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Abstract

Many—indeed most—distributed applications employ
some notion of distributed shared state: information re-
quired at more than one location. For applications that
span the Internet, this state is almost always maintained
by means of hand-written, application-specific message-
passing protocols. These protocols constitute a signifi-
cant burden on the programmer. Rochester’s InterWeave
project seeks to eliminate this burden by automating the
management of shared state for processes on heteroge-
neous, distributed machines.

Heterogeneity implies the need for strong typing and
for automatic conversion to and from a common wire
format when transmitting data and updates between ma-
chines. In addition to issues of byte order, alignment,
and numeric formats, transparent sharing implies the
need for pointers that refer to arbitrary shared locations,
and that operate with the speed of ordinary machine ad-
dresses when the target is locally cached. To satisfy
these constraints, InterWeave employs a typesafe inter-
face description language and compiler, performs page-
fault-driven pointer swizzling, and maintains an elabo-
rate collection of metadata to support fast data access
and updates.

1 Introduction

Software distributed shared memory (S-DSM) provides
the illusion of coherent memory sharing for machines
connected only by a message-passing network, or by
a non-cache-coherent memory system. Traditional S-
DSM systems provide a conceptually appealing pro-
gramming model for processes that have been spread
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across a locally-distributed cluster for the purpose of
parallel speedup. Rochester’s InterWeave project, by
contrast, attempts to provide this model for processes
that have been distributed across a potentially wide-area
network in order to be co-located with distributed users,
devices, or data repositories. For processes that hap-
pen to share a high-bandwidth, low-latency network, In-
terWeave employs the pre-existing, high-performance
Cashmere [12, 11] protocol. The emphasis of the
project, however, is on more loosely-coupled distribu-
tion and targeted to a different programming model.
Traditional DSM systems often require the programmer
to write SPMD (Single Process Multiple Data) code. In-
terWeave, on the other hand, can be used by sequential
(distributed) applications as well as parallel applications
sharing data or communicating in any way the applica-
tion programmer desires.

Because of its different underlying motivation, Inter-
Weave differs from Traditional S-DSM in several im-
portant ways [2]. To support sharing among loosely-
coupled, independently-developed and deployed pro-
cesses, InterWeave supports an arbitrary number of in-
dependent shared persistent segments, each named by
a URL and managed by a server at the site identified
in that URL. Individual blocks of data are dynamically
allocated within segments, and may also be given sym-
bolic names.

Each segment moves over time through a series of
internally consistent versions, each of which appears to
have been created atomically from the point of view
of processes other than the creator. InterWeave clients
cache whole segments, and may continue to use a given
version of a segment as long as it is “recent enough” ac-
cording to an application-specific coherence predicate.
Consistency across segments is optional, and is enforced
when desired by means of a low-cost version history
hashing scheme [2]. Because they are spread around
the Internet, segments must incorporate mechanisms for
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access control and fault tolerance. They must also ac-
commodate heterogeneous programming languages and
machine architectures.

We focus in this short paper on the subject of het-
erogeneity. Everything depends on strong typing. Each
user data type in InterWeave is declared using Sun’s Ex-
ternal Data Representation (XDR) notation [13], which
we translate, automatically, into language-specific type
declarations and machine-specific metadata. � Inter-
Weave functions can use the metadata to translate seg-
ments and segment updates to and from a universal wire
format when communicating across machines and lan-
guages.

Our work is driven in large part by collaborations
with colleagues in three application domains: remote
visualization and steering of scientific simulations; in-
teractive, incremental datamining; and “intelligent en-
vironments” for human-computer collaboration. As a
concrete example, consider a desktop front end for a
stellar simulation, running on a remote Cashmere clus-
ter (we are working on such an application with Prof.
Adam Frank of Rochester’s Department of Physics and
Astronomy). To support the front end, the Cashmere
cluster would create a segment in which to place rele-
vant data:

IW_handle_t ss = IW_create_segment (
"http://iw.cs.rochester.edu/\
stellar_simulation");

IW_wl_acquire (ss);
/* grab write lock */

stellar_data_t* sd =
(stellar_data_t *)
IW_named_malloc (ss,

stellar_data_desc,
"stellar_root");

IW_wl_release (ss);
/* release lock */

/* Data at *sd can now be used
in simulation */

The stellar data t type and the descriptor stel-
lar data desc would be created automatically from
an XDR type declaration by the InterWeave XDR com-
piler. The descriptor provides IW malloc with the in-
formation it needs to determine the wire format and lo-
cal format of the allocated data, together with the map-
pings between them.

The name of a segment and the name of a data
structure allocated in that segment can be combined
to produce a machine independent pointer (mip):�

The choice of XDR is somewhat arbitrary; we could use any rea-
sonable interface description language. We do not in fact use any of
Sun’s XDR tools; the InterWeave compiler is home-grown.

http://iw.cs.rochester.edu/stellar
simulation#stellar root. A remote process
that obtains the mip (through static convention, mes-
sage passing, a directory service, or even console I/O)
can then obtain access to the data (assuming appropri-
ate rights). In our stellar simulation example, the front
end program on the researcher’s desktop machine might
perform the following calls:

stellar_data_t* sd = IW_mip_to_ptr (
"http://iw.cs.rochester.edu/\
stellar_simulation#stellar_root");

IW_handle_t ss = IW_get_segment (sd);

Handle ss can now be used to lock and unlock the seg-
ment. While a lock is held, pointer sd can be derefer-
enced to inspect or (with a write lock) modify the seg-
ment.

The rest of this paper is organized as follows. Sec-
tion 2 enumerates the InterWeave functions that must be
type aware. Section 3 then describes the data structures,
tools, and techniques that make type awareness possi-
ble. We briefly summarize related work in section 4 and
conclude with our status and plans in section 5.

2 Requirements

InterWeave takes the form of a collection of servers
and a library linked into client processes. The client
library executes in response to synchronous calls from
the user program and signals from the operating system.
The user calls support segment creation and destruction,
dynamic memory allocation and deallocation, and syn-
chronization based on reader-writer locks. The signals
reflect page faults for the purpose of tracking modified
pages. In the remainder of this section, we enumerate
the operations that must deal explicitly with heteroge-
neous machine types.

Creating local copies of segments. When first
locked by a client, a segment is copied, in full, into the
client’s memory. The server sends the data in a univer-
sal wire format, which the client must translate into local
machine-specific format. Pointers that refer to data that
are already locally cached must be converted to machine
addresses. Pointers that refer to data that are not locally
cached must be initialized in such a way that they will
point to valid data when eventually dereferenced.

Creating and deleting data blocks. InterWeave pro-
vides IW malloc() and IW free() calls to allocate
and deallocate memory within segments. Each block
has a serial number, an optional symbolic name, and an
address in the local memory of the creating process. The
allocation and deallocation routines employ a conven-
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tional space management algorithm, but with elaborate
bookkeeping data structures (described in Section 3) to
support the other operations listed here. In order to ac-
commodate heterogeneity, data structures allocated by
IW malloc() must be strongly typed, so that con-
version from and to wire format can take place when
needed.

Tracking writes. Like many S-DSM systems, Inter-
Weave tracks writes to shared data by write-protecting
pages and catching page fault signals. The signal han-
dler creates a pristine copy (twin) of the page for later
reference, and unprotects the page.

Creating and applying diffs. At the direction of
the coherence protocol (not described here), InterWeave
must send a description of recent segment changes to the
segment’s server. At other times (again at the direction
of the coherence protocol), InterWeave must apply diffs,
obtained from the server, to the local copy of a segment.

To support outgoing diffs, the IW malloc() and
IW free() calls must keep track of newly allocated
and deallocated blocks. When applying an incoming
diff, the library must also be prepared to allocate or deal-
locate blocks created or destroyed by other clients.

When creating an outgoing diff, InterWeave can
identify modified words by comparing modified pages
to their twins. Unlike most other S-DSM systems, how-
ever, InterWeave must express both incoming and out-
going diffs not in terms of bytes and pages, but in terms
of the segments, blocks, and (machine-independent)
offsets—i.e., in wire format. Data values, includ-
ing pointers, must also be converted to machine-
independent form. These conversions require that the
library maintain metadata containing detailed type in-
formation. To obtain the metadata, we have our XDR
compiler produce type descriptors, which the user pro-
gram then passes to IW malloc().

Localizing pointers. For the sake of performance
and compatibility with existing compilers, we would
like to ensure that pointers, both intra- and inter-
segment, are represented as ordinary machine addresses
whenever the data to which they refer is locally cached.
Unfortunately, when a pointer itself is first cached its
target may not be local. We must initialize the pointer
(with back-up metadata) in such a way that it is sure to
point to valid (local) data when actually dereferenced.
Techniques that attempt to patch the value of the pointer
itself, lazily, are undesirable, since they do not support
pointer arithmetic prior to patching. Our chosen tech-
nique is described in the following section.

3 Design and Implementation

In this section, we outline the data structures and algo-
rithms used by InterWeave to implement the functions
described in the previous section.

3.1 Pointer Swizzling

Pointers in InterWeave are of two types: the machine
independent pointer (mip) and the machine dependent
pointer. A machine dependent pointer is whatever the
client machine understands, usually a 32 or 64-bit ad-
dress. Machine independent pointers are URLs of the
form domain/path#block#offset, where do-
main is a (numeric or symbolic) internet address, path
serves to identify the segment in the server’s names-
pace, block is the serial number or symbolic name of
a block within the segment, and offset is an optional
displacement inside the block, expressed as a number of
primitive datatype fields. The following are all syntacti-
cally valid mips:

iw.rochester.edu/test/foo#17#3276
iw.rochester.edu/test/foo#17
iw.rochester.edu/test/foo#myblock

When a segment is first brought into memory, or
when an update is received from a segment’s server,
pointers contained in the segment must be converted
from the machine independent URL format to a format
that the user can safely dereference. This conversion is
known as pointer swizzling.

InterWeave maintains a hash table (the segment ta-
ble) describing segments that are locally cached. If a
mip obtained from the server refers to data within a lo-
cally cached segment, InterWeave uses data structures
described in the following section to generate a real
pointer in local format. If the mip refers to data in a seg-
ment of which there is no local copy, InterWeave must
take special action. Our chosen mechanism resembles
the “expanding frontier” mechanism of dynamic (lazy)
linking, or of Wilson’s pointer swizzling at page fault
time [14]. Given a pointer into segment A, for which we
have as yet no local copy, we reserve space for A, iden-
tify the address within that space at which the referenced
data will lie, set the pointer to refer to that space, but
leave the space unmapped. Before a process can access
data within a segment, InterWeave semantics require it
to obtain a reader or writer lock. The lock acquire oper-
ations provide a natural point at which to create a local
copy of the segment, and allow InterWeave to assume
that any dereferenced pointer will refer to local data.
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3.2 Data Structures

InterWeave presents the programmer with two granu-
larities of shared data: segments and blocks. Blocks
are the pieces of memory the user allocates (with the
IW malloc() call). They contain any kind of data the
user wishes to put in them, and can be of arbitrary size.
Every block has a serial number within its segment, as-
signed by IW malloc(). It may also have a symbolic
name, specified as an addition parameter. A segment is
a named collection of blocks. There is no a priori limit
on the number of blocks in a segment, and blocks within
the same segment can be of different types and sizes.

Internally, in addition to segments and blocks, Inter-
Weave keeps track of both subsegments and subblocks.
Subblocks are fixed-size arrays of bytes within a block,
on the order of a cache line in size. They are used by
the coherence protocol, and will not be addressed in this
paper. Subsegments are contiguous regions of memory
that comprise the local copy of a segment. The subseg-
ments of a given segment are not necessarily contigu-
ous in memory (and in general are not). Subsegments
support blocks of arbitrary size, allow segments to grow
over time, but ensure that a given memory page contains
data from only one segment.

InterWeave manages its own heap area, rather than
relying on the standard C library malloc(). The In-
terWeave heap routines manage subsegments, and main-
tain a variety of bookkeeping information. Among other
things, this information includes a set of balanced search
trees that allow InterWeave to quickly locate blocks by
name or serial number, to support the translation of mips
into local pointers.

Figure 1 illustrates the organization of memory into
subsegments, blocks, and free space. The segment table
has exactly one entry for each segment being cached by
the client in local memory. It is organized as a hash ta-
ble, keyed by segment name. In addition to the segment
name, each entry in the table includes four pointers: one
for the first subsegment that belongs to that segment,
one for the first free space in the segment, and two for a
pair of AVL trees containing the segment’s blocks. One
tree is sorted by block serial number, the other by block
symbolic name. The segment table entry may also in-
clude a cached TCP connection over which to reach the
server.

Each subsegment contains a next pointer and a
wordmap of modified pages. The words in the wordmap
are set to point to twins, created in response to write-
protect page faults. Together, the wordmap and the
linked list of subsegments in a given segment allow In-
terWeave to quickly determine which pages need to be
diffed when the coherence protocol needs to send an up-

date to the server.

Each subsegment contains a root pointer for an AVL
tree of the subsegment’s blocks, sorted by memory ad-
dress. In addition, each subsegment contains a pair of
pointers and balance bits for inclusion in a global AVL
tree of subsegments, shared by all locally cached seg-
ments, and sorted by memory order. This last tree allows
the page fault handler to find the appropriate wordmap
entry on a write protect fault. In addition to setting the
wordmap entry, the fault handler creates a pristine twin
of the page, for later use in diffing, and re-enables write
access. (To reiterate: there are four separate kinds of
AVL trees: a global tree of subsegments, ordered by
memory address; two trees of blocks within a segment,
ordered by serial number and by symbolic name; and a
tree of blocks within a subsegment, ordered by memory
address.)

All blocks in a subsegment begin with a collection
of control information (headers). A detailed view of
this information appears in figure 2. The shaded part
of the figure represents part of the data in the block. The
control information includes a pointer to a type descrip-
tor, together with pointers and balance bits for the AVL
trees of blocks mentioned above. The name left and
name right pointers and the block name field are
present only if the block has a symbolic name and is thus
a node of the AVL tree sorted by name.

Free space within a segment is kept on a linked list,
with a head pointer in the segment table. Allocation is
currently first-fit. To allow a deallocated block to be
coalesced with its neighbor(s), if free, all blocks have a
footer (not shown in figure 1) that indicates whether that
block is free or not, and if it is, where it starts.

The per-segment AVL trees of blocks sorted by serial
number and by name support translation from mips to
local pointers. The per-subsegment tree sorted by mem-
ory address is used to facilitate diffs. As noted above,
the diffing routine scans the list of subsegments of a
given segment and the wordmap within each subseg-
ment. When it identifies a group of contiguous modi-
fied pages, it performs a byte-by-byte diff of the pages
and their twins (twins are found by following the pointer
in the wordmap). In order to convert this byte-by-byte
diff into a machine-independent (wire format) diff, the
diffing routine must have access to type descriptors. It
uses the AVL tree to identify the block in which the first
modified byte lies, and then scans blocks linearly, con-
verting the diff as it goes, until it runs off the end of the
last contiguous modified page. When done, it returns to
the wordmap and subsegment list to find the next group
of contiguous modified pages.

The per-segment AVL tree of blocks sorted by serial
number also supports the application of updates from
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Figure 1: Simplified view of InterWeave data structures: the segment table, subsegments and blocks within segments.
Blocks are dashed. White blocks are free space. Footers of blocks and free space are not shown.

the server. The wire format of the update identifies
blocks by serial number. InterWeave searches for this
number in the tree in order to find the actual bytes to be
updated.

3.3 Wire Format

In order to be truly a heterogeneous system, InterWeave
must communicate data in a generic format that can
easily be converted to the appropriate local format for
a given processor architecture, programming language,
and compiler version. This generic format is called the
wire format as briefly introduced above. The wire for-
mat includes both data and metadata. The metadata
describes the type of each block of the data. To gen-
erate the metadata and to ensure mutually compatible
type declarations in different languages, InterWeave em-
ploys a datatype compiler that accepts Sun XDR decla-
rations [13] as input. XDR employs a strongly typed C-
like syntax with well-known primitive data type sizes.
When asked to produce output for C, the compiler gen-
erates a .h file containing type declarations and a .c

file containing initialized variables that constitute the
metadata. The InterWeave library interprets the meta-
data in order to translate to and from wire format.

4 Related Work

At least two early S-DSM systems, Mermaid and Agora,
were designed with processor or language independence
in mind. We address these in the first two subsections
below. We then turn in the final subsection to a variety
of other related work.

4.1 Mermaid

Mermaid [16] is a heterogeneous S-DSM system de-
signed with the SPMD programming model in mind.
Only processes belonging to the same application can
share data, and there is no way for an independently
initiated process to join an already running application.
The data used by an application is lost when the appli-
cation terminates.
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Address left Address right

Block # left Block # right

Name left

Name right

Type Descriptor Ptr Block Size

Name Size

Opt Block Name

Opt Block Name cont’d

Figure 2: Description of the control structure for blocks.

Shared memory in Mermaid is strongly typed, and
data is converted from the target format to the destina-
tion format when communication happens. There is no
wire format, however: all data is converted directly from
the sender’s local format at the receiver’s side. The con-
version uses functions created automatically by a source
compiler for each language supported by Mermaid.

The granularity of memory coherence in Mermaid is
the page. (It is not clear what happens when different
machines have different page sizes.) Pages are also lim-
ited to holding a single data type, making sharing sig-
nificantly less general than in InterWeave. Finally, Mer-
maid supports only a single memory model: namely se-
quential consistency. InterWeave currently supports five
different models [2], and we expect to allow users to de-
fine additional models.

4.2 Agora

Agora [1] is a distributed that incorporates support for
shared data structures across heterogeneous machines,
but with a type system and implementation significantly
more restrictive than InterWeave’s.

Data types in Agora are declared using a LISP-like
declaration language and compiled by Agora’s compiler.
The resulting type descriptions are then linked into the
user’s application and become available for inspection
whenever needed by the type conversion system. The
description language, however, supports neither recur-
sive types nor pointers.

Every shared data structure (SDS) in Agora is an in-
stance of an abstract data type, and is accessed only

through the methods of that type. Moreover calls to
these methods access the SDS indirectly through a lin-
ear or hash table map, rather than directly with a ma-
chine address. New SDSes can be created dynamically,
with a constructor method that returns an opaque handle.
The handle can then be registered with a name server,
using a character string name, allowing other processes
to perform a lookup operation that returns its own local
handle.

Once initialized, the memory used to hold the value
of an SDS is never changed. Rather, update operations
allocate new memory and change the local map to point
to the new memory instead of the old. Updates are
broadcast to all processes with a map entry for the mod-
ified SDS. The writer proceeds immediately, however,
yielding a memory model reminiscent of processor con-
sistency. As in Mermaid, there is no wire format; type
conversion is done by the receiver if needed. Garbage
memory blocks are reclaimed automatically when no
longer in any process’s map. Synchronization is based
on a monitor-like mutual exclusion mechanism for up-
date methods and a mechanism for asynchronous inter-
processor events.

4.3 Other Related Work

While we believe InterWeave’s support for distributed
shared state to be uniquely general and transparent,
much of the underlying technology is borrowed from
previous work of others.

RPC and message-passing systems have used inter-
face description languages to accommodate heteroge-
neous machine types for at least 20 years [15]. Popular
modern systems include Sun’s XDR [13], Microsoft’s
DCOM [10], and various flavors of CORBA [7].

Herlihy’s thesis work [4] pioneered deep copy se-
mantics for linked data structures. Similar facilities can
be found in DCOM, in Emerald [5], and in the more
recent “pickling” (serialization) of Java [9].

Wilson’s page-fault-based pointer swizzling [14]
dates from 1991. Similar mechanisms can be found
in dynamic (lazy) linkers [3], and in Lisp systems (e.g.
LOOM [6]) for limited-address space machines.

Several other groups have recently begun to explore
the notion of shared state for processes spread across
the Internet. References to many of these can be found
in our to-appear paper at LCR 2000 [2].

5 Status and Future Work

As of April 2000, we have implemented most of the
coherence mechanisms of InterWeave, most of which
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were inherited from our earlier InterAct [8] project. We
have also completed the InterWeave XDR compiler, and
are currently implementing the remaining mechanisms
described in section 3. The know-how to implement
fault handling, twinning, and diffing is available from
our previous work on Cashmere [12]. Concurrent with
the implementation of InterWeave, we are rewriting a
message-based distributed action game to use the Inter-
Weave API. We hope to verify that the code becomes
significantly simpler while retaining acceptable perfor-
mance.

Once our prototype is up and running, we expect
to integrate InterWeave with Cashmere, to support re-
mote front ends for visualization and steering of high-
end simulations (joint work with colleagues in Physics
and Astronomy, Chemistry, and Laser Energetics). We
also plan to address issues of particular importance for
Internet-based applications: security (user authentica-
tion, message encryption) and fault tolerance in particu-
lar.
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