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Abstract

Symmetric multiprocessors (SMPs) connected with low-latency
networks provide attractive building blocks for software dis-
tributed shared memory systems. Two distinct approaches have
been used: the fine-grain approach that instruments application
loads and stores to support a small coherence granularity, and
the coarse-grain approach based on virtual memory hardware
that provides coherence at a page granularity. Fine-grain sys-
tems offer a simple migration path for applications developed
on hardware multiprocessors by supporting coherence protocols
similar to those implemented in hardware. On the other hand,
coarse-grain systems can potentially provide higher performance
through more optimized protocols and larger transfer granulari-
ties, while avoiding instrumentation overheads. Numerous stud-
ies have examined each approach individually, but major differ-
ences in experimental platforms and applications make compar-
ison of the approaches difficult.

This paper presents a detailed comparison of two mature sys-
tems, Shasta and Cashmere, representing the fine- and coarse-
grain approaches, respectively. Both systems are tuned to run
on the same commercially available, state-of-the-art cluster of
AlphaServer SMPs connected via a Memory Channel network.
As expected, our results show that Shasta provides robust per-
formance for applications tuned for hardware multiprocessors,
and can better tolerate fine-grain synchronization. In contrast,
Cashmere is highly sensitive to fine-grain synchronization, but
provides a performance edge for applications with coarse-grain
behavior. Interestingly, we found that the performance gap be-
tween the systems can often be bridged by program modifica-
tions that address coherence and synchronization granularity. In
addition, our study reveals some unexpected results related to the
interaction of current compiler technology with application in-
strumentation, and the ability of SMP-aware protocols to avoid
certain performance disadvantages of coarse-grain approaches.

1 Introduction

Clusters of symmetric multiprocessors (SMP) provide a power-
ful platform for executing parallel applications. To ease the bur-
den of programming such clusters, software distributed shared
memory (S-DSM) systems support the illusion of shared mem-
ory across the cluster via a software run-time layer between the
application and the hardware. This approach can potentially pro-
vide a cost-effective alternative to larger hardware shared mem-

ory systems for executing certain classes of workloads.
Most S-DSM systems use virtual memory hardware to detect

access to data that is not available locally. Hence, data is com-
municated and kept coherent at the coarse granularity of a page
(e.g., 4-16KB). Early page-based systems [13] suffered from
false sharing that arises from fine-grain sharing of data within
a page. More recent page-based systems [2, 3, 9, 12] address
this issue by employing relaxed memory consistency models that
enable protocol optimizations such as delaying coherence opera-
tions to synchronization points and allowing multiple processors
to concurrently write to a page. Page-based systems may still
experience overheads due to frequent synchronization or sharing
at a fine granularity. Furthermore, the aggressive relaxed mem-
ory models and the required use of predefined synchronization
primitives limit portability for certain applications developed on
hardware multiprocessors [16].

As an alternative, a few S-DSM systems [15, 18] have ex-
plored supporting data sharing and coherence at a finer granu-
larity (e.g., 64-256 bytes). Fine-grain access is supported by in-
strumenting the application binary at loads and stores to check
if the shared data is available locally. Such systems provide the
highest degree of transparency since they can correctly run all
programs (or even binaries) developed for hardware multipro-
cessors by virtue of supporting similar memory models [16]. In
addition, this approach reduces false sharing and the transmis-
sion of unnecessary data, both of which are potential problems in
page-based systems. Nevertheless, page-based systems can po-
tentially benefit from more optimized protocols and larger trans-
fer granularities, without incurring the software checking over-
heads associated with fine-grain systems.

The recent prevalence of low-cost SMP nodes has led to ex-
tensions to software DSM designs for supporting shared memory
across SMP clusters. The key advantage of using SMP nodes
comes from supporting data sharing within a node directly via
the cache coherence hardware, and only invoking the software
protocol for sharing across nodes. Several studies have demon-
strated significant gains from exploiting SMP-aware protocols in
both coarse-grain [6, 14, 20] and fine-grain [17] S-DSM systems.

As described above, there are important trade-offs between
coarse-grain, page-based and fine-grain, instrumentation-based
S-DSM systems, both in the performance and the generality of
the shared-memory programming model. Even though there are
a large number of papers that study each approach individually,
a direct comparison is difficult due to major differences in the
experimental platforms, applications, and problem sizes used in
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the various studies. Furthermore, only a few studies are actually
based on SMP-aware protocols.

This paper presents a detailed comparison of the fine- and
coarse-grain approaches based on the same hardware platform
and applications. We use two mature systems, Shasta [17] and
Cashmere [20], both of which are highly efficient and tuned to
run on a state-of-the-art cluster of Digital AlphaServer multipro-
cessors connected through the Memory Channel network [8]. We
study a total of thirteen applications: eight SPLASH-2 applica-
tions [21] that have been developed for hardware multiprocessors
and five applications that were developed for page-based S-DSM
systems. The first part of our study compares the performance of
the unmodified applications on the two systems. This part allows
us to evaluate the portability of applications developed for hard-
ware multiprocessors and to measure the performance gap on
applications developed for page-based systems. The second part
of the study analyzes the performance of the same applications
after modifications that improve their performance on either sys-
tem. To ensure a fair comparison, we undertook this study as a
collaborative effort between the Cashmere and Shasta groups.

Our study quantifies a number of expected trends. Shasta pro-
vides robust and often better performance for applications writ-
ten for hardware multiprocessors and is better able to tolerate
fine-grain behavior. Cashmere is highly sensitive to the presence
of fine-grain synchronization, but provides a performance edge
for applications with coarse-grain behavior. However, we found
that the performance gap between the systems can be bridged by
program modifications that take coherence granularity into ac-
count.

Our study also presents several unexpected results. One in-
teresting result is that Cashmere, due to its SMP-aware imple-
mentation, shows very good performance on certain applications
known to have a high degree of write-write false sharing at the
page level. The regular data layout in these applications leads
to page-aligned data boundaries across nodes, thus confining the
write-write false sharing to processes on the same SMP node
and avoiding the expected software overheads. Another inter-
esting result is that fine-grain false sharing can sometimes favor
Cashmere relative to Shasta, due to Cashmere’s ability to delay
and aggregate coherence operations. Finally, the instrumentation
overheads in Shasta were more of a determining factor than we
expected in a few cases. This effect is partly due to continued
improvements in the Alpha compiler that lead to more efficient
code, thus increasing the relative overhead of instrumentation
code in some cases.

The only relevant study that we are aware of is by Zhou et
al. [22], which also examines performance tradeoffs between
fine- and coarse-grain software coherence. However, several
critical differences between the studies lead to differing perfor-
mance results and a number of novel observations in our work.
Section 5 contains a detailed comparison of the two studies.

The remainder of this paper is organized as follows. Section 2
presents an overview of the two systems that we compare in this
paper. The experimental environment is described in Section 3.
Section 4 presents and analyzes the results from our comparison.
Finally, we present related work and conclude.

2 Overview of Cashmere and Shasta

This section presents a brief overview of Shasta and Cashmere,
and also discusses some portability issues for the two systems.
More detailed descriptions of the systems can be found in previ-
ous papers [12, 15, 16, 17, 20].

2.1 Shasta

Shasta is a fine-grain software DSM system that relies on in-
line checks to detect misses to shared data and service them in
software. Shasta divides the shared address space into ranges of
memory called blocks. All data within a block is always fetched
and kept coherent as a unit. Shasta inserts code in the applica-
tion executable at loads and stores to determine if the referenced
block is in the correct state and to invoke protocol code if neces-
sary. A unique aspect of the Shasta system is that the block size
(i.e. coherence granularity) can be different for different applica-
tion data structures. To simplify the inline code, Shasta divides
the blocks into fixed-size ranges called lines (typically 64-256
bytes) and maintains state information for each line. Each inline
check requires about seven instructions. Shasta uses a number
of optimizations to eliminate checks, reduce the cost of check-
ing loads, and to batch together checks for neighboring loads and
stores [15]. Batching can reduce overhead significantly (from a
level of 60-70% to 20-30% overhead for dense matrix codes) by
avoiding repeated checks to the same line.

Coherence is maintained using a directory-based invalidation
protocol. A home processor is associated with each block and
maintains a directory for that block, which contains a list of the
processors caching a copy of the block. The Shasta protocol
exploits the release consistency model [7] by implementing non-
blocking stores and allowing reads and writes to blocks in pend-
ing states.

When used in an SMP cluster, Shasta exploits the underly-
ing hardware to maintain coherence within each node [17]. The
SMP-aware protocol avoids race conditions by obtaining locks
on individual blocks during protocol operations. However, such
synchronization is not used in the inline checking code, since
it would greatly increase the instrumentation overhead. Instead,
the protocol selectively sends explicit messages between proces-
sors on the same node for a few protocol operations that can lead
to race conditions involving the inline checks. Because Shasta
supports programs with races on shared memory locations, the
protocol must correctly handle various corner cases that do not
arise in protocols (such as Cashmere’s) that only support race-
free programs [16].

Messages from other processors are serviced through a polling
mechanism in both Shasta and Cashmere because of the high
cost of handling messages via interrupts. Both protocols poll for
messages whenever waiting for a reply and on every loop back-
edge. Polling is inexpensive (three instructions) on our Memory
Channel cluster because the implementation arranges for a single
cachable location that can be tested to determine if a message has
arrived.

2.2 Cashmere

Cashmere is a page-based software DSM system that has been
designed for SMP clusters connected via a remote-memory-write



network such as the Memory Channel [20]. It implements a
multiple-writer, release consistent protocol and requires appli-
cations to adhere to the data-race-free or properly-labeled pro-
gramming model [1]. Cashmere requires shared memory ac-
cesses to be protected by high-level synchronization primitives
such as locks, barriers, or flags that are supported by the run-time
system. The consistency model implementation lies in between
those of TreadMarks [2] and Munin [3]. Invalidations in Cash-
mere are sent during a release and take effect at the time of the
next acquire, regardless of whether they are causally related to
the acquired lock.

Cashmere uses the broadcast capabilities of the Memory
Channel network to maintain a replicated directory of sharing
information for each page (i.e., each node maintains a complete
copy of the directory). Initially, shared pages are mapped only
on their associated home nodes. A page fault generates a request
for an up-to-date copy of the page from the home node. For a
page fault triggered by a write access, a twin (or pristine copy
of the page) is created and the page is added to a per-processor
dirty list (a list of all pages modified by a processor since the last
release). As an optimization, Cashmere moves the page into ex-
clusive mode if there are no other sharers, and avoids adding the
page to the dirty list. In addition, the current writer is automat-
ically made the new home node if the current home node is not
actively writing the page (home node migration).

At a release, each page in the dirty list is compared to its twin,
and the differences are flushed to the home node. After flushing
the differences, the releaser sends write notifications to the shar-
ers of each dirty page, as indicated by the page’s directory entry.
Finally the releaser downgrades write permissions for the dirty
pages and clears the list. At a subsequent acquire, a processor
invalidates all pages for which notifications have been received,
and which have not already been updated by another processor
on the node.

The protocol exploits hardware coherence to maintain consis-
tency within each SMP node. All processors in the node share
the same physical frame for a shared data page and hence see
all local modifications to the page immediately. The protocol
is also designed to avoid synchronization within a node when-
ever possible. For instance the protocol avoids the need for TLB
shootdown on incoming page updates by comparing the incom-
ing page to the twin if one exists, thereby detecting and applying
only the modifications made by remote nodes. This allows con-
current modifications to the page by other processes within the
node without the need for synchronization. The correctness of
this approach depends on the assumption that programs are race-
free.

2.3 Portability Issues

This section briefly discusses differences between Shasta and
Cashmere with respect to two important portability issues: (a)
the portability of applications to each software system, and (b)
the portability of the underlying software system to different
hardware platforms.

Application Portability. One of the key goals in the Shasta
design is to support transparent execution of applications (or
binaries) developed for hardware multiprocessors [16]. Shasta
achieves this transparency by supporting memory consistency
models that are similar to hardware systems. On the other hand,

Cashmere (like virtually all other page-based systems) opts for a
departure from the standard hardware shared-memory program-
ming model in order to achieve better performance. By requir-
ing the use of predefined high-level synchronization primitives
to eliminate shared-memory races and using aggressive relaxed
memory models, Cashmere can exploit numerous protocol opti-
mizations that are especially important for page-based systems.
However, this approach may require extra programming effort to
achieve a correct and efficient port of applications that depend on
the more general hardware shared-memory programming model.

System Portability. The Cashmere protocol makes heavy use
of Memory Channel features, including broadcasting and guar-
antees on global message ordering. For example, broadcasting
is used to propagate directory changes to all nodes. In addition,
during a release operation, the processor sending write notifica-
tions does not wait for acknowledgements before releasing the
lock. Rather, it relies on global ordering of messages to guar-
antee that causally related invalidations are seen by other pro-
cessors before any later acquire operation. It is difficult to es-
timate the performance impact if the protocol were changed to
eliminate reliance on broadcasting and total ordering, since the
protocol design assumed these network capabilities. In contrast,
Shasta was designed for a network that simply offers fast user-
level message passing and is therefore more portable to different
network architectures.

On the other hand, Shasta is tuned for the Alpha processor
and requires detailed knowledge of both the compiler and the
underlying processor architecture for efficient instrumentation.
It is again hard to estimate the performance impact of moving the
system to a significantly different processor architecture (e.g.,
Intel x86) where potentially a large variety of instructions can
access memory.

3 Experimental Methodology

This section describes our prototype SMP cluster and the appli-
cations used in our study.

3.1 Prototype SMP Cluster

Our SMP cluster consists of four DEC Alpha Server 4100 mul-
tiprocessors connected by a Memory Channel network. Each
AlphaServer 4100 has four 400MHz 21164 processors with
512MBytes of shared local memory. Each processor has 8K
on-chip instruction and data caches, a 96K on-chip second-level
cache (3-way set associative), and a 4MByte board-level cache
(direct-mapped with 64-byte lines). The individual processors
are rated at 12.1 SpecInt95 and 17.2 SpecFP95, and the system
bus has a bandwidth of 1 Gbyte/s.

The Memory Channel is a memory-mapped network that al-
lows a process to transmit data to a remote process without
any operating system overhead via a simple store to a mapped
page [8]. The one-way latency from user process to user process
over Memory Channel is about 3.5 microseconds, and each net-
work link can support a bandwidth of 70 MBytes/sec (with an ag-
gregate bandwidth of 100MBytes/sec). For Shasta, the roundtrip
latency to fetch a 64-byte block from a remote node (two hops)
via the Memory Channel is 18 microseconds, and the effective
bandwidth for large blocks is about 35 MBytes/s. For Cashmere,



the roundtrip latency for fetching an 8K page is less than 600
microseconds.

3.2 Applications

We present results for thirteen applications. The first eight are
taken from the Splash-2 [21] suite and have been developed and
tuned for hardware shared memory multiprocessors. The appli-
cations are Barnes-Hut, LU, Contiguous LU (CLU), Ocean, Ray-
trace, Volrend, Water-nsquared, and Water-Spatial. Five Splash-
2 applications are not used: four (Cholesky, FFT, Radiosity,
Radix) do not perform well on S-DSM and one (FMM) has not
been modified to run under Cashmere (but gets good speedup on
Shasta).�

The remaining five applications have been developed and
tuned for page-based S-DSM systems, and have been shown to
have good performance on such systems [12, 20]. These ap-
plications are Em3d, Ilink [4], Gaussian Elimination (Gauss),
Successive Over-Relaxation (SOR), and the Traveling Salesman
Problem (TSP). Descriptions of these applications can be found
in a previous paper [20].

4 Results

This section provides an in-depth comparison and analysis of
the performance of Shasta and Cashmere. We begin by present-
ing our overall results for the unmodified applications, followed
by a detailed analysis. We next consider minor application and
system configuration modifications that improve performance on
either Shasta or Cashmere.

4.1 Base Results for Unmodified Applications

Table 1 presents the sequential execution time (without any in-
strumentation or runtime library overhead), data set size, and
memory usage for each application. Wherever possible, we use
two dataset sizes — one relatively small, the other larger. This
allows us to study performance sensitivity to the size and align-
ment of data structures relative to the coherence block size. For
Shasta, the instrumentation overhead (not shown) increases the
single-processor execution time from 9% to 55%, with an aver-
age overhead of 27% across all applications and data set sizes.
The relative importance of this checking overhead decreases in
parallel executions due to the typical increase in communication
and synchronization overheads.

Figures 1 and 2 present the speedups on the two systems using
their base configurations for the thirteen applications on 8 and 16
processors (two and four SMP nodes each with four processors),
for the smaller and larger data sets, respectively. The base con-
figurations used are a uniform block size of 256 bytes for Shasta,
and a block size of 8192 bytes (the underlying page size) for
Cashmere. The applications were run without any modifications
(except for Barnes, as explained in the next section), and are built
with the native C compiler (-O2 optimization level). Application
processes are pinned to processors at startup. Execution times
are based on the best of three runs, and speedups are calculated

�FMM is not “race-free” and requires additional synchronization to work
correctly under Cashmere.

with respect to the times of the sequential application without
instrumentation or protocol overhead.

Overall, the results in Figures 1 and 2 show that Shasta pro-
vides more robust and better performance on average for the
eight Splash-2 applications (which have been developed for
hardware multiprocessors). Nonetheless, Cashmere provides
comparable or better performance on some of the Splash-2 ap-
plications, and performs much better than expected on a few ap-
plications that are known to exhibit a high degree of fine-grain
sharing (e.g., LU, OCEAN). In addition, Cashmere provides su-
perior performance for the other five applications, which have
been developed for page-based systems. The next section pro-
vides a detailed analysis of these results.

4.2 Detailed Analysis of Base Results

This section presents a detailed comparison and analysis of the
performance of the various applications on Shasta and Cash-
mere. To better understand the reasons for performance differ-
ences, we discuss the applications in groups based on their spa-
tial data access granularity and temporal synchronization gran-
ularity (similar to notions used by Zhou et al. [22]). Applications
with coarse-grain data access tend to work on contiguous regions
at a time, while fine-grain applications are likely to do scattered
reads or writes. The temporal synchronization granularity is re-
lated to the frequency of synchronization in an application on a
given platform. An application has fine-grain synchronization if
the average computation time between consecutive synchroniza-
tion events is not much larger than the cost of the synchronization
events themselves.�

Throughout this section, we will be referring to Figure 3,
which provides a breakdown of the execution time for Shasta
and Cashmere (labeled as SH and CSM, respectively) for each
of the applications at 16 processors on the smaller data set. Ex-
ecution time is normalized to that of the fastest system on each
application and is split into Task, Synchronization, Data Stall,
Messaging, and Protocol time. Task time includes the applica-
tion’s compute time, the cost of polling, and the cost of instru-
mentation in Shasta or page faults in Cashmere. Synchroniza-
tion time is the time spent waiting on locks, flags, or barriers.
Data Stall time measures the cumulative time spent handling co-
herence misses. Messaging time covers the time spent handling
messages when the processor is not already stalled. Finally, Pro-
tocol time represents the remaining overhead introduced by the
protocol.

Additional performance data is available in an extended ver-
sion of this paper [5], including detailed execution statistics for
the two systems (e.g., the number of messages, amount of mes-
sage traffic, and various protocol-specific measurements) and the
execution time breakdown for the larger data set.

4.2.1 Coarse-Grain Access and Synchronization

The applications in this group are CLU, Em3d, Gauss, SOR,
TSP, and Water-nsquared. Overall, Cashmere is expected to per-
form better on these applications given the coarse communica-
tion and synchronization granularities.

�Some applications that are classified as exhibiting coarse-grain synchro-
nization in Zhou et al.’s study [22] exhibit fine-grain behavior in our study
due to the faster processors of our platform.



Program Smaller Problem (Data Set) Size Time (sec.) Larger Problem (Data set) Size Time (sec.)
Barnes-Hut 32K bodies (39M) 15.30 131K bodies (153M) 74.69
LU 1024x1024, block: 16 (8M) 14.21 2048x2048, block: 32 (33M) 74.57
CLU 1024x1024, block: 16 (8M) 6.74 2048x2048, block: 32 (33M) 44.40
Ocean 514x514 (64M) 7.33 1026x1026 (242M) 37.05
Raytrace balls4 (102M) 44.89 — —
Volrend head (23M) 3.81 — —
Water-nsq 4K mols., 2 steps (3M) 94.20 8K mols., 2 steps (5M) 362.74
Water-sp 4K mols., 2 steps (3M) 10.94 8K mols, 2 steps (5M) 21.12
Em3d 64000 nodes (52M) 47.61 192000 nodes (157M) 158.43
Gauss 1700x1700 (23M) 99.94 2048x2048 (33M) 245.06
Ilink CLP (15M) 238.05 — —
Sor 3070x2047 (50M) 21.13 3070x3070 (100M) 28.80
TSP 17 cities (1M) 1580.10 — —

Table 1: Problem and data set sizes and sequential execution time of applications.
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Figure 1: Speedups for the smaller data set at 8 and 16 processors.
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Figure 2: Speedups for the larger data set at 8 and 16 processors (Raytrace, Volrend, TSP, and Ilink not included).
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Figure 3: Application execution time breakdown on the smaller data set for 16-processor runs.

CLU uses a tiled data partitioning strategy with each tile of the
matrix allocated as a contiguous chunk. Cashmere performs 1.7
times better on average than Shasta for CLU. Data is propagated
more efficiently under Cashmere given its large communication
granularity. As shown in Figure 3, the Cashmere data stall time
component is roughly half that of Shasta. The figure also shows
a higher ”Task” time under Shasta because of Shasta’s checking
overhead (as high as 50% for a uniprocessor execution). Sec-
tion 4.3 presents further results under Shasta with variable gran-
ularity and different compiler flags to address the communication
granularity and checking overhead issues.

Em3d exhibits nearest-neighbor sharing, though the commu-
nication is determined at run-time based on indirection arrays.
Cashmere performs two times better than Shasta on Em3d. Be-
cause of the coarse granularity of communication in this appli-
cation, Shasta requires ten times more messages to fetch all the
data. As we will see in Section 4.3, Shasta’s variable granularity
feature can be used to close this performance gap.

Gauss uses a cyclic distribution of matrix rows among proces-
sors. Cashmere performs 1.7 and 1.4 times better than Shasta
for the larger dataset, and 1.5 and 1.4 times better for the smaller
dataset, at 8 and 16 processors respectively. Because the matrix
is triangularized, fewer elements are modified in each succeeding
row, and Cashmere’s large granularity causes communication of
unnecessary data. For the 1700x1700 dataset, there is also write-
write false sharing, since a row is not a multiple of the page size.
However, the effects of false sharing are not as large as one might
expect due to the SMP-aware protocol. In effect, the distribution
of work becomes block-cyclic, with false sharing only on the
edges of each block.

In SOR, each processor operates on a block of contiguous
rows and infrequently communicates with its nearest neighbors.
The determining factor is the checking overhead in Shasta (as
shown by the higher ”Task” times in Figure 3). Relative to
Shasta, Cashmere performs 1.25 better on average.

TSP has a very coarse work granularity, so communication
overheads in either system are largely unimportant. However, the
more eager protocol in Shasta can lead to faster propagation of
the bound value. This can in turn lead to a more efficient search
(given the non-deterministic nature of the branch-and-bound al-

gorithm). Shasta performs approximately 1.15 times better than
Cashmere on TSP.

Water-nsquared partitions work such that processors modify
contiguous regions of memory. Any false sharing is only at the
boundaries of these regions. In addition, there is considerable
node locality in the data access; at least half the lock acquires ac-
cess data that was last modified within the same SMP node and
is therefore fetched via the node’s hardware protocol. Hence, the
overheads of false sharing are small in Cashmere. Shasta’s per-
formance is primarily affected by the extra checking overhead,
and Cashmere performs 1.2 times better than Shasta on average.

Overall, the coarse-grain communication and low frequency
of synchronization favors Cashmere in these applications. Fur-
thermore, for Gauss and Water-nsquared, the effect of false shar-
ing on the performance of Cashmere is dramatically reduced by
the use of SMP-aware protocols, since the false sharing largely
occurs among processors on the same node. The relative perfor-
mance of Shasta is often determined by the checking overhead
and in some cases by its smaller data transfer granularity.

4.2.2 Fine-Grain Access with Coarse-Grain Synchroniza-
tion

The applications in this group are Ilink, LU, Ocean, and Water-
spatial. As we will discuss below, the use of SMP nodes with
SMP-aware protocols leads to some surprising results for Cash-
mere.

Ilink computes on sparse arrays of probabilities and uses
round-robin work allocation. The sparse data structure causes
Cashmere to communicate extra data on pages that have been
modified (since whole pages are communicated on a miss).
Shasta’s performance on Ilink is affected by three factors: the
checking overhead, the small communication granularity, and
the use of an eager protocol. The instrumentation overhead (as
high as 60% on a uniprocessor) is due to the compiler being un-
able to verify the commonality of certain high-frequency dou-
ble indirection operations, and Shasta therefore being unable to
batch them effectively. Because the work allocation is round-
robin on a per-element basis, there is also much false sharing
despite the small block size used by Shasta. Shasta eagerly inval-



idates all copies of a block whenever any processor writes to the
block and generates 10 times more protocol messages than Cash-
mere, which delays invalidations until synchronization points.
These effects outweigh the overheads for Cashmere, and Cash-
mere performs 1.5 times better than Shasta.

LU uses a tiled partitioning strategy. However, unlike CLU,
the matrix is allocated as a single object. Hence, each tile con-
sists of small non-contiguous regions of memory on multiple
pages. The small read granularity causes a large amount of extra
data to be communicated under Cashmere. In addition, the data
layout leads to a large amount of false sharing at the page level.
However, LU’s 2D scatter distribution leads to an assignment of
tiles to processors that confines all false sharing to within each 4-
processor SMP node, so all false sharing is handled in hardware.
The above effect, along with the checking overheads in Shasta,
allows Cashmere to perform better than Shasta by a factor of 1.2
and 1.3 times at 8 and 16 processors respectively.

Ocean also uses tiled data partitioning. For the two datasets,
Cashmere performs 1.10 and 1.11 times better than Shasta at 8
processors, while Shasta is 2.25 and 1.07 times better at 16 pro-
cessors. The communication is nearest-neighbor in both the col-
umn and row direction. Hence, while the tiled partitioning re-
duces true sharing, it increases the amount of unnecessary data
communicated when a large coherence unit is used. For exam-
ple, Cashmere incurs 7 to 8 times more data traffic compared
to Shasta at the smaller dataset size. The extra communication
generated due to false sharing in Cashmere (incurred on every
boundary) increases with the number of processors, which ex-
plains Cashmere’s lower relative performance at 16 processors.
As in LU, the effect of false sharing in Cashmere is greatly re-
duced because a large portion of the false sharing is confined to
individual nodes. Furthermore, both Shasta and Cashmere bene-
fit significantly from the large portion of true sharing communi-
cation that is confined to each SMP node [17, 20].

For Water-spatial, Cashmere performs 1.2 times better than
Shasta on average, with Shasta’s performance being comparable
to Cashmere’s at the smaller dataset size and 16 processors. In
this version of the fluid-flow simulation program (compared to
Water-nsquared), a uniform 3-D grid of cells is imposed on the
problem domain. Processors own certain cells and only access
those cells and their neighbors. Molecules can move between
cells during the simulation, creating a loss of locality, but this
effect is small in both Cashmere and Shasta. As with Water-
nsquared, the performance difference between the two systems
can be attributed to the checking overhead in Shasta (as can be
seen by the difference in ”Task” time in Figure 3).

Overall, the performance of Shasta and Cashmere is compa-
rable for the above set of applications. This is surprising for
programs such as LU and Ocean, which exhibit frequent false
sharing at the page-level. However, much or all of this false shar-
ing turns out to occur between processors on the same SMP node
(due to task allocation policy or nearest neighbor communication
behavior) and is handled efficiently by the SMP-aware protocol.
In addition, the low frequency of synchronization, along with the
lazy protocol employed by the page-based system, allows Cash-
mere to tolerate any false sharing between nodes. At the same
time, Shasta’s eager protocol causes extra communication in ap-
plications (such as Ilink) that exhibit false sharing even at small
block sizes.

4.2.3 Fine-Grain Access and Synchronization

The applications in this group are Barnes-Hut, Raytrace, and
Volrend. As we will see, the combination of fine-grain data
access and synchronization leads to excess communication and
false sharing in page-based systems.

The main data structure in Barnes is a tree of nodes, each with
a size of 96 bytes, so there is significant false sharing in Cash-
mere runs. Furthermore, this application relies on processor con-
sistency in the parallel tree-building phase. Hence, while this
application can run correctly on Shasta (which can enforce this
form of consistency), it must be modified for Cashmere by in-
serting an extra flag synchronization in the parallel tree-building
phase. The performance presented is for the unmodified Barnes
program under Shasta, and with the additional flag synchroniza-
tion under Cashmere. Shasta performs 2 and 3.5 times better than
Cashmere at 8 and 16 processors, respectively. The main reason
for this difference is the parallel tree building phase. This phase
constitutes 2% of the sequential execution time, but slows down
by a factor of 24 under Cashmere because of the fine-grain ac-
cess, excessive false sharing, and extra synchronization. Shasta
also suffers a slowdown in this phase, but only by a factor of 2.

Raytrace shows an even more dramatic difference between
the performance of Shasta and Cashmere. Shasta performs 7
and 12.5 times better than Cashmere (which actually has a large
slowdown) at 8 and 16 processors, respectively. This result is
surprising, since there is little communication in the main com-
putational loop that accesses the image plane and ray data struc-
tures. The performance difference can be primarily attributed to
a single critical section used to increment a global counter in or-
der to identify each ray uniquely. It turns out the ray identifiers
are used only for debugging and could easily be eliminated (see
Section 4.3.2). Their presence, however, illustrates the sensitiv-
ity of Cashmere to synchronization and data access granularity.
Although only a single word is modified within the critical sec-
tion, an entire page must be moved back and forth among the
processors. Shasta’s performance is insensitive to the synchro-
nization, and is more in line with the behavior of a hardware
DSM platform.

Volrend partitions its image plane into small tiles that consti-
tute a unit of work, and relies on task stealing via a central queue
to provide load balance. Shasta performs 3.5 times better than
Cashmere for this application. Figure 3 shows that data wait and
synchronization time account for 60% of the Cashmere execu-
tion time, but only about 35% of Shasta’s execution. This dif-
ference results from the high degree of page-level false sharing
present in the application’s task queue and image data. As a re-
sult of the false sharing, Cashmere communicates over 10MB of
data, as opposed to only 2MB in Shasta. The higher amount of
data communication in Cashmere leads to more load imbalance
among the processes, thereby triggering more task stealing that
compounds the communication costs.

Overall, applications in this category exhibit by far the largest
performance gap between the two systems, with Cashmere suf-
fering considerably due to the frequent synchronization and
communication.



selected data block size
structure(s) (bytes)

LU matrix array 2048
CLU matrix block 2048
Volrend opacity, normal maps 1024
EM3D node and data array 8192
ILINK all data 1024

Table 2: Variable block sizes used for Shasta.

4.3 Performance Improvements through Pro-
gram Modifications

The performance results presented in the previous section were
for unmodified programs (except to eliminate a race in Barnes
for Cashmere) that were taken from either the hardware or soft-
ware shared memory domain. In most cases, better performance
can be achieved by tailoring the application to the latencies and
granularity of the underlying software system. In this section,
we present the performance of some of the applications that have
been modified for either Shasta or Cashmere.

Figure 4 presents the speedups for the modified applications
along with the unmodified results for 16 processor runs with
the large dataset sizes. The corresponding execution time break-
downs are not shown here, but are available in an extended ver-
sion of the paper [5].

4.3.1 Modifications for Shasta

The modifications we consider for Shasta are guaranteed not to
alter program correctness, and can therefore be applied safely
without a deep understanding of the application. This is consis-
tent with Shasta’s philosophy of transparency and simple porta-
bility. The three types of changes we use are variable granularity
hints [15], the addition of padding in data structures, and the use
of compiler options to reduce instrumentation overhead.

For variable granularity hints, we use a special shared-memory
allocator provided by Shasta that allows one to specify the block
size for the corresponding region of memory. By allocating cer-
tain regions in this manner, the application can cause data to be
fetched in large units for important data structures that are ac-
cessed in a coarse-grain manner or are mostly-read. Table 2 lists
the applications that benefit from using variable granularity, the
data structures on which it was used, and the increased block
size. As an example of the benefit of variable granularity, the
performance of EM3D improves by a factor of 1.8 and CLU by
a factor of 1.2 for the large input set on 16 processors (results
labeled as ”SH-VG” in Figure 4).

Another change that can sometimes improve performance is
padding elements of important data structures. For example, in
the Barnes-Hut application, information on each body is stored
in a structure which is allocated out of one large array. Since
the body structure is 120 bytes, there is some false sharing be-
tween different bodies. Shasta’s performance improves signifi-
cantly (by a factor of 1.9 on the large input set for 16 processors)
by padding the body structure to 128 bytes (labeled as ”Padded”
in Figure 4).

A final modification involves using compiler options to reduce
instrumentation overhead. Existing compilers typically unroll
inner loops to improve instruction scheduling and reduce looping
overheads. Batching of checking code is especially effective for

unrolled loops, since unrolling increases the number of neighbor-
ing loads and stores in the loop bodies. In CLU, instrumentation
overhead is still high despite the batching, because the inner loop
is scheduled so effectively. The checking overhead is reduced
significantly (from 55% to 36% on a uniprocessor with the large
input set) by using a compiler option that increases the unrolling
of the inner loop from the default four iterations to eight itera-
tions (labelled as ”Loop Unroll” in Figure 4).

There are a large class of other optimizations that would im-
prove application performance under Shasta. However, we have
limited our investigation to simple hint optimizations to empha-
size the ease of portability of applications from hardware multi-
processors to Shasta.

4.3.2 Modifications for Cashmere

The modifications made to tune the applications for Cashmere
aim to reduce the frequency of synchronization or to increase the
granularity of sharing. Unlike the changes made for Shasta, the
Cashmere modifications are not in the form of hints and require
some real understanding of the application in order to maintain
correctness. We have made changes to three applications that
exhibit particularly poor performance under Cashmere (results
are labeled as ”Restructured/CSM” in Figure 4).

The major source of overhead in Barnes-Hut is in the tree
building phase. The application requires processors to position
their bodies into a tree data structure of cells, resulting in a large
number of scattered accesses to shared memory. In addition, the
algorithm requires processors to synchronize in a very fine-grain
manner in order to avoid race conditions. The resulting false
sharing and fine-grain synchronization cause the tree-building
phase to run much slower in parallel under Cashmere than in
the sequential execution. While parallel tree-building algorithms
suitable for page-based S-DSM [11] exist, we have chosen to
use the simple approach of computing the tree sequentially (it
constitutes 2% of the total sequential execution time). Building
the tree sequentially does, however, have the disadvantage of in-
creasing the memory requirements on the main node and limiting
the largest problem size that can be run.

A second source of overhead comes from a parallel reduc-
tion in the main computation loop. The reduction modifies two
shared variables in a critical section based on per-processor val-
ues for these variable. Performance is reduced because of critical
section dilation due to page faults. We have modified the code to
compute the reduction sequentially on a single processor.

Raytrace is in reality a highly parallel application. There is
very little sharing and the only necessary synchronization con-
structs are per-processor locks on the processor work queues.
However, the original version contains some additional lock-
ing code that protects a counter used for debugging purposes,
as described in Section 4.2.3. Eliminating the locking code
and counter update reduces the running time from 71 seconds
to 3.7 seconds on 16 processors and the amount of data trans-
ferred from 1GByte down to 17MBytes. The magnitude of this
improvement illustrates the sensitivity of page-based S-DSM to
fine-grain synchronization.

The performance degradation in Volrend comes from false
sharing on the task queue data structure as well as the small gran-
ularity of work. We have modified the application to change the
granularity of tasks as well as to eliminate false sharing in the
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Figure 4: Speedups for the optimized applications on the large data set at 16 processors.

task queue by padding.
Additional optimizations that would improve the performance

of these and other applications in our suite on a page-based sys-
tem can be implemented [11]. In general, if the size of the co-
herence block is taken into account in structuring the application,
most applications can perform well on page-based systems. Re-
structuring applications tuned for hardware DSM systems does,
however, require knowledge of the underlying computation or
data structures.

4.4 Summary of Results

This section provided an in-depth comparison and analysis of the
performance of two software DSM systems, Shasta and Cash-
mere. We summarize our results using the geometric mean of
the relative speedups on the two systems. For the eight appli-
cations (unmodified Splash-2) that were written and tuned for
hardware DSM systems, Shasta exhibits a 1.6 times performance
advantage over Cashmere. Most of this difference comes from
one application (Raytrace) for which the performance of the two
systems differs by a factor of 13. Using the same metric, for the
five programs that were written or tuned with page-based DSM
in mind, Cashmere exhibits a 1.3 times performance advantage
over Shasta. After we allow modifications to the applications,
Cashmere performs 1.15 times better than Shasta over all 13 ap-
plications. However, it is important to emphasize that the modifi-
cations we considered for Shasta were in the form of hints that do
not affect application correctness or require detailed application
knowledge, while the modifications we considered for Cashmere
often required changes in the parallelization strategy.

5 Related Work

There is a large body of literature on S-DSM that has had an
impact on the design of the Cashmere and Shasta systems. The
focus of this paper is to understand the performance tradeoffs of
fine-grain vs. coarse-grain software shared memory rather than
to design or study a particular S-DSM system in isolation.

Iftode et al. [10] have characterized the performance and
sources of overhead of a large number of applications under
S-DSM, while Jiang et al. [11] have provided insights into the

restructuring necessary to achieve good performance under S-
DSM for a similar application suite. Our work builds on theirs
by providing insight on how a similar class of programs performs
under both fine-grain and coarse-grain S-DSM. In addition, we
use actual systems implemented on a state-of-the-art cluster, al-
lowing us to capture details not present in a simulation environ-
ment.

Researchers at Wisconsin and Princeton [22] have also stud-
ied the tradeoffs between fine- and coarse-grain S-DSM systems,
but our studies have a number of differences. First, we have
studied SMP-aware systems running on clusters of SMPs. Sec-
ond, the Wisconsin/Princeton platform uses custom hardware not
available in commodity systems to provide fine-grain access con-
trol. Their fine-grain performance results therefore do not in-
clude software checking overhead, which limited performance
in several of our applications. In addition, the custom hardware
delivers an access control fault in only 5 �s, which is fourteen
times faster than the delivery of a page fault on our platform.
Third, the processors in our cluster are an order of magnitude
faster than those in the Wisconsin/Princeton cluster (400MHz vs
66MHz), while our network is only 3-4 times better in latency
and bandwidth, thus increasing the relative cost of communica-
tion. All of these differences have manifested themselves in a
number of ways in our performance results for both the fine-
grain and coarse-grain systems.

Some of the results of our study mirror those of the Wiscon-
sin/Princeton study, but others offer new insight into the granu-
larity issue. For example, both Raytrace and Volrend perform
well on the coarse-grain protocol in the Wisconsin/Princeton
study, but perform very poorly on Cashmere in our study. The
performance gap can be attributed to our fast hardware platform,
which causes accelerated synchronization and in turn magnifies
the effect of unnecessary data transferred in a coarse-grain pro-
tocol. More favorably for coarse-grain protocols, we also found
that an SMP-aware implementation can greatly mitigate the ef-
fects of false sharing.

We believe that Cashmere and Shasta are among the most ef-
ficient S-DSMs in their class. There are still relatively few S-
DSMs that are SMP-aware and capable of executing on com-
modity hardware. The Sirocco system [19] is a fine-grain S-
DSM that uses an SMP-aware protocol, but its instrumentation
overheads are much higher than Shasta’s. SoftFlash [6] was
one of the first page-based implementations designed for SMP



clusters. The SoftFlash results showed that intra-node synchro-
nization could be excessive. Cashmere-2L [20], however, com-
bines existing techniques with a novel incoming diff operation
to eliminate most intra-node synchronization. HLRC-SMP [14]
is a more recent protocol that shares several similarities with
Cashmere-2L. The Cashmere-2L protocol, however, has been
optimized to take advantage of the Memory Channel network
and allows home nodes to migrate to active writers, thereby po-
tentially reducing twin/diff overhead.

6 Conclusions

In this paper, we have examined the performance tradeoffs be-
tween fine-grain and coarse-grain S-DSM in the context of two
state-of-the-art systems: Shasta and Cashmere. In general, we
found that the fine-grain, instrumentation-based approach to S-
DSM offers a higher degree of robustness and superior per-
formance in the presence of fine-grain synchronization, while
the coarse-grain, VM-based approach offers higher performance
when coarse-grain synchronization is used.

The performance of applications running under Shasta is most
affected by the instrumentation overhead and by the smaller de-
fault block size when accessing data at a coarse granularity. Con-
versely, for Cashmere, the main sources of overhead are crit-
ical section dilation in the presence of fine-grain synchroniza-
tion, and the communication of unneeded data in computations
with fine-grain data access. Standard programming idioms such
as work-queues, parallel reductions, and atomic counters can
cause excessive communication overhead if they are not tuned
for coarse-grain systems. However, a number of applications
with false sharing at a page-level performed better than expected
on Cashmere because its SMP-aware protocol enabled most or
all of the false sharing effects to be handled in hardware. Finally,
we found that most of the remaining performance differences
between Shasta and Cashmere could be eliminated by program
modifications that take the coherence granularity into account.
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