices are used in the design of each
domain. Although the inter-domain synchronization in-
creases the number of clock cycles required to run a given
application, an MCD microprocessor affords a number of
potential advantages over a singly clocked design:

� The global clock distribution network is greatly sim-
plified, requiring only the distribution of the externally
generated clock to the local Phase Lock Loop (PLL)
in each domain. The independence of each local do-
main clock implies no global clock skew requirement,
permitting potentially higher frequencies within each
domain and greater scalability in future process gen-
erations.

� The designers of each domain are no longer con-
strained by the speeds of critical paths in other do-
mains, affording them greater freedom in each do-
main to optimize the tradeoffs among clock speed, la-
tency, and the exploitation of application parallelism
via complex hardware structures.

� Using separate voltage inputs, external voltage regula-
tors, and controllable clock frequency circuits in each
clock domain allows for finer grained dynamic volt-
age and frequency scaling, and thus lower energy, than
can be achieved with single clock, single-core-voltage
systems.

� With the ability to dynamically resize structures and
alter the clock speed in each domain, the IPC/clock
rate tradeoff can be tailored to application character-
istics within each individual domain [1], thereby im-
proving both performance and energy efficiency.

In this paper, we describe an initial implementation of
an MCD microprocessor that is a straightforward exten-
sion of a singly-clocked synchronous dynamic superscalar
design. By accurately modeling inter-domain synchroniza-
tion, we characterize the performance and energy costs of
the required synchronization circuitry. We then explore the
potential benefits of per-domain dynamic voltage and fre-
quency scaling. Our results demonstrate a 20% average im-
provement in energy-delay product for a set of benchmarks
that includes both compute and memory-bound applica-
tions. Unlike rate-based multimedia applications, these
benchmarks have not traditionally been candidates for volt-
age and frequency scaling.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe a microarchitecture with four separate
clock domains, comprising the front end (including L1 in-
struction cache, rename, and reorder buffer), integer unit,
floating-point unit, and load-store unit (including L1 data
cache and L2 cache). We discuss the circuitry needed for
cross-domain synchronization, and its performance costs.
In Section 3, we describe the simulation infrastructure we
used to evaluate this microarchitecture. The simulator,
based on SimpleScalar and Wattch, includes detailed mod-
eling of synchronization costs. We also describe an off-line
analysis tool that we used in our experiments to identify
promising points at which to reconfigure (scale) domains in
various applications. Our performance and energy dissipa-
tion results, reported in Section 4, encompass applications
from the MediaBench, Olden, and SPEC 2000 benchmark
suites. Sections 5 and 6 contain additional discussion of
related work and concluding remarks.

2. Multiple Clock Domain Microarchitecture

2.1. Division of Chip into Clock Domains

Matzke has estimated that as technology scales down to
a
�������	�

feature size, only 16% of the die will be reachable
within a single clock cycle [24]. Assuming a chip multipro-
cessor with two processors per die, each processor would
need to have a minimum of three equal-size clock domains.
Our design uses four domains, one of which includes the



L2 cache, so that domains may vary somewhat in size and
still be covered by a single clock. In effect, we treat the
main memory interface as a fifth clock domain, external to
the MCD processor, and always running at full speed.

In choosing the boundaries between domains, we at-
tempted to identify points where (a) there already ex-
isted a queue structure that served to decouple differ-
ent pipeline functions, or (b) there was relatively little
inter-function communication. Our four chosen domains,
shown in Figure 1, comprise the front end (including in-
struction cache, branch prediction, rename, and dispatch);
integer issue/execute; floating point issue/execute; and
load/store issue/execute. Although we were initially con-
cerned about the performance impact of implementing sep-
arate load/store and integer domains, we discovered that
the additional synchronization penalty did not significantly
degrade performance. Furthermore, because we discovered
no energy savings from decoupling instruction fetch from
rename/dispatch, we combined these regions into a sin-
gle fetch/rename/dispatch domain to eliminate their inter-
domain synchronization overhead. Finally, execution units
of the same type (e.g., integer units) were combined into a
single domain to avoid the high cost of synchronizing the
bypass and register file datapaths among these units. As a
result of these divisions, there were no explicit changes to
the pipeline organization of the machine. We also believe
that these divisions would result in a physically realizable
floorplan for an MCD processor.

FP Issue Queue

FP ALUs & Register File

F3

Fetch Unit

L1 I−Cache

F1

ROB, Rename, Dispatch

Integer Issue Queue

Int ALUs & Register File

F2

L1 D−Cache

F4

Load/Store Unit

L2 Cache

Main Memory

F0

Figure 1. Multiple clock domain processor block
diagram

2.2. Inter-Domain Synchronization

The primary disadvantage of an MCD processor is the
performance overhead due to inter-domain synchroniza-
tion. In this section, we discuss the circuitry required to
perform this synchronization. We discuss how to model its
performance cost in Section 4.

Some synchronization schemes restrict the phase rela-
tionship and relative frequencies of the clocks, thereby
eliminating the need for hardware arbitration [27]. Un-
fortunately, these schemes impose significant restrictions
on the possible choices of frequencies. In addition, the
need to control the phase relationships of the clocks means
that global clock synchronization is required. Our design
specifically recognizes the overhead associated with inde-
pendent clocks with no known phase relationship. We be-
lieve this overhead to be unavoidable in an MCD processor:
one of the motivating factors for the design is the recogni-
tion that traditional global clock distribution will become
increasingly difficult in the future.

The issue queues in the integer, floating point, and
load/store domains (the Load/Store Queue within the
Load/Store Unit), together with the Reorder Buffer (ROB)
in the front end domain, serve to decouple the front and
back ends of a conventional processor. Choosing these
queues as inter-domain synchronization points has the ad-
vantage of hiding the synchronization cost whenever the
queue is neither full nor empty (as described later in this
section).

CLOCK(w)

WRITE

DATA(w)

FULL

CLOCK(r)

READ

DATA(r)

EMPTY

QUEUE

Figure 2. Queue structure

The general queue structure that we use for inter-domain
communication is shown in Figure 2. The assertion of the�������

flag indicates to the producer that it can no longer
write to the queue until the flag is deasserted (

�������
), while

the � ���
	��
flag when asserted indicates that there is no

valid data for the consumer to read from the queue. The
consumer waits until � ���
	��

is deasserted before reading
again.

The use of a full handshake protocol for this interface re-
quires that the producer/consumer check the

������
/ � ���
	��

flag after every operation in order to avoid queue overruns
on writes or reads from an empty queue. This requirement
significantly slows down the interface thereby degrading
performance. Rather, we assume that the

�������
and � ����	��

flags are generated far enough in advance such that writes
and reads can occur every clock cycle without over or un-
derflowing the queue. In other words, the

�������
flag is gen-

erated early enough such that a burst of writes every cycle
will terminate (due to recognition by the producer of the as-
sertion of the

������
flag) just as the last remaining queue en-

try has been written. An analogous situation exists for the
consumer side of the queue, although our particular queues
are different in this regard as we discuss later. Note that this
scheme may result in underutilization of the queue under



particular conditions. For example, if the write that initi-
ates assertion of the

������
flag is at the end of a burst, then

there will be empty but unusable entries in the queue (be-
cause the

������
flag will have been asserted) the next time

the producer has data to write into the queue.
In order to avoid underutilization of the queues, we as-

sume extra queue entries to buffer writes under worst-case
conditions so that the original number of queue entries can
be fully utilized. In the MCD design, the worst-case sit-
uation occurs when the producer is operating at the maxi-
mum frequency (

� ��� �����	� ) and the consumer at the min-
imum (

��
� �����	� ). An additional complication occurs due
to the need to compare queue head and tail pointers from
different clock domains in order to generate the

������
and

� ����	��
flags. Under these conditions, and assuming an ad-

ditional cycle for the producer to recognize the
������

signal,� � ��� ��������� ��
� �����	����� �
additional entries are required.

Note that our results do not account for the performance ad-
vantage nor the energy cost of these additional entries.

Even with completely independent clocks for each in-
terface, the queue structure is able to operate at full speed
for both reading and writing under certain conditions. This
concurrency requires a dual-ported SRAM structure where
simultaneous read and write cycles are allowed to different
SRAM cells. As long as the interfaces are designed to ad-
here to the protocol associated with the

������
and � ���
	��

flags, the queue structure does not need to support simul-
taneous read and write access to the same SRAM cell. As
long as the queue is not full (as described above) the pro-
ducer can continue to write data on every rising edge of� ���������

(Figure 3). Similarly, so long as the queue is not
empty, the consumer can continue reading on every rising
edge of

� ������� �
. Therefore, both interfaces operate at full

speed so long as the queue is partially full, although newly
written entries may not be recognized by the consumer un-
til after a synchronization period. Once the queue becomes
full, the queue state of

������
can only result from data being

read out of the queue on the read interface. When this event
occurs, the queue pointer in the read domain must get syn-
chronized with the write domain clock (

� �������!�
) in order

to deassert
�������

. A similar synchronization delay occurs
with the generation of the � ���
	��

condition due to a write
to an empty queue.

Many of the queues that we use as synchronization
points have a different interface than that described above.
For the issue queue for example, each entry has " � � 
# and$ �	� # � flags that the scheduler uses to determine if an entry
should be read (issued). The scheduler by design will never
issue more than the number of valid and ready entries in the
queue. Note, however, that due to synchronization, there is
a delay before the scheduler sees newly written queue data.

The delay associated with crossing a clock domain in-
terface is a function of the following:

STALLED

CLOCK(w)

WRITE

DATA(w)

FULL

N−1 NN−2

Figure 3. Full flag

� The synchronization time of the clock arbitration cir-
cuit, %'& , which represents the minimum time required
between the source and destination clocks in order for
the signal to be successfully latched at the destina-
tion. We assume the arbitration and synchronization
circuits developed by Sjogren and Myers [28] that de-
tect whether the source and destination clock edges
are sufficiently far apart (at minimum, % & ) such that a
source-generated signal can be successfully clocked at
the destination. The destination clock is enabled only
under these conditions. We assume a %(& of 30% of
the period of the highest frequency.

� The ratio of the frequencies of the interface clocks.

� The relative phases of the interface clocks.

This delay can best be understood by examining a tim-
ing diagram (Figure 4), which shows source clock

�*)
and

destination clock
�(+

. Consider the case when the queue

F1

F2

T

1

2 3

4

Figure 4. Synchronization timing

is initially empty. Data is written into the queue on the
rising edge of

� )
(edge 1). Data can be read out of the

queue as early as the next rising edge of
� +

(edge 2), if and
only if %-,.% & , i.e., � ���
	��

has become false on the
� +

interface before the next rising edge of
� +

. If %0/1% & ,
the earliest that the data can be read is one

�2+
period later

(edge 3). This extra delay represents one source of perfor-
mance degradation due to synchronization. The value of %
is determined by the relative frequency and phases of

�3)
and

�4+
, as well as the relative jitter of the clock sources,

and may change over time. The cost of synchronization is
controlled by the relationship between % and %2& , and to a
lesser degree by the magnitude of %5& . The analogous situa-
tion exists when the queue is

������
, replacing � ���
	��

with�������
, edge 1 with edge 2, and edge 3 with edge 4 in the

above discussion.

In our simulator, described in the next section, we accu-
rately account for inter-domain overhead.



Table 1. Architectural parameters for simulated
processor.

Branch predictor: comb. of bimodal and 2-level PAg
Level1 1024 entries, history 10;
Level2 1024 entries;
Bimodal predictor size 1024;
Combining predictor size 4096;
BTB 4096 sets, 2-way

Branch Mispredict Penalty 7
Decode Width 4
Issue Width 6
Retire Width 11
L1 Data Cache 64KB, 2-way set associative
L1 Instruction Cache 64KB, 2-way set associative
L2 Unified Cache 1MB, direct mapped
L1 cache latency 2 cycles
L2 cache latency 12 cycles
Integer ALUs 4 + 1 mult/div unit
Floating-Point ALUs 2 + 1 mult/div/sqrt unit
Integer Issue Queue Size 20 entries
Floating-Point Issue Queue Size 15 entries
Load/Store Queue Size 64
Physical Register File Size 72 integer, 72 floating-point
Reorder Buffer Size 80

3. Simulation Methodology

Our simulation testbed is based on the SimpleScalar
toolset [6] with the Wattch [5] power estimation exten-
sions. The original SimpleScalar model supports out of
order execution using a centralized Register Update Unit
(RUU) [29]. We have modified this structure to more
closely model the microarchitecture of the Alpha 21264
microprocessor [20]. Specifically, we split the RUU into
separate reorder buffer (ROB), issue queue, and physical
register file structures. A summary of our simulation pa-
rameters appears in Table 1.

We selected a mix of compute-bound, memory-bound,
and multimedia applications from the MediaBench, Olden,
and SPEC2000 benchmark suites. Table 2 specifies the
benchmarks used along with the window of instructions
simulated. We show combined statistics for the encode
and decode phases of adpcm, epic, and g721, and for the
mipmap, osdemo, and texgen phases of mesa.

For the baseline processor, we assume a 1GHz clock and
1.2V supply voltage, based on that projected for the forth-
coming CL010LP TSMC low-power 0.1

�	�
process [30].

For configurations with dynamic voltage and frequency
scaling, we assume 32 frequency points spanning a lin-
ear range from 1GHz down to 250MHz. Corresponding to
these frequency points is a linear voltage range from 1.2V
down to 0.65V.1 Our voltage range is tighter than that of
XScale (1.65–0.75V), reflecting the compression of voltage

1In Wattch, we simulate the effect of a 1.2–0.65V voltage range by
using a range of 2.0–1.0833V because Wattch assumes a supply voltage
of 2.0V.

Table 2. Benchmarks

Bench- Suite Datasets Simulation window
mark (instructions)

adpcm ref entire program
epic Media- ref entire program

g721 Bench ref 0–200M
mesa ref entire program
em3d 4K nodes, arity 10 70M–119M
health 4 levels, 1K iters 80M–127M

mst Olden 1K nodes entire program 199M
power ref 0–200M

treeadd 20 levels, 1 iter entire program 189M
tsp ref 0–200M

bzip2 input.source 1000M–1100M
gcc SPEC 166.i 1000M–1100M
mcf 2000 Int ref 1000M–1100M

parser ref 1000M–1100M
art SPEC ref 300M–400M

swim 2000 FP ref 1000M–1100M

ranges in future generations as supply voltages continue to
be scaled aggressively relative to threshold voltages. In
addition, the full frequency range is twice that of the full
voltage range. As we demonstrate in Section 4, these fac-
tors limit the amount of power savings that can be achieved
with conventional dynamic voltage and frequency scaling.

We assume two models for dynamic voltage and fre-
quency scaling: an XScale model and a Transmeta model,
both of which are based on published information from
the respective companies [10, 13]. For both of these mod-
els, we assume that the frequency change can be initiated
immediately when transitioning to a lower frequency and
voltage, while the desired voltage must be reached first be-
fore increasing frequency. For the Transmeta model, we
assume a total of 32 separate voltage steps, at 28.6mV in-
tervals, with a voltage adjustment time of 20

�
s per step.

Frequency changes require the PLL to re-lock. Until it does
the domain remains idle. We model the PLL as a normally
distributed locking circuit with a mean time of 15

�
s and a

range of 10–20
�

s. For the XScale model, we assume that
frequency changes occur as soon as the voltage changes,
i.e., as the voltage is changed, the frequency is changed ac-
cordingly. There is no penalty due to a domain being idle
waiting for the PLL: circuits execute through the change.
To approximate a smooth transition, we use 320 steps of
2.86mV each, with 0.1718

�
s required to transition from

one step to the next. Traversing the entire voltage range
requires 640

�
s under the Transmeta model and 55

�
s under

the XScale model.
Processor reconfiguration decisions (choices of times,

frequencies, and voltages) could in principle be made in
hardware, software, or some combination of the two, using
information gathered from static analysis, on-line statistics,
or feedback-based profiling. For the purposes of the cur-
rent study we have attempted to identify the energy sav-



ings that might be achieved with good quality control al-
gorithms, without necessarily determining what those al-
gorithms should look like. More concretely, we employ an
off-line tool that analyzes a trace collected during a full-
speed run of an application in an attempt to determine the
minimum frequencies and voltages that could have been
used by various domains during various parts of the run
without significantly increasing execution time. A list of
these frequencies and voltages—and the times they should
be applied—is then fed back into our processor simulator
in the course of a second, dynamic scaling run, to obtain
accurate estimates of energy and performance.

It is unclear whether this experimental methodology
will overestimate or underestimate the benefits that might
be achieved by realistic on-line control algorithms: our
feedback-based system can in principle use future knowl-
edge, but it is not provably optimal: a good on-line strat-
egy might conceivably do better. What the methodology
does provide is an existence proof: with the frequencies
and voltages chosen by our analysis tool one could expect
to realize the energy savings described in Section 4.

The two subsections that follow describe, respectively,
our multiple clock domain simulator and the analysis tool
used to choose reconfiguration points.

3.1. Simulating Multiple Clock Domains

The disadvantage of multiple clock domains is that data
generated in one domain and needed in another must cross
a domain boundary, potentially incurring synchronization
costs as described in Section 2. In order to accurately
model these costs, we account for the fact that the clocks
driving each domain are independent by modeling inde-
pendent jitter, the variation in the clock, on a cycle-by-
cycle basis. Our model assumes a normal distribution of
jitter with a mean of zero. The standard deviation is 110ps,
consisting of an external Phase Lock Loop (PLL) jitter of
100ps (based on a survey of available ICs) and 10ps due
to the internal PLL. These values assume a 1GHz on-chip
clock generated from a common external 100MHz clock
source. Despite the common use of the external clock, be-
cause the local clock sources are independent, the clock
skew within individual domains is not a factor when calcu-
lating inter-domain penalties.

Our simulator tracks the relationships among all of the
domain clocks on a cycle-by-cycle basis based on their
scaling factors and jitter values. Initially, all the clocks are
randomized in terms of their starting times. To determine
the time of the next clock pulse in a domain, the domain cy-
cle time is added to the starting time, and the jitter for that
cycle (which may be a positive or negative value) is ob-
tained from the distribution and added to this sum. By per-
forming this calculation for all domains on a cycle by cycle
basis, the relationship between all clock edges is tracked.

In this way, we can accurately account for synchronization
costs due to violations of the %0, % & relationship or to
inter-domain clock rate differences.

For all configurations, we assume that all circuits are
clock gated when not in use. We do not currently estimate
the power savings or clock frequency advantage (due to
reduced skew) from the absence of a conventional global
clock distribution tree that supplies a low-skew clock to all
chip latches.

3.2. Choosing Reconfiguration Points

To select the times and values for dynamic scaling in a
given application, our reconfiguration tool begins by run-
ning the application on the simulator, at maximum speed.
During this initial run we collect a trace of all primi-
tive events (temporally contiguous operations performed
on behalf of a single instruction by hardware in a sin-
gle clock domain), and of the functional and data depen-
dences among these events. For example, a memory in-
struction (load/store) is broken down into five events: fetch,
dispatch, address calculation, memory access, and com-
mit. Data dependences link these events in temporal or-
der. Functional dependences link each event to previous
and subsequent events (in different instructions) that use
the same hardware units. Additional functional depen-
dences capture the limited size of structures such as the
fetch queue, issue queues, and reorder buffer. In the fetch
queue, for example, event

�
depends on event

�
�

�
, where�

is the size of the queue.
We use our trace information to construct a dependence

directed acyclic graph (DAG) for each 50K cycle interval.
(The length of this interval is chosen to be the maximum for
which the DAG will fit in cache on our simulation servers.)
Once the DAG has been constructed, we proceed through
two additional analysis phases. The first phase uses the
DAG as input, and confines its work to a single interval.
Its purpose is to “stretch” (scale) individual events that are
not on the application’s critical execution path, as if they
could, on an instruction-by-instruction basis, be run at a
lower frequency. The final phase uses summary statistics
from the first phase in order to cluster intervals into larger
contiguous periods of time, with a uniform clock rate for
each.

Whenever an event in the dependence DAG has two or
more incoming arcs, it is possible—in fact likely—that one
arc will constitute the critical path and that the others will
have “slack”. This slack indicates that the previous opera-
tion completed earlier than necessary. If all of the outgoing
arcs of an event have slack, then we have an opportunity
(assuming zero-cost scaling) to save energy by perform-
ing the event at a lower frequency and voltage. With each
event in the DAG we associate a power factor whose initial
value is based on the relative power consumption of the cor-



responding clock domain, as determined by parameters in
Wattch. When we stretch an event we scale its power factor
accordingly. Calculations are made on a relative basis, on
the assumption that energy is proportional to the square of
the clock frequency.

The stretching phase of our reconfiguration tool uses a
“shaker” algorithm to distribute slack and scale edges as
uniformly as possible. Since SimpleScalar, like any real
processor, executes events as soon as possible subject to
dependences and hazards, slack always appears at the ends
of non-critical paths in the original execution trace. The
shaker algorithm thus begins at the end of its 50K cycle in-
terval and works backwards through the DAG. When it en-
counters an event whose outgoing edges all have slack, the
shaker checks to see whether the power factor of the event
exceeds a certain threshold, originally set to be slightly be-
low the maximum power of any event in the graph. If so
(this is a high-power event), the shaker scales the event un-
til either it consumes all the available slack or its power
factor drops below the current threshold. If any slack re-
mains, the event is moved later in time, so that as much
slack as possible is moved to its incoming edges.

When it reaches the beginning of the DAG, the shaker
reverses direction, reduces its power threshold by a small
amount, and makes a new pass forward through the DAG,
scaling high-power events and moving slack to outgoing
edges. It repeats this process, alternately passing forward
and backward over the DAG, reducing its power threshold
each time, until all available slack has been consumed, or
until all events adjacent to slack edges have been scaled
down to one quarter of their original frequency. When
it completes its work for a given 50K cycle interval, the
shaker constructs a summary histogram for each clock do-
main. Each histogram indicates, for each of the 320 fre-
quency steps in the XScale model (being the maximum of
the number of steps for the two models), the total number
of cycles for the events in the domain and interval that have
been scaled to run at or near that frequency.

Unfortunately, it turns out to be difficult to capture the
behavior of the front end in terms of dependences among
events. Unlike the time between, say, the beginning and
the end of an add in the floating-point domain, the time be-
tween fetch and dispatch is not a constant number of cycles.
In addition, experiments with manually selected reconfigu-
ration points suggested that scaling of the front was seldom
as beneficial as scaling of other domains. As a result, we
have chosen to run the front at a steady 1GHz, and to apply
the shaker algorithm to events in the other 3 domains only.
Since the front end typically accounts for 20% of the total
chip energy, this choice implies that any energy improve-
ments we may obtain must come from the remaining 80%.
Future attempts to address the front end may yield greater
savings than are reported here.

The final, clustering phase of our off-line analysis tool
recognizes that frequencies cannot change on an instanta-
neous, instruction-by-instruction basis. It also allows for
a certain amount of performance degradation. Using the
histograms generated by the shaker, we calculate, for each
clock domain and interval, the minimum frequency � that
would permit the domain to complete its work with no
more than

#
percent time dilation, where

#
is a parameter

to the analysis. More specifically, we choose a frequency
(from among 32 possible values for Transmeta and from
among 320 possible values for XScale) such that the sum,
over all events in higher bins of the histogram, of the ex-
tra time required to execute those events at the chosen fre-
quency is less than or equal to

#
percent of the length of

the interval. This calculation is by necessity approximate.
It ignores ILP within domains: it assumes that the dilations
of separate events in the same domain will have a cumula-
tive effect. At the same time it ignores most dependences
across domains: it assumes that the dilations of events in
different domains will be independent.2 For most appli-
cations the overall time dilation estimate turns out to be
reasonably accurate: the figures in Section 4 show perfor-
mance degradation (with respect to the MCD baseline) that
is roughly in keeping with

#
.

Whereas the shaker algorithm assumes that reconfigu-
ration is instantaneous and free, the clustering algorithm
must model reconfiguration times and costs. For each ad-
jacent pair of intervals for a given domain, it merges his-
tograms on a bin-by-bin basis and calculates the minimum
frequency that would allow us to run the larger, combined
interval at a single frequency. For the Transmeta power
model we require that the time dilation of too-slow events
together with the time required to reconfigure at interval
boundaries not exceed

#
percent of total execution time.

Since it eliminates one reconfiguration, merging intervals
under the Transmeta model often allows us to run the com-
bined interval at a lower frequency and voltage, thereby
saving energy. Most mergers under the XScale model oc-
cur when adjacent intervals have identical or nearly identi-
cal target frequencies. The clustering algorithm continues
to perform mergers, recursively, so long as it is profitable
from an energy standpoint to do so.

When it is done performing mergers, the clustering al-
gorithm calculates the times at which reconfiguration must
begin in order to reach target frequencies and voltages at
target times. If reconfiguration is not possible, for exam-
ple, because of a large swing in frequency that would take
longer (because of the time to reduce or increase voltage)
than the available interval, it is avoided. Since transitions

2As an exception to this rule, we add the events of the load/store do-
main into the histogram of the integer domain. This special case ensures
that effective address computations occur quickly when memory activity
is high.



in the Transmeta model take 20
�

s per voltage level, this
results in the inability to accommodate short intervals with
a large frequency variance. The algorithm completes its
work by writing a log file that specifies times at which the
application could profitably have requested changes in the
frequencies and voltages of various domains. This file is
then read by the processor simulator during a second, dy-
namic configuration run.

4. Results

In this section, we compare the performance, energy,
and energy-delay product of the MCD microarchitecture to
that of a conventional singly clocked system. The base-
line configuration is a single clock 1GHz Alpha 21264-
like system with no dynamic voltage or frequency scal-
ing. The baseline MCD configuration is split into four
clock domains as described in Section 2 but with the fre-
quency of all clocks statically set at 1GHz. This configu-
ration serves to quantify the performance and energy cost
of inter-domain synchronization. The dynamic 1% and dy-
namic 5% configurations are identical to baseline MCD ex-
cept that they support dynamic voltage and frequency scal-
ing within each clock domain, as described in Section 3.
For the dynamic 1% case the clustering phase of our off-
line reconfiguration tool (Section 3.2) uses a target of 1%
performance degradation (beyond that of baseline MCD);
for the dynamic 5% case it uses a target of 5%. Finally,
the global configuration models the baseline configuration
with the addition of dynamic scaling of its single voltage
and frequency, and serves to quantify the benefits of multi-
ple clock domains.

The frequency for the global case is set so as to incur
an overall performance degradation equal to that of the dy-
namic 5% configuration, and its voltage is correspondingly
reduced. The energy savings of global is calculated by
running each application under SimpleScalar and Wattch
using the reduced frequency and voltage values. This ap-
proach permits the energy savings of the MCD approach to
be compared to that of conventional voltage and frequency
scaling for the same level of performance degradation. We
performed a sanity check of the energy results of the global
configuration by comparing the Wattch results against a
simple calculation of the energy of the baseline configu-
ration scaled relative to the square of the voltage ratios and
found the results to agree to within 2%.

Figures 5, 6, and 7 display the performance degradation,
energy savings, and change in energy � delay of the base-
line MCD, dynamic 1%, dynamic 5%, and global config-
urations with respect to the baseline configuration, under
the XScale model of voltage and frequency scaling. The
Transmeta model produced far less promising results than
the XScale model. Because of the roughly

��� ���
required

to re-lock the PLL under the Transmeta model, reconfigu-
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Figure 5. Performance degradation results
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Figure 6. Energy savings results
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Figure 7. Energy-delay improvement results

rations are profitable much more rarely than they are un-
der the XScale model, and energy improvements are much
less. We will return to a comparison of the Transmeta and
XScale models after discussing the XScale results in more
detail.

The baseline MCD design, which simply uses multi-
ple clock domains with no voltage or frequency scaling,
shows an average performance degradation of less than
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Figure 8. Frequency changes for art generated by our off-line algorithm for the dynamic 1% configuration.

4%, with average energy cost of 1.5%. The resulting im-
pact on energy-delay product approaches �

���
% for adpcm

and �

�
% overall. Note that any overheads introduced by

the algorithms add directly to this baseline MCD over-
head. For instance, the average dynamic 5% performance
overhead is almost 10% or roughly what might be ex-
pected given the target degradation of 5% above the base-
line MCD.

Our second observation is that the overall energy sav-
ings of the global approach is similar to its performance
degradation, and averages less than 12% across the six-
teen benchmarks. This result is somewhat counterintuitive,
since when both frequency and voltage are reduced lin-
early by the same percentage, performance drops linearly
with frequency, yet energy drops quadratically with volt-
age. Recall, however, that in our model a four-fold change
in frequency (from 1GHz down to 250MHz) results in a
less than two-fold change in voltage (from 1.2V down to
0.65V, modeled as 2.0V to 1.0833V in Wattch). As dis-
cussed in Section 1, this difference is due to the compres-
sion of voltage ranges relative to frequency ranges in suc-
cessive process generations, as voltages are scaled down
relative to threshold voltage, and frequencies are scaled up.
The slope of the voltage curve has become much less steep
than that of the frequency curve, greatly diminishing the
quadratic effect on energy of a voltage reduction.

The MCD approaches, by contrast, achieve significant
energy and energy � delay improvements with respect
to the baseline configuration, with a comparatively minor
overall performance degradation. For example, the dy-
namic 5% configuration achieves an average overall energy
reduction of 27% and an energy � delay improvement of
almost 20% relative to the baseline configuration, while in-
curring a performance degradation of less than 10% across
the sixteen benchmarks under the XScale model. The dy-
namic 1% algorithm, which tries to more strictly cap the

performance degradation at the expense of energy savings,
trades off a significant energy savings to achieve this goal,
resulting in an energy � delay improvement of roughly
13%. Even so, this still far exceeds the 3% energy � delay
improvement obtained with the global approach.

In several cases the opportunity to hide latency behind
cache misses allows actual performance degradation to be
significantly less than what one might expect from the fre-
quencies chosen by the dynamic algorithm. In particular,
the slack associated with L1 data cache misses often allows
our reconfiguration tool to scale the integer and floating-
point domains without significantly impacting overall per-
formance (due to the fact that the available ILP is not suf-
ficient to completely hide the miss latency), even when the
utilization for these domains is high. The load/store do-
main, of course, must continue to operate at a high fre-
quency in order to service the misses as quickly as possible,
since the second level cache is in the same domain (unless
we have a lot of level-two cache misses as well). The im-
pact of misses can be seen in gcc (dynamic 1%), where the
cache miss rate is high (12.5%) and the average frequency
of the integer domain drops to approximately 920 MHz, but
total performance degradation is less than 1%.

By contrast, branch mispredictions do not provide an
opportunity for dynamic scaling: the dependence chain de-
veloped to resolve a branch precludes significant frequency
reductions in the integer domain, and sometimes in the
load/store domain as well. Applications that experience a
high branch mispredict rate are likely to show performance
degradation in accordance with frequency slowdown. This
effect can be seen in swim, where the energy savings barely
exceeds the performance degradation. (Here the floating
point domain must also remain at a high frequency because
of high utilization.)

The dynamic algorithm performs poorest with respect
to global voltage scaling in g721. This is an integer bench-
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Figure 9. Summary statistics for intervals chosen by the off-line tool for the dynamic 5% configuration. Solid
bars indicate, for the integer, load-store, and floating-point domains, the number of reconfigurations requested
per 1 million instructions. Points above the bars indicate the average frequencies chosen for those domains.
“Error bars”, where shown, indicate the range of dynamic frequencies for the domain.

mark with a well balanced instruction mix, high utilization
of the integer and load/store domains, a low cache miss
rate, a low branch misprediction rate, and high baseline
MCD overheads. Its IPC is relatively high (above 2), and
the integer and load/store domains must run near maximum
speed in order to sustain this. The floating point domain
can of course be scaled back to 250MHz, but because of
the high activity levels in the other domains, the resulting
energy savings is a smaller fraction of total processor en-
ergy than it is in most of the other integer applications.

Comparing Figures 5–7 with corresponding results (not
shown here) under the Transmeta scaling model, we found
that the XScale model enables us to achieve significantly
higher energy savings for a given level of performance
degradation. The reasons for this result are illustrated in
Figure 8, which displays the frequency settings chosen
by our reconfiguration tool for a 30ms interval of the art
benchmark, with a target performance degradation of 1%.
In comparing the graphs in this figure, note that under the
XScale model we are able both to make a larger number of
frequency changes and to make those changes over a wider
range of frequencies. In particular, while art is a floating-
point intensive application, there are many instruction in-
tervals during which we can safely scale back the floating-
point domain. Because of its 10–20

���
PLL relock penalty,

the Transmeta model does not allow us to capture this com-
paratively short-term behavior.

Figure 9 presents summary statistics for the intervals
chosen by our off-line reconfiguration tool in all 16 applica-
tions, under both the Transmeta and XScale models. While
the average frequencies chosen for the integer, load-store,

and floating-point domains are similar in the two graphs,
the total number of reconfigurations is much lower under
the Transmeta model, and the frequency ranges are nar-
rower.

Figures 8 and 9 both illustrate the value of using dif-
ferent frequencies in different clock domains: by control-
ling these frequencies independently we can maintain the
required frequency in domains that are critical to perfor-
mance, while aggressively scaling those domains that are
less performance-critical. The floating-point domain in
particular can be scaled back to the lowest available fre-
quency in many applications, including some that include
non-trivial numbers of floating-point operations. Note,
however, that due to clock gating, the floating point domain
is often not the largest source of energy dissipation for inte-
ger programs: the integer domain often is the largest source
and thus even modest adjustments of its domain voltage
yield significant energy savings. Furthermore, although
one would expect dynamic scaling to reduce static power
as well, we have not quantified the corresponding contribu-
tion to the energy savings. Dynamic voltage gating might
achieve additional savings (given appropriate support for
saving/restoring critical processor state), and would seem
to be a promising avenue for future research.

5. Related Work

Several manufacturers, notably Intel [21] and Trans-
meta [16], have developed processors capable of global
dynamic frequency and voltage scaling. Since minimum
operational voltage is roughly proportional to frequency,



and power is roughly proportional to the voltage squared,
this dynamic scaling can be of major benefit in applica-
tions with real-time constraints for which the processor as
a whole is over-designed: for example, video rendering.
Marculescu [23] and Hsu et al. [18] evaluated the use of
whole-chip dynamic voltage scaling with minimal loss of
performance using cache misses as the trigger [23]. Other
work [7, 26] has also begun to look at steering instruc-
tions to pipelines or functional units running statically at
different speeds so as to exploit scheduling slack in the
program to save energy. Our contribution is to demon-
strate that a microprocessor with multiple clock domains
provides the opportunity to reduce power consumption on
a variety of different applications without a significant per-
formance impact by reducing frequency and voltage in do-
mains that do not contribute significantly to the critical path
of the current application phase.

Govil et al. [15] and Weiser et al. [31] describe interval-
based strategies to adjust the CPU speed based on processor
utilization. The goal is to reduce energy consumption by at-
tempting to keep the processor 100% utilized without sig-
nificantly delaying task completion times. A history based
on the utilization in previous intervals is used to predict
the amount of work and thereby adjust speed for maximum
utilization without work backlog. Pering et al. [25] apply a
similar principle to real-time and multimedia applications.
Similarly, Hughes et al. [19] use instruction count predic-
tions for frame based multimedia applications to dynami-
cally change the global voltage and frequency of the pro-
cessor while tolerating a low percentage of missed frame
deadlines. Bellosa [2, 3] describes a scheme to associate
energy usage patterns with every process in order to con-
trol energy consumption for the purposes of both cooling
and battery life. Cache and memory behavior as well as
process priorities are used as input in order to drive the en-
ergy control heuristics. Benini et al. [4] present a system
that monitors system activity and provides information to
an OS module that manages system power. They use this
monitoring system in order to demonstrate how to set the
threshold idle time used to place a disk in low-power mode.
Our work differs in that we attempt to slow down only those
parts of the processor that are not on an application’s criti-
cal path.

Fields et al. [12] use a dependence graph similar to ours,
but constructed on the fly, to identify the critical path of an
application. Their goal is to improve instruction steering
in clustered architectures and to improve value prediction
by selectively applying it to critical instructions only. We
use our graph off-line in order to slow down non-critical
program paths. Li et al. [22] explore the theoretical lower
bound of energy consumption assuming that both the pro-
gram and the machine are fully adjustable. Assuming equal
energy dissipation in all hardware components, they show

that a program with balanced load on all components con-
sumes less energy than one with significant variance.

Childers et al. [9] propose to trade IPC for clock fre-
quency. The user requests a particular quality of service
from the system (expressed in MIPS) and the processor
uses an interval-based method to monitor the IPC and ad-
just the frequency and voltage accordingly. In their work,
a process with high IPC will run at a low clock frequency
while a process with low IPC will run at a high clock fre-
quency, which is contrary to what is required for some ap-
plications (e.g., when low IPC is due to high miss rates).
Our techniques work to achieve the exact opposite in order
to provide maximum performance with minimum energy.

6. Conclusions

We have described and evaluated a multiple clock do-
main (MCD) microarchitecture, which uses a globally-
asynchronous, locally-synchronous (GALS) clocking style
along with dynamic voltage and frequency scaling in order
to maximize performance and energy efficiency for a given
application. Our design uses existing queue structures in
a superscalar processor core to isolate the different clock
domains in a way that minimizes the need for inter-domain
synchronization.

Performance results for applications drawn from stan-
dard benchmark suites suggest that the division of the pro-
cessor into multiple domains incurs an average baseline
performance cost of less than 4%. At the same time, by
scaling frequency and voltage in different domains dynam-
ically and independently, we can achieve an average im-
provement in energy-delay product of nearly 20%. By
contrast, global voltage scaling to achieve comparable per-
formance degradation in a singly clocked microprocessor
achieves an average energy-delay improvement of only 3%.

Our current analysis uses an off-line algorithm to deter-
mine the points in the program at which different domains
should change frequency and voltage. Future work will
involve developing effective on-line algorithms, including
approaches for effective scaling of the front end. In addi-
tion, we will continue to investigate the circuit-level issues
associated with being able to deliver tunable on-chip volt-
age and frequency with low latency.
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