
0018-9162/99/$10.00 © 1999 IEEE54 Computer

O
perating system application programming
interfaces (APIs) are typically monolithic
procedural interfaces that address a single
machine’s requirements. This design limits
evolutionary development and complicates

application development for distributed systems.
An OS’s functionality will change over its lifetime,

and these changes must be reflected in the API. In an
ideal world, obsolete API calls would be deleted, and
calls with modified semantics (but unmodified parame-
ters and return values) would remain the same.
Unfortunately, since the OS must continue to support
legacy applications, obsolete calls can never be deleted,
and new call semantics are best introduced through
new calls. The need for backward compatibility leads
to bloat in the API and the supporting code.

In addition, typical OS APIs do not adequately
address the needs of distributed applications: They
have support for intermachine communication but
lack high-level support for accessing remote OS
resources. The primary omission is a uniform method
for naming remote resources, such as windows, files,
and synchronization objects.

ARE COMPONENTS THE ANSWER?
Component software methods, which have been

primarily motivated by the desire for reuse, can elim-
inate these weaknesses. Software components are
“binary units of independent production, acquisition,
and deployment that interact to form a functioning
system.”1 Component software environments are
largely based on distributed platforms and, due to nat-
ural software evolution typically contain multiple
active versions of components. Component infra-
structures therefore have good distributed computing
support and also have versioning support for manag-
ing multiple versions of code.

A component-based OS API is constructed entirely

of software components, each modeling an OS
resource. To facilitate independence, components nec-
essarily encapsulate state and functionality. The com-
ponent modeling an OS resource will therefore contain
all necessary access and manipulation functions. This
encapsulation allows the OS resource to be instanti-
ated on a remote machine and also provides a natural
unit for API versioning.

Only the API must be component-based. The under-
lying OS can be monolithic, a microkernel, or com-
ponent-based. A component-based API controls access
to the OS, which is sufficient to provide API version-
ing and to expose OS resources outside the host
machine (remoting).

Our component-based OS proxy (COP), a proto-
type component-based API, acts like a traffic cop,
directing OS requests to the appropriate version or
resource location. COP currently targets the Win32
API and is implemented on top of Windows NT 4.0,
covering approximately 350 Win32 calls. COP intro-
duces a minimum of overhead in the local case while
providing outstanding OS support for evolutionary
development and distributed applications.

COMPONENT NUTS AND BOLTS
A component provides functional building blocks

for a complex application:

• An interface is a contract that specifies how a
component’s functionality is accessed. Interfaces
take the form of function or method calls, includ-
ing parameter and return types.

• A component instance is a component that has
been loaded into memory and is accessible by a
client. All communication among component
instances occurs through interfaces. Component
software fundamentally maintains a strict separa-
tion between the interface and the implementa-

Constrained by the need to support legacy applications, current APIs tend
to be large, rigid, and focused on a single host machine. Component-based
APIs promise to solve these problems through strong versioning
capabilities and support for distributed applications.

Cover Feature

Component-Based APIs
for Versioning 
and Distributed
Applications

Robert J. Stets
University of
Rochester

Galen C.
Hunt
Microsoft
Research

Michael L.
Scott
University of
Rochester

Co
ve

r F
ea

tu
re



tion, which is a key requirement because it forces
components to encapsulate their functionality and
guarantee component independence.

Several methodological concepts facilitate reuse in
component software:

• Independence allows components to be com-
posed without introducing implicit interactions,
which may lead to subtle program errors. 

• Polymorphism allows components with differ-
ing implementations of the same interface to be
interchanged transparently. Allowing one com-
ponent to substitute for another, as long as it pro-
vides equal or greater functionality than the
original, enhances the ability to compose.

• Finally, late binding (delaying the point at which
component choices are bound) allows an appli-
cation to choose components dynamically.

Component infrastructures also contribute to reuse:
All popular infrastructures provide mechanisms that
allow development in multiple languages and execu-
tion across multiple hardware platforms.

Two of the more popular component infrastruc-
tures are Microsoft’s Component Object Model
(COM)2 and the Object Management Group’s
Common Object Request Broker Architecture
(CORBA).3 Although originally motivated by differ-
ent goals, these infrastructures have largely converged.
Both promote software reuse, independent of devel-
opment language, in both single-machine and dis-
tributed computing environments.

We built COP on top of COM.

Component Object Model
Microsoft developed COM to address application

interaction. It introduced distributed COM (DCOM)
extensions4 to support distributed computing.

COM employs a binary standard to provide lan-
guage independence. It implements component inter-
faces as a table of function pointers, which are called
vtables because they mimic the format of C++ virtual
function tables.

References to component instances are called inter-
face pointers. Interface pointers are actually double-
indirect pointers to the vtable. The extra level of
indirection is an implementation convenience. For
example, an implementation can attach useful infor-
mation to the interface pointer that will then be shared
by all references to the interface.

In keeping with component software methodology,
COM maintains strict separation between a compo-
nent interface and its implementation, addressing only
the interface. Interfaces can be defined through single
inheritance. Only the interface is inherited; the imple-
mentation is entirely separate. COM’s real power
comes from the ability of COM components to imple-
ment multiple interfaces regardless of inheritance hier-
archy.

Globally unique class IDs (CLSIDs) identify COM
components. Similarly, globally unique interface IDs
(IIDs) specify all interfaces.

All COM interfaces must inherit from the IUnknown
interface. IUnknown contains a QueryInterface()
method and two methods for memory management.
For our discussion, QueryInterface() is the most impor-
tant. A client must use this method to obtain a specific
interface pointer from a component instance.

July 1999 55

Other Directions for 
Operating Systems

Kernel call interposition is the process
of intercepting kernel calls and rerouting
them to pieces of extension code that add
or modify OS functionality.

COP uses interposition techniques, but
our goal is a new style of API that provides
versioning and distributed computing ben-
efits. A general interposition system should
be built on top of COP. Interposition
agents1 and SLIC2 are full-featured inter-
position systems.

Other research efforts (for example,
MMLite3 and Jbed4) are considering entirely
component-based OSs, which could be
assembled dynamically to reflect the execu-
tion environment. To our knowledge, none

of this work addresses API versioning or the
naming of remote OS resources. These
efforts require that the kernel be built from
scratch, whereas our work can be easily
applied to existing commercial OSs.

The work closest to our own is the
Inferno distributed OS.5 In this system, all
OS resources are named and manipulated
like files. This unique approach provides
the advantage of a global, hierarchical
namespace for all resources, with the dis-
advantage that the natural semantics for
manipulating resources may not be main-
tained.

References
1. M. Jones, “Interposition Agents: Trans-

parently Interposing User Code at the Sys-

tem Interface,” Proc. 14th Symp. Oper-
ating Systems Principles, ACM Press,
New York, 1993, pp. 80-93.

2. D. Ghormley et al., “SLIC: An Extensibil-
ity System for Commodity Operating Sys-
tems,” Proc. Usenix Ann. Tech. Conf.,
Usenix, Berkeley, Calif., 1998, pp. 39-48.

3. J. Helander and A. Forin, “MMLite: A
Highly Componentized System Architec-
ture,” Proc. Eighth ACM SIGOPS Euro-
pean Workshop, ACM Press, New York,
1998, pp. 6-17.

4. Jbed Whitepaper: Component Software
and Real-Time Computing, tech. report,
Oberon Microsystems, Zürich, 1998.

5. S. Dorward et al., Bell Labs Tech. J.,
Lucent Technologies Inc., Murray Hill,
N.J., 1997.



56 Computer

A client instantiates a component instance by call-
ing the COM CoCreateInstance() function and spec-
ifying the desired CLSID and IID, and the COM
runtime system returns a pointer to the desired inter-
face. Given an interface pointer, the client can use
QueryInterface() to determine if the component also
supports other interfaces.

By convention, COM holds that all published inter-
faces are immutable in both syntax (interface method
names and parameters) and semantics. If a change is
made to an interface, a new interface with a new IID
must be created. Immutable interfaces provide a very
effective versioning mechanism. A client can request
a specific interface and be assured that it supports the
desired syntax and semantics.

Under COM, components can be instantiated in
three different execution contexts: directly in the appli-
cation’s process (in-process), in another process on the
same machine (local), or on another machine (remote).
The ability to access instances regardless of execution
context is called location transparency. COM pro-
vides location transparency by requiring that all
instances be accessed through the vtable.

For in-process instances, the component implemen-
tation is usually held in a dynamically linked library
(DLL) and is loaded directly into the process’s address
space. The vtable then points directly to the compo-
nent implementation. For local or remote components,
the component implementation is loaded into another
process, and the application must engage in some type
of interprocess communication (IPC). To handle these
cases, COM instantiates a proxy/stub pair to perform
the communication, as shown in Figure 1. The vtable
is set to point directly to the proxy.

Before an IPC mechanism can be used, data must
be packaged into a suitable transmission format (mar-
shaling). The proxy is responsible for marshaling data
and sending the data and the request to the compo-
nent instance, where the stub receives the request,
unmarshals the data, and invokes the appropriate
method on the instance. The process is reversed for
any return values.

A system programmer can customize the IPC mech-
anism. Otherwise COM defaults to using an opti-
mized remote procedure call for the local case. For
remote cases, COM uses an extension of the Open
Group’s Distributed Computing Environment remote
procedure call (DCE RPC) facility.5

COM, CORBA, and a component-based API
COM and CORBA have many fundamental simi-

larities, especially in the area of distributed computing.
For remote communication, CORBA uses an architec-
ture that is very similar to COM and offers essentially
the same capabilities for remote component instances. 

However, the systems differ greatly in their ver-
sioning capabilities. One CORBA implementation,
IBM’s System Object Model (SOM), builds interface
specifications at runtime,6 so interface methods can
be added or reordered but not removed. SOM’s strat-
egy does not address semantic changes.

CORBA repository IDs could be used to uniquely
identify interfaces in much the same manner as COM
IIDs. However, repository IDs are only checked when
an instance is created, not when an instance reference
is obtained directly from another component instance.
A more fundamental problem is that CORBA’s con-
ventional object model merges all inherited interfaces
into the same name space, so it is impossible to simul-
taneously support multiple interface versions unless
all method signatures are different. A component-
based API built on top of CORBA would not be able
to offer very robust versioning capabilities.

COP IMPLEMENTATION: 
FACTORING A MONOLITHIC API

The first step in constructing a component-based
API is to split, or factor, the monolithic API into a set
of interfaces. After factoring, the entire API should be
modeled by the set of interfaces, with individual and
independent OS resources and services modeled by
independent interfaces. A good factoring scheme pro-
duces interfaces that are appropriately independent
and provides the benefits of clarity, effective version-
ing, and clean encapsulation of resources.

Here we describe our factoring strategy for the
Win32 API (the application of our strategy to a 1,000+
subset of Win32 is available elsewhere7). However,
our strategy and techniques should be generally
applicable to monolithic, procedural APIs.

Our factoring strategy involves three steps:

1. We factor the monolithic API calls into groups on
the basis of functionality. For example, our strat-
egy places all graphical window calls in an
IWin32Window group (the IWin32 prefix denotes
an interface to a Win32 API component). 

Application

Network
connection

Component
instanceStubProxy

Figure 1. For a call to a remote component instance, the proxy marshals data arguments. The transport mechanism sends the request and data across
the network. At the server, the stub receives the request, unmarshals the data, and invokes the requested interface function. The process is reversed for
return values.



2. We then factor the calls in each group into three sub-
groups, according to their effect on OS resources.
A call’s effect is easily identifiable through its param-
eters and return value. A loaded OS resource is
exported to the application as an opaque value
called a kernel handle. Calls that create kernel han-
dles—that is, OS resources—are moved to a factory
interface, and calls that query or manipulate these
kernel handles are moved to a handle interface. Any
calls that do not directly involve kernel handles are
moved to a utility interface.

3. We further refine the factorization. For example,
the first two steps do not capture a situation in
which a monolithic API contains a set of calls that
act on a number of different OS resources. We place
the synchronization calls in an IWin32SyncHandle
interface, the process calls in IWin32Process-
Handle, and the file calls in IWin32FileHandle. For
correctness, the process and file interfaces should
also include the synchronization calls. Because the
process and file handles can be thought of as logi-
cally extending the functionality of the synchro-
nization handle, we can model this relationship
through interface inheritance: Both IWin32Process-
Handle and IWin32FileHandle inherit from the
IWin32SyncHandle interface.

Figure 2 is an example of how we factored the
Win32 window functions, focusing on a small but rep-
resentative subset (six calls) of the 130+ window calls.

The AdjustWindowRect() call determines the nec-
essary size of a window given specific settings. The
second call, CreateWindow (), creates a window. The
remaining calls execute a dialog box, flash the win-
dow’s title bar, query various window properties, and
return the current text in the window title bar.

These calls all operate on windows, so we first fac-
tor them to a windows group. Next, we further fac-
tor them on the basis of their use of kernel handles
(HANDLE in Figure 2). Finally, we further factor the
IWin32WindowHandle into IWin32WindowState
and IWin32WindowProperty interfaces to make the
API easier to read. These interfaces do not extend the
IWin32WindowHandle interface but compose it. We
model this relationship through interface aggregation.
Also, we have factored the dialog calls into their own
interface since the dialogs are logically extensions of
plain windows. Again, this relationship is modeled
through interface inheritance.

Properly applied, this factorization strategy will pro-
duce a set of interfaces, each with a tightly defined set
of calls to access the appropriate underlying OS
resource. The factorization will improve API clarity by
clearly defining the specific methods for accessing each
OS resource and the relationship between API calls.
Versioning capabilities will also be improved, since
modifications can be isolated within the affected inter-
faces. Finally, a good factorization inherently encapsu-
lates functionality (and the associated state), which
facilitates the remote instantiation of OS resources.

COP RUNTIME SYSTEM
At runtime, the application accesses the OS through

the COP component layer (Figure 3). COP compo-
nents implement the interfaces described above and,
like them, can be roughly classified as factories, han-
dles, or utilities.

Most applications will instantiate factory compo-
nents during initialization and then use the factories
to create OS resources during execution. A basic
implementation of a factory component first invokes
the OS to create the desired resource. The OS returns

July 1999 57

BOOL AdjustWindowRect(RECT *, DWORD, BOOL);
HANDLE CreateWindow(...);
int DialogBoxParam(...,HANDLE, ...);
int FlashWindow(HANDLE, ...);
HANDLE GetProp(HANDLE, ...);
int GetWindowText(HANDLE,...);

IWin32WindowFactory
CreateWindow()

IWin32Utility
AdjustWindowRect()

IWin32WindowHandle
FlashWindow()

IWin32WindowState
GetWindowText()

IWin32WindowProperty
GetProp()

IWin32DialogHandle
DialogBoxParam()

Final factorization:

API subset:
Figure 2. Factoring of
a simple subset of the
Win32 API. Proposed
interfaces are listed in
bold and prefixed with
“IWin32.” 



58 Computer

a kernel handle to identify the resource. This handle,
however, is only valid on the local machine. To enable
remote access to the resource, the factory also creates
an instance of the associated handle component and
stores the kernel handle in the instance’s private state.
Then, rather than returning the kernel handle, the fac-
tory returns a pointer to the instance of the handle
component. The application makes subsequent
accesses to the resource through the instance pointer.

Utility components do not directly manipulate
loaded kernel resources but provide generic services.
These components can be instantiated whenever nec-
essary, anywhere in the system. Once they are instanti-
ated, all accesses will occur through the instance pointer.

The instance pointer provides COP with one of its
main advantages over typical modern OS APIs.
Instance pointers uniquely name the loaded resource
throughout the system and act as a gateway to the
underlying remoting mechanism (COP/DCOM). With
COP, applications can create resources throughout the
system and subsequently use the instance pointer to
access them in a location-transparent manner.

Versioning
COP’s other main advantage over modern OS

APIs—its versioning capability—follows directly from
our factoring strategy and COM’s robust versioning
mechanism, including immutable interfaces and glob-
ally unique IDs.

To mark specific interfaces, an application can store
the appropriate IDs in its data segment. Alternatively,
the OS binary format could be extended to support
static binding to a dynamic interface in the same way
that current OSs support static binding to DLLs (or
shared libraries). With such an extension, an applica-
tion binary would declare a set of interfaces to which
it should bind instead of a set of DLLs. Of course,
COP-aware applications can query dynamically for
special interfaces.

Location transparency
One of the main contributions of COP is the abil-

ity to instantiate OS resources anywhere throughout

a distributed system, as shown in Figure 4. In-process
components experience only the added overhead of
an indirect function call. In the local case, a COM
proxy/stub pair is used to marshal data across the
process boundaries. (The local case is less efficient than
the in-process case but provides better fault isolation.)
The remote case uses the same general proxy/stub
architecture. However, in the remote case, COP also
includes an optional proxy manager that can be used
to optimize remote communication. 

A proxy manager, for example, caches remote data
in an effort to avoid unnecessary communication.
COP caches information to improve the redrawing of
remote windows, for example. The Win32 call
BeginPaint() signals the beginning of a redraw opera-
tion by creating a new drawing context resource. To
be available remotely, this resource must be wrapped
by a COP component. Rather than creating a new
component instance on each redraw operation, COP
caches a component instance in the proxy manager
and reuses the instance for the redraw wrapper.

Although hidden from the application, extra state
is obviously required to maintain location trans-
parency. For example, handle components must store
the value of their associated kernel handle, and
optional proxy manager implementations may also
require extra state. COM maintains this state auto-
matically; COP components often have little extra
state to maintain.

In a less common case, some components need extra
state to maintain location-transparent results. The dif-
ferent execution contexts—in-process, local, or
remote—may cause some calls to execute differently
(of course we try to maintain the same operation as
the normal Win32 API). For example, the call
RegisterClass() registers a window class for use within
a process and returns an error if the class is already
registered. A naïve component implementation could
report this error incorrectly in some cases. In COP,
this call falls under the IWin32WindowUtility inter-
face (since it does not target kernel handles). 

Consider the case where two applications try to reg-
ister the same class on the same remote machine. To
access RegisterClass(), both applications would create
an instance of IWin32WindowUtility. Since these
instances will both be remote and on the same machine,
COM creates the instances inside the same process to
optimize performance. Note that the instances are sep-
arate COM instances but share the same process. The
first application to register the class will succeed, but
the second application will fail since the class has
already been registered inside the COM process. 

In attempting to mimic standard Win32 operation,
this error would be incorrect since the application
processes are separate. In COP, the IWin32Window-
Utility implementation maintains a list of classes each

Operating system

Application

COP component layer

Legacy translation layer

Figure 3. The COP
runtime system con-
sists of a component
layer that presents
the OS API and an
optional legacy trans-
lation layer available
for Win32
applications.



process has registered. The implementation can then
determine if the caller has already registered the spec-
ified class and avoid spurious errors.

Obstacles to remote access of OS resources
OS callback functions are a significant obstacle to

remote execution. Numerous API functions contain
callback functions that the caller specifies and the OS
invokes on certain events. This is a problem when the
caller—that is, the location of the callback function—
is on a different machine from the OS invoking the
callback. COP solves this in the same way that it
remotes OS resources: It wraps all callback functions
with components. Instead of passing the address of
the callback function, COP passes a pointer to the
component instance wrapping the callback, which the
OS can then use to invoke the callback function in a
location-transparent manner.

Asynchronous events are the other main obstacle
to remote execution. Some OS resources—such as
windows, synchronization objects, and asynchronous
I/O—must respond to asynchronous events. In all

these cases, the OS assumes all involved parties reside
on the same machine. COP therefore needs to provide
extra support to remote these types of resources.

COP accomplishes this by creating a special event
agent on the remote machine that is responsible for
fielding asynchronous events and forwarding them to
the client application. For example, COP supports
remote windows. Windows must respond to asyn-
chronous events such as mouse clicks and redraw
events. In the normal case, the OS invokes an appli-
cation-specified window procedure, a special case of
a callback routine, on each window event. At window
creation time, COP wraps the application’s window
procedure in a component instance. This wrapper
allows the window procedure to be subsequently
invoked in a location-transparent manner.

COP then creates an IWin32WindowHandle
instance on the remote machine. This instance creates
the window, stores a pointer to the component wrap-
ping the application’s window procedure, and attaches
its own window procedure to act as an event agent.
This agent forwards events back to the client simply

July 1999 59

Application

In-process
component

instance

Proxy

Stub

Proxy
manager
(optional)

ProxyProcess boundary

Machine boundary

Operating
system

Local
component

instance

Operating
system

Stub

Remote
component

instance

Operating
system

Figure 4. COP is able
to instantiate OS
resources in several
locations: in-process,
local, or remote. The
client application can
still access the
resources in a
location-transparent
manner through the
proxy manager, proxy,
and stub components.



60 Computer

by invoking methods in the stored component
wrapper.

COM delivers remote function call requests
to COP components through a standard mes-
sage queue. An idle component instance sim-
ply spins on the message queue, waiting for
function call requests. Fortuitously, window
events are delivered through the same message
queue. In the course of polling for incoming
requests, the IWin32WindowHandle instance
will also discover pending window events and
can then use the stored instance pointer to send
the messages to the application’s window pro-
cedure for processing.

Synchronization and asynchronous I/O can be han-
dled in the same manner—an event agent can be
instantiated on the remote machine. The agent will
wait for the desired event and then forward notifica-
tion to the application via a callback component.

Legacy translation layer
Our ultimate intention is for applications to write

directly to the COP API. To ease the transition and to
support legacy applications that cannot be rewritten,
we have built an optional COP translation layer
(shown in Figure 3). This layer is responsible for inter-
cepting the procedural Win32 calls and translating
them to COP. To help minimize translation overhead,
we have designed the COP interface methods to use
the same parameters as their Win32 counterparts.

Runtime interception is performed with the Detours
package,8 which has the ability to instrument an appli-
cation’s binary file by adding a specified DLL to the
start of the list loaded at program initialization. This
ensures that the specified DLL is the first loaded by
the application.

We use Detours to place our COP start-up DLL at
the start of the list. The start-up DLL then uses the
Detours package to intercept and reroute Win32 calls
to the legacy translation layer. Detours performs the
interception by rewriting the first few instructions of a
subroutine so that upon entrance, control is automat-
ically transferred to a user-defined detour function. The
replaced instructions are combined with a jump
instruction to form a trampoline that can serve as the
entrance to the original subroutine. The detour func-
tion can call the trampoline code to invoke the origi-
nal subroutine, in our case the original Win32 call.

The legacy translation layer is responsible for cre-
ating the COP factory and utility instances as neces-
sary (the handle instances are created by the factory
instances). The layer of course caches pointers to inter-
faces to avoid unnecessary overhead. This approach
works well for existing, single-machine Win32 appli-
cations and also allows the functionality of these appli-
cations to be transparently extended. 

The translation layer can be configured to automat-
ically create resources on remote machines. For exam-
ple, all window resources can be started on a remote
machine, very similar to X Window9 remote displays.
We have used this feature to remote the display of sev-
eral existing Win32 applications. A remote display,
however, only leverages a small amount of COP’s most
powerful feature—the ability to trivially connect to
resources scattered throughout a distributed system. 

The design of the translation layer is relatively
straightforward, but one significant problem arises.
Our translation layer intercepts all invocations of a
specified call, even if the call is invoked from within
another Win32 call, which could cause reentrance
problems. The legacy translation layer tracks when an
application is inside a Win32 call and avoids COP
handling if an infinite recursion would start. 

COP FULFILLS THE PROMISE
The initial goal for COP is to support the develop-

ment of the Microsoft Research Millennium system
(http://research.microsoft.com/research/sn/Millennium).
Millennium will monitor the execution of a distrib-
uted component-based application and intelligently
distribute the component instances to maximize per-
formance. As components are distributed throughout
the system, they still must be able to access remote OS
resources. COP provides that capability. 

To this end, we have developed remote access sup-
port for the registry, windows, graphic device inter-
face (the low-level drawing routines), and file APIs.
This subset consists of approximately 350 calls,
enough to support the development of Millennium,
including support for legacy applications provided by
a legacy translation layer.

The Millennium system seeks to maximize appli-
cation performance, so COP should not introduce sig-
nificant overhead. To gauge the overhead, we
performed two benchmark tests on a Gateway 2000
machine with a Pentium II processor running at 266
MHz. The machine has a 512-Kbyte off-chip cache
and 64 Mbytes of RAM. Our benchmark timings were
calculated based on the Win32 QueryPerformance-
Counter() call, which has a resolution of approxi-
mately one microsecond on our machine.

Our first benchmark focused on estimating the over-
head of our legacy translation layer. We measured the
time required to call through the legacy translation
layer to a COP component instance. For an in-process
COP component, the call can be executed in 1.3
microseconds. If the component instance is instanti-
ated as a local server (in another process), the call time
jumps to 200 microseconds due to the crossing of
process boundaries.

The second test was performed to examine the full
overhead on the Win32 RegEdt32 application. The

Component software
provides excellent

support for 
the evolutionary
development of 
software and 

for distributed 
computing. 



plain application (with no COP overhead) starts in
0.833 seconds; using COP in-process components, it
starts in 1.118 seconds, a 34 percent increase. A large
amount of this overhead is due to the cost of instan-
tiating the components, which would be amortized in
a normal situation. Using COP local components, the
application starts in 5.296 seconds, with the increase
due to the frequent process boundary crossings.

We did not benchmark COP with remote compo-
nents since the choice of network will have a strong
influence on the results. These results show that in-
process COP components add an acceptable amount
of overhead while providing benefits in versioning
management. When COP components are moved to
remote machines, the overhead will be much higher,
but network transmission time will be the dominant
concern. Nevertheless, the functionality of the system
will be much greater: An application can easily access
scattered, remote OS resources. 

Component software provides excellent support
for the evolutionary development of software
and for distributed computing. With an OS API

based on components, a system can gain considerable
leverage in these areas. The OS can export different
versions of the API, allowing the API to be modified
without jeopardizing legacy applications. Instead, the
support for legacy applications can be dynamically
loaded. By modeling the OS resources as components
in the API, a global name space is created. An appli-
cation can instantiate and manipulate any number of
resources scattered throughout a distributed system.
Natural access semantics for the remote resources is
maintained by virtue of the encapsulation of func-
tionality inherent in components. Applications will
no longer have to rely on ad hoc methods to access
remote resources.

Future work on COP will focus on increasing
coverage of the Win32 API. We are also interested
in methods to provide consistent, global view and
management of resources throughout a cluster as
well as fault tolerance and security throughout the
system. ❖

Acknowledgments
The AST Toolkit from the Semantics-Based Tools

Group at Microsoft Research was instrumental in
building our component-based API.

References
1. C. Szyperski, Component Software: Beyond Object-Ori-

ented Programming, ACM Press, New York, 1998.
2. The Component Object Model Specification, Microsoft

Corp. and Digital Equipment Corp., Redmond, Wash., 1995.

3. The Common Object Request Broker: Architecture and
Specification, Rev. 2.0., Object Management Group,
Framingham, Mass., 1996.

4. Distributed Component Object Model Protocol, Ver.
1.0, Microsoft Corp., Redmond, Wash., 1998.

5. D. Hartman, “Unclogging Distributed Computing,”
IEEE Spectrum, May 1992, pp. 36-39.

6. I.R. Forman et al., “Release-to-Release Binary Compat-
ibility in SOM,” Proc. 10th Ann. Conf. Object-Oriented
Programming Systems, Languages, and Applications,
ACM Press, New York, 1995, pp. 426-438.

7. R. Stets, G.C. Hunt, and M.L. Scott, Component-Based
Operating System APIs: A Versioning and Distributed
Resource Solution, Tech. Report MSR-TR-99-24,
Microsoft Research, Redmond, Wash., June 1999.

8. G. Hunt, Detours: Binary Interception of Win32 Func-
tions, Tech. Report MSR-TR-98-33, Microsoft
Research, Redmond, Wash., 1998.

9. R. Scheifler and J. Gettys, “The X Window System,” ACM
Trans. Graphics, Apr. 1986, pp. 79-109.

Robert J. Stets is a PhD candidate in the Computer
Science Department at the University of Rochester.
His research interests are in cluster-based operating
systems and parallel computer architecture. Stets
received a BSE in electrical engineering from Duke
University and an MS in computer science from the
University of Rochester.

Galen C. Hunt is a researcher at Microsoft Research.
His research interests include inherently distributed
systems, binary rewriting techniques, and application
runtime environments. Hunt received a BS in physics
from the University of Utah and a PhD in computer
science from the University of Rochester.

Michael L. Scott is chair of the Computer Science
Department at the University of Rochester, where he
is the coleader of the Cashmere Shared Memory Pro-
ject. His research interests include operating systems,
programming languages, and program development
tools for parallel and distributed computing. Scott
received a PhD in computer science from the Univer-
sity of Wisconsin, Madison.

Contact Stets and Scott at the Department of Com-
puter Science, University of Rochester, Rochester, NY
14627, {stets, scott}@cs.rochester.edu. Contact Hunt
at Microsoft Research, One Microsoft Way, Red-
mond, WA 98052, galenh@microsoft.com.

July 1999 61


