
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

5th USENIX Conference on Object-Oriented Technologies and Systems
(COOTS '99)

San Diego, California, USA, May 3–7, 1999

Intercepting and Instrumenting COM Applications

Galen C. Hunt
Microsoft Research

Michael L. Scott
University of Rochester

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Intercepting and Instrumenting COM Applications

Galen C. Hunt Michael L. Scott
Microsoft Research Department of Computer Science
One Microsoft Way University of Rochester

Redmond, WA 98052 Rochester, NY 14627
galenh@microsoft.com scott@cs.rochester.edu

Abstract
Binary standard object models, such as Microsoft’s

Component Object Model (COM) enable the develop-
ment of not just reusable components, but also an in-
credible variety of useful component services through
run-time interception of binary standard interfaces.
Interception of binary components can be used for
conformance testing, debugging, profiling, transaction
management, serialization and locking, cross-standard
middleware interoperability, automatic distributed
partitioning, security enforcement, clustering, just-in-
time activation, and transparent component aggrega-
tion.

We describe the implementation of an interception
and instrumentation system tested on over 300 COM
binary components, 700 unique COM interfaces, 2 mil-
lion lines of code, and on 3 major commercial-grade
applications including Microsoft PhotoDraw 2000.
The described system serves as the foundation for the
Coign Automatic Distributed Partitioning System
(ADPS), the first ADPS to automatically partition and
distribute binary applications.

While the techniques described in this paper were
developed specifically for COM, they have relevance to
other object models with binary standards, such as in-
dividual CORBA implementations.

1. Introduction

Widespread adoption of Microsoft’s Component
Object Model (COM) [16, 25] standard has produced
an explosion in the availability of binary components,
reusable pieces of software in binary form. It can be
argued that this popularity is driven largely by COM’s
binary standard for component interoperability.

While binary compatibility is a great boon to the
market for commercial components, it also enables a
wide range of unique component services through in-
terception. Because the interfaces between COM com-
ponents are well defined by the binary standard, a
component service can exploit the binary standard to
intercept inter-component communication and interpose
itself between components.

Interception of binary components can be used for
conformance testing, debugging, distributed communi-
cation, profiling, transaction management, serialization

and locking, cross-standard middleware inter-
operability, automatic distributed partitioning, security
enforcement, clustering and replication, just-in-time
activation, and transparent component aggregation.

In this paper, we describe an interception system
proven on over 300 COM binary components, 700
unique COM interfaces, and 2 million lines of code [5].
We have extensively tested our COM interception sys-
tem on three major commercial-grade applications: the
MSDN Corporate Benefits Sample [12], Microsoft
PhotoDraw 2000 [15], and the Octarine word-processor
from the Microsoft Research COM Applications Group.
The interception system serves as the foundation for the
Coign Automatic Distributed Partitioning System
(ADPS) [7] [8], the first ADPS to automatically parti-
tion and distribute binary applications.

In the next section, we describe the fundamental
features of COM as they relate to the interception and
instrumentation of COM applications. Sections 3 and 4
explain and evaluate our mechanisms for intercepting
object instantiation requests and inter-object communi-
cation respectively. We describe related work in Sec-
tion 5. In Section 6, we present our conclusions and
propose future work.

2. COM Fundamentals

COM is a standard for creating and connecting com-
ponents. A COM component is the binary template
from which a COM object is instantiated. Due to
COM’s binary standard, programmers can easily build
applications from components, even components for
which they have no source code. COM’s major fea-
tures include multiple interfaces per object, mappings
for common programming languages, standard-
mandated binary compatibility, and location-transparent
invocation.

2.1. Polymorphic Interfaces

All first-class communication in COM takes place
through interfaces. An interface is a strongly typed
reference to a collection of semantically related func-
tions. An interface is identified by a 128-bit globally
unique identifier (GUID). An explicit agreement be-
tween two components to communicate through a

named interface contains an implicit contract of the
binary representation of the interface.

Microsoft Interface Definition Language (MIDL)
Figure 1 contains the definitions of two interfaces:

IUnknown and Istream in the Microsoft Interface
Definition Language (MIDL). Syntactically, MIDL is
very similar to C++. To clarify the semantic features of
interfaces, MIDL attributes (enclosed in square brackets
[]) can be attached to any interface, member function,
or parameter. Attributes specify features such as the
data-flow direction of function arguments, the size of
dynamic arrays, and the scope of pointers. For exam-
ple, the [in, size_is(cb)] attribute on the pb
argument of the Write function in Figure 1 declares
that pb is an input array with cb elements.

[uuid(00000000-0000-0000-C000-000000000046)]
interface IUnknown
{
 HRESULT QueryInterface(
 [in] REFIID riid,
 [out,iid_is(riid)] void **ppObj);
 ULONG AddRef();
 ULONG Release();
};

[uuid(b3c11b80-9e7e-11d1-b6a5-006097b010e3)]
interface IStream : IUnknown
{
 HRESULT Seek(
 [in] LONG nPos);
 HRESULT Read(
 [out,size_is(cb)] BYTE *pb,
 [in] LONG cb);
 HRESULT Write(
 [in,size_is(cb)] BYTE *pb,
 [in] LONG cb);
};

Figure 1. MIDL for Two Interfaces.
The MIDL definition of an interface describes its member
functions and their parameters in sufficient detail to support
location-transparent invocation.

IUnknown
The IUnknown interface, listed in Figure 1, is spe-

cial. All COM objects must support IUnknown. Each
COM interface must include the three member func-
tions from IUnknown, namely: QueryInterface,
AddRef, and Release. AddRef and Release are
reference-counting functions for lifetime management.
When an object’s reference count goes to zero, the ob-
ject is responsible for freeing itself from memory.

COM objects can support multiple interfaces. Cli-
ents dynamically bind to a new interface by calling
QueryInterface. QueryInterface takes as
input the GUID of the interface to which the client
would like to bind and returns a pointer to the new in-

terface. Through run-time invocation of Query-
Interface, clients can determine the exact function-
ality supported by any object.

2.2. Common Language Mappings

The MIDL compiler maps interface definitions into
formats usable by common programming languages.
Figure 2 contains the C++ abstract classes generated by
the MIDL compiler, for the interfaces in Figure 1.
MIDL has straightforward mappings into other com-
piled languages such as C and Java. In addition, the
MIDL compiler can store metadata in binary files called
type libraries. Many development tools can import
type libraries. Type libraries are well suited for script-
ing languages such as the Visual Basic Scripting Edi-
tion in Internet Explorer [11].

class IUnknown
{
 public:
 virtual HRESULT QueryInterface(
 REFIID riid,
 void **ppObj) = 0;
 virtual ULONG AddRef() = 0;
 virtual ULONG Release() = 0;
};

class IStream : IUnknown
{
 public:
 virtual HRESULT Seek(
 LONG nPos) = 0;
 virtual HRESULT Read(
 BYTE *pb,
 LONG cb) = 0;
 virtual HRESULT Write(
 BYTE *pb,
 LONG cb) = 0;
};

Figure 2. C++ Language Mapping.
The MIDL compiler maps a COM interface into an abstract
C++ class.

2.3. Binary Compatibility

In addition to language mappings, COM specifies a
platform-standard binary mapping for interfaces. The
binary format for a COM interface is similar to the
common format of a C++ virtual function table (VTBL,
pronounced “V-Table”). All references to interfaces
are stored as interface pointers (an indirect pointer to a
virtual function table). Figure 3 shows the binary map-
ping of the IStream interface.

Each object is responsible for allocating and releas-
ing the memory occupied by its interfaces. Quite often,
objects place per-instance interface data immediately

following the interface virtual-function-table pointer.
With the exception of the virtual function table and the
pointer to the virtual function table, the object memory
area is opaque to the client.

The standardized binary mapping enforces COM’s
language neutrality. Any language that can call a func-
tion through a pointer can use COM objects. Any lan-
guage that can export a function pointer can create
COM objects.

COM components are distributed either in applica-
tion executables (.EXE files) or in dynamic link librar-
ies (DLLs).

pfWrite

Client

IStream *

Instance
Data

pVtbl

pfQueryInterface

pfAddRef

pfRelease

pfSeek

pfRead

Virtual
Function

Table

Code

Write

QueryInterface

AddRef

Release

Seek

Read

Component

Interfaces

Figure 3. Binary Interface Mapping.
COM defines a standard binary mapping for interfaces. The
format is similar to the common representation of a C++ pure
abstract virtual function table.

2.4. Location Transparency

Binary compatibility is important because it facili-
tates true location transparency. A client can commu-
nicate with a COM object in the same process (in-
process), in a different process (cross-process), or on an
entirely different machine (cross-machine). The loca-
tion of the COM object is completely transparent to
both client and component because in each case invo-
cation takes place through an interface’s virtual func-
tion table.

Interface Proxies and Stubs
Location transparency is achieved through proxies

and stubs generated by the MIDL compiler. Proxies
marshal function arguments into a single message that
can be transported between address spaces or between
machines. Stubs unmarshal messages into function
calls. Interface proxies and stubs copy data structures
with deep-copy semantics. In theory, proxies and stubs
come in pairs—the first for marshaling and the second
for unmarshaling. In practice, COM generally com-
bines code for the proxy and stub for a specific inter-
face into a single reusable binary. COM proxies and
stubs are similar in purpose to CORBA [19, 23] stubs
and skeletons. However, their implementations vary

because COM proxies and stubs are only used when
inter-object communication crosses process boundaries.

In-Process Communication
For best performance, components reside in the cli-

ent’s address space. An application invokes an in-
process object directly through the interface virtual
function table. In-process communication has the same
cost as a C++ virtual function call because it uses nei-
ther interface proxies nor stubs. The primary drawback
of in-process objects is that they share the same protec-
tion domain as the application. The application cannot
protect itself from erroneous or malicious resource ac-
cess by the object.

Cross-Process Communication
To provide the application with security, objects can

be located in another operating-system process. The
application communicates with cross-process objects
through interface proxies and stubs. The application
invokes the object through an indirect call on an inter-
face virtual function table. In this case, however, the
virtual function table belongs to the interface proxy.
The proxy marshals function arguments into a buffer
and transfers execution to the object’s address space
where the interface stub unmarshals the arguments and
calls the object through the interface virtual function
table in the target address space. Marshaling and un-
marshaling are completely transparent to both applica-
tion and component.

Cross-Machine Communication
Invocation of distributed objects is very similar to

invocation of cross-process objects. Cross-machine
communication uses the same interface proxies and
stubs as cross-process communication. The primary
difference is that once the function arguments have
been marshaled, COM sends the serialized message to
the destination machine using the DCOM protocol [3],
a superset of the Open Group’s Distributed Computing
Environment Remote Procedure Call (DCE RPC) pro-
tocol [4].

3. Interception of Object Instantiations

COM objects are dynamic objects. Instantiated
during an application’s execution, objects communicate
with the application and each other through dynami-
cally bound interfaces. An object frees itself from
memory after all references to it have been released by
the application and other objects.

Applications instantiate COM objects by calling API
functions exported from a user-mode COM DLL. Ap-
plications bind to the COM DLL either statically or
dynamically.

Static binding to a DLL is very similar to the use of
shared libraries in most UNIX systems. Static binding

is performed in two stages. At link time, the linker em-
beds in the application binary the name of the DLL, a
list of all imported functions, and an indirect jump table
with one entry per imported function. At load time, the
loader maps all imported DLLs into the application’s
address space and patches the indirect jump table en-
tries to point to the correct entry points in the DLL im-
age.

Dynamic binding occurs entirely at run time. A
DLL is loaded into the application’s address space by
calling the LoadLibrary Win32 function. After
loading, the application looks for procedures within the
DLL using the GetProcAddress function. In con-
trast to static binding, in which all calls use an indirect
jump table, GetProcAddress returns a direct pointer
to the entry point of the named function.

BindMoniker
CoCreateInstance
CoCreateInstanceEx
CoGetClassObject
CoGetInstanceFromFile
CoRegisterClassObject
CreateAntiMoniker
CreateBindCtx
CreateClassMoniker
CreateDataAdviseHolder
CreateFileMoniker
CreateGenericComposite
CreateItemMoniker
CreateOleAdviseHolder
CreatePointerMoniker
GetRunningObjectTable
MkParseDisplayName
MonikerCommonPrefixWith
MonikerRelativePathTo
OleCreate

OleCreateDefaultHandler
OleCreateEx
OleCreateFontIndirect
OleCreateFromData*
OleCreateFromFile*
OleCreateLink*
OleCreateStaticFromData
OleGetClipboard
OleLoad
OleLoadFromStream
OleLoadPicture
OleLoadPictureFile
OleRegEnumFormatEtc
OleRegEnumVerbs
StgCreateDocfile
StgCreateDocfileOn*
StgGetIFillLockBytesOn*
StgOpenAsyncDocfileOn*
StgOpenStorage
StgOpenStorageOn*

Figure 4. Object Instantiation Functions.
COM supports approximately 50 functions capable of creat-
ing instantiation a new object. However, most instantiations
request use either CoCreateInstance or CoCreate-
InstanceEx.

The COM DLL exports approximately 50 functions
capable of instantiating new objects; these are listed in
Figure 4. With few exceptions, applications instantiate
objects exclusively through the CoCreateInstance
function or its successor, CoCreateInstanceEx.
From the instrumentation perspective there is little dif-
ference among the COM API functions. For brevity,
we use CoCreate as a placeholder for any function
that instantiates new COM objects.

3.1. Alternatives for Instantiation Interception

To intercept all object instantiations, instrumentation
should be called at the entry and exit of each object
instantiation function.

Figure 5 enumerates the techniques available for in-
tercepting functions; namely: source-code call replace-
ment, binary call replacement, DLL redirection, DLL
replacement, breakpoint trapping, and inline redirec-
tion.

_COM_CoCreate:
 trap
 mov ebp,esp

;; COM DLL Binary
;; Replacement

…
_COM_CoCreate:
 call XCoCreate
 push ebp
 mov ebp,esp

…

;; COM DLL Binary
…

_COM_CoCreate:
 push ebp
 mov ebp,esp

…

 push Clsid
 call [XCoCreate]

CoCreate:
 word _X_XCoCreate

// Application Source
…

 CoCreate(Clsid)
…

;; Application Binary
…

 push Clsid
 call [CoCreate]

…
CoCreate:
 word _COM_CoCreate

…

;; COM DLL Binary

…
_COM_CoCreate:
 push ebp
 mov ebp,esp

…

 XCoCreate (Clsid)
1

2

3

4

5

_COM_CoCreate:
 jmp _X_XCoCreate
 mov ebp,esp

6

Figure 5. Intercepting Instantiation Calls.
Object instantiation calls can be intercepted by 1) call re-
placement in the application source code; 2) call replacement
in the application binary; 3) DLL redirection; 4) DLL re-
placement; 5) trapping in the COM DLL; and 6) inline redi-
rection in the COM DLL.

Call replacement in application source code.
Calls to the COM instantiation functions can be re-

placed with calls to the instrumentation by modifying
application source code. The major drawback of this
technique is that it requires access to application source
code.

Call replacement in application binary code.
Calls to the COM instantiation functions can be re-

placed with calls to the instrumentation by modifying
application binaries. While this technique does not
require source code, replacement in the application bi-
nary does require the ability to identify all applicable
call sites. To facilitate identification of all call sites, the
application must be linked with substantial symbolic
information.

DLL redirection.
The import entries for COM APIs in the application

can be modified to point to another library. Redirection
to another DLL can be achieved either by replacing the
name of the COM DLL in the import table before load
time or by replacing the function addresses in the indi-
rect jump table after load. Unfortunately, redirecting to
another DLL through either of the import tables fails to
intercept dynamic calls using LoadLibrary and
GetProcAddress.

DLL replacement.
The only way to guarantee interception of a specific

DLL function is to insert the interception mechanism
into the function code. The most obvious method is to
replace the COM DLL with a new version containing
instrumentation. DLL replacement requires source ac-
cess to the COM DLL library. It also unnecessarily
penalizes all applications using the COM DLL, whether
they use the additional functionality or not.

Breakpoint trapping of the COM DLL.
Rather than replace the DLL, the interception

mechanism can be inserted into the image of the COM
DLL after it has been loaded into the application ad-
dress space. At run time, the instrumentation system
can insert a breakpoint trap at the start of each target
instantiation function. When execution reaches the
function entry point, a debugging exception is thrown
by the trap and caught by the instrumentation system.
The major drawback to breakpoint trapping is that de-
bugging exceptions suspend all application threads. In
addition, the debug exception must be caught in a sec-
ond operating-system process. Interception via break-
point trapping has a high performance penalty.

Inline redirection of the COM DLL.
The most favorable method for intercepting DLL

functions is to inline the redirection call. At load time,
the first few instructions of the target instantiation
function are replaced with a jump instruction to a de-
tour function in the instrumentation. Replacing the first
few instructions is usually a trivial operation as these
instructions are normally part of the function prolog
generated by a compiler and not the targets of any
branches. The replaced instructions are used to create a
trampoline. When the modified target function is in-
voked, the jump instruction transfers execution to the
detour function in the instrumentation. The detour
function passes control to the remainder of the target
function by invoking the trampoline.

3.2. Evaluation of Instantiation Interception

Our instrumentation system uses inline indirection to
intercept object instantiation calls. At load time, our
instrumentation replaces the first few instructions of the

target function with a jump to the instrumentation de-
tour function. Pages for code sections are mapped into
a processes’ address space using copy-on-write seman-
tics. Calls to VirtualProtect and Flush-
InstructionCache enable modification of code
pages at run time. Instructions removed from the target
function are placed in a statically allocated trampoline
routine. As shown in Figure 6, the trampoline allows
the detour function to invoke the target function without
interception.

 ;; COM DLL Binary
…

_COM_CoCreate:
 jmp _Coign_CoCreate
_COM_CoCreate+5:
 push edi

…

;; Trampoline

…
_Trp_CoCreate:
 push ebp
 mov ebp,esp
 push ebx
 push esi
 jmp _COM_CoCreate+5

…

;; COM DLL Binary
…

_COM_CoCreate:
 push ebp
 mov ebp,esp
 push ebx
 push esi
 push edi

…

;; Trampoline
…

_Trp_CoCreate:
 jmp _COM_CoCreate

…

1

2

Figure 6. Inline Redirection.
The first few instructions of the target API function are
moved to the trampoline and replaced with a jump to the in-
terception system. The trampoline effectively invokes the
API function without interception. On the Intel x86 architec-
ture, a jump instruction occupies five bytes.

Function

vs.

Interception Technique

E
m

pt
y

Fu
nc

tio
n

C
oC

re
at

eI
ns

ta
nc

e

Direct Call 0.11us 14.84us

DLL Redirection 0.14us 15.19us

DLL Replacement 0.14us 15.19us

Breakpoint Trap 229.56us 265.85us

Inline Redirection 0.15us 15.19us

Table 1. Interception Times.
Listed are the times for intercepting either an empty function
or CoCreateInstance on a 200MHz Pentium PC.

Although inline indirection is complicated by the
variable-length instruction set of the Intel x86 archi-
tecture, its low run-time cost and versatility more than
offset the development penalty. Inline redirection of
the CoCreateInstance function has less than a 3%
overhead, which is more than an order of magnitude
smaller than the penalty for breakpoint trapping. Table
1 lists the average invocation time of the target function
within a loop consisting of 10,000 iterations. The invo-
cation times include the cost of redirection, but not any
additional instrumentation. Unlike DLL redirection,
inline redirection correctly intercepts both statically and
dynamically bound invocations. Finally, inline redirec-
tion is much more flexible than DLL redirection or ap-
plication code modification. Inline redirection of any
API function can be selectively enabled for each proc-
ess individually at load time based on the needs of the
instrumentation.

To apply inline redirection, our instrumentation
system must be loaded into the application’s address
space before the application executes. The current
system is packaged as a DLL and post-linked to the
application binary with a binary rewriter. Once loaded
into the application address space, instrumentation is
inlined into system DLL images. Mechanisms for in-
serting the interception system into an application’s
address space are described fully in a paper on our De-
tours package [6].

4. Intercepting Inter-Object Calls

The bulk the interception system’s functionality is
devoted to identifying interfaces, understanding their
relationships to each other, and quantifying the com-
munication through them. This section describes how
our system intercepts interface calls.

Invoking an interface member function is similar to
invoking a C++ member function. The first argument
to any interface member function is the “this”
pointer, the pointer to the interface. Figure 7 lists the
C++ and C syntax to invoke an interface member func-
tion.

4.1. Alternatives for Invocation Interception

There are four techniques, described below, avail-
able to intercept member function invocations:

Replace the interface pointer.
Rather than return the object’s interface pointer, the

interception system can return a pointer to an interface
of its own making. When the client attempts to invoke
an interface member function, it will invoke the instru-
mentation, not the object. After taking appropriate
steps, the instrumentation “forwards” the request to the
object by directly invoking the object interface. In one

sense, replacing the interface pointer is functionally
similar to using remote interface proxies and stubs. For
remote marshaling, COM replaces a remote interface
pointer with a local interface pointer to an interface
proxy.

Replace the interface virtual function table pointer.
The runtime can replace the virtual function table

pointer in the interface with a pointer to an instrumen-
tation-supplied virtual function table. The instrumenta-
tion can forward the invocation to the object by keeping
a private copy of the original virtual function table
pointer.

Replace function pointers in the interface virtual
function table.
Rather than intercept the entire interface as a whole, the
interception system can replace each function pointer in
the virtual function table individually.

Intercept object code.
Finally, the instrumentation system can intercept mem-
ber-function calls at the actual entry point of the func-
tion using inline redirection.

IStream *pIStream;

// C++ Syntax
pIStream->Seek(nPos);

// C Syntax
pIStream->pVtbl->pfSeek(pIStream, nPos);

Figure 7. Invoking an Interface Function.
Clients invoke interface member functions through the inter-
face pointer. The first parameter to the function (hidden in
C++) is the “this” pointer to the interface.

4.2. COM Programming Idioms

The choice of an appropriate technique for inter-
cepting member functions is constrained by COM’s
binary standard for object interoperability and common
COM programming idioms. Our interception system
attempts to deduce the identity of the each called object,
the static type of the called interface, the identity of the
called member function, and the static types of all
function parameters. In addition, our interception de-
grades gracefully. Even if not all of the needed infor-
mation can be determined, the interception system
continues to function correctly.

By design, the COM binary standard restricts the
implementation of interfaces and objects to the degree
necessary to insure interoperability. COM places four
specific restrictions on interface design to insure object
interoperability. First, a client accesses an object
through its interface pointers. Second, the first item
pointed to by an interface pointer must be a pointer to a

virtual function table. Third, the first three entries of
the virtual function table must point to the Query-
Interface, AddRef and Release functions for
the interface. Finally, if a client intends to use an inter-
face, it must insure that the interface’s reference count
has been incremented.

As long as an object programmer obeys the four
rules of the COM binary standard, he or she is com-
pletely free to make any other implementation choices.
For example, the component programmer is free to
choose any appropriate memory layout for object and
per-instance interface data. This lack of implementa-
tion constraint is not an accident. The original design-
ers of COM were convinced that no one
implementation (even of something as universal as the
QueryInterface function) would be suitable for all
users. Instead, they attempted to create a specification
that enabled binary interoperability while preserving all
other degrees of freedom.

Specification freedom breeds implementation diver-
sity. This diversity is manifest in the number of com-
mon programming idioms employed by COM
component developers. These idioms are described
here in sufficient detail to highlight the constraints they
place on the implementation of a COM interception and
instrumentation system. Each of these idioms has bro-
ken at least one other COM interception system or pre-
liminary versions of our interception system.

Virtual Function
Tables

pfWrite

pfQueryInterface

pfAddRef

pfRelease

pfSeek

pfRead

pfWrite

pfQueryInterface

pfAddRef

pfRelease

pfSeek

pfRead

pfWrite

pfQueryInterface

pfAddRef

pfRelease

pfSeek

pfRead

pfWrite

pfQueryInterface

pfAddRef

pfRelease

pfSeek

pfRead

Component

pIUnknownVtbl

Instance Data

• Reference
Count

• Component
Data…

pIDataSinkVtbl

pIPersistVtbl

pIStreamVtbl

Code

Other
Functions

…

QueryInterface

AddRef

Release

Client

IStream *

IPersist *

IDataSink *

IUnknown *

Figure 8. Simple Object Layout.
The object instance is allocated as a single memory block.
The block contains one VTBL pointer for each supported
interface, an instance reference count, and other object-
specific data. All interfaces share common implementations
of QueryInterface, AddRef, and Release.

Simple Multiple-Interface Objects
Most objects support at most roughly a dozen inter-

faces with no duplicates. It is common practice to lay
out these simple objects in a memory block containing
one VTBL pointer per interface, a reference count, and
internal object variables; see Figure 8. Within the ob-
ject’s member functions, a constant value is added to
the “this” pointer to find the start of the memory
block and to access object variables. All of the object

interfaces use a common pair of AddRef and
Release functions to maintain the object reference
count.

Multiple-Instance and Tear-off Interfaces
Sometimes, an object must support multiple copies

of a single interface. Multiple-instance interfaces are
often used for iteration. A new instance of the interface
is allocated for each client. Multiple-instance interfaces
are typically implemented using a tear-off interface. A
tear-off interface is allocated as a separate memory
block. The tear-off interface contains the interface’s
VTBL pointer, an interface-specific reference count, a
pointer to the object’s primary memory block, and any
instance-specific data. In addition to multiple-instance
interfaces, tear-off interfaces are often used to imple-
ment rarely accessed interfaces when object memory
size must be minimized, (i.e. when the cost of the extra
four bytes for a VTBL pointer per object instance is too
expensive).

Universal Delegators
Objects commonly use a technique called delegation

to export interfaces from another object to a client.
Delegation is often used when one object aggregates
services from several other objects into a single entity.
The aggregating object exports its own interfaces,
which delegate their implementation to the aggregated
objects. The delegating interface calls the aggregated
interface. This implementation is interface specific,
code intensive, and requires an extra procedure call
during invocation. The implementation is code inten-
sive because delegating code must be written for each
interface type. The extra procedure call becomes par-
ticularly important if the member function has a large
number of arguments or multiple delegators are nested
through layers of aggregation.

An obvious optimization and generalization of dele-
gation is the universal delegator. A universal delegator
is a type-independent, re-usable delegator. The data
structure for a universal delegator consists of a VTBL
pointer, a reference count, a pointer to the aggregated
interface, and a pointer to the aggregating object. Upon
invocation, a member function in the universal delega-
tor replaces the “this” pointer on the argument stack
with the pointer to the delegated interface and jumps
directly to the entry point of the appropriate member
function in the aggregated interface. The universal
delegator is “universal” because its member functions
need know nothing about the type of interface to which
they are delegating; they reuse the invoking call frame.
Implemented in a manner similar to tear-off interfaces,
universal delegators are instantiated on demand, one per
delegated interface with a common VTBL shared
among all instances.

Explicit VTBL Pointer Comparison.
Rather than using explicit constant offsets, some

COM components implemented in C locate the start of
an object’s main memory block by comparing VTBL
interface pointers. For example, the
IStream::Seek member function of the object in
Figure 8 starts with its “this” pointer pointing to
pIStreamVtbl. The object locates the start of its
memory structure by decrementing the “this” pointer
until it points to a VTBL pointer equal to the known
location of the VTBL for IUnknown. This calculation
will produce erroneous results if an interception system
has replaced the VTBL pointer.

Explicit Function Pointer Comparison.
In a manner similar to VTBL pointer comparison,

some components perform calculations assuming that
function pointers in the VTBL will have known values.
These calculations break if the interception system has
replaced a VTBL function pointer.

4.3. Interface Wrapping

Our instrumentation system intercepts invocation of
interface member functions by replacing the interface
pointer given to the object’s client with an interface
pointer to a specialized universal delegator, the inter-
face wrapper. The implementation of interface wrap-
pers was chosen after evaluating the functionality of
possible alternatives and testing their performance
against a suite of object-based applications.

For brevity, we often refer to the process of creating
an individual interface wrapper and replacing the inter-
face pointer with a pointer to an interface wrapper as
wrapping the interface. We also refer to interfaces as
being wrapped or unwrapped. A wrapped interface is
one to which clients receive a pointer to the interface
wrapper. An unwrapped interface is one either without
a wrapper or with the interface wrapper removed to
yield the original object interface.

Interface wrapping provides an easy way to identify
an interface and a ready location to store information
about the interface: in the per-instance interface wrap-
per. Unlike interface wrapping, inline redirection must
store per-instance data in an external dictionary. Ac-
cess to the instance-data dictionary is made difficult
because member functions are often re-used by multiple
interfaces of dissimilar type. This is definitely the case
for universal delegation, but common even for less ex-
otic coding techniques. As a rule, almost all objects
reuse the same implementation of QueryInterface,
AddRef, and Release for multiple interfaces.

Interface wrapping is robust, does not break applica-
tion code, and is extremely efficient. Finally, as we
shall see in the next section, interface wrapping is cen-

tral to correctly identifying the object that owns an in-
terface.

4.4. The Interface Ownership Problem

In addition to intercepting interface calls, the inter-
ception system attempts to identify which object owns
an interface. A major breakthrough in the development
of our interception system was the discovery of heuris-
tics to find an interface’s owning object.

The interface ownership problem is complicated be-
cause to COM, to the application, and to other objects,
an object is visible only as a loosely coupled set of in-
terfaces. The object can be identified only through one
of its interfaces; it has no explicit object identity.

COM supports the concept of an object identity
through the IUnknown interface. As mentioned in
Chapter 2, every interface must inherent from and im-
plement the three member functions of IUnknown,
namely: QueryInterface, AddRef, and Re-
lease. Through the QueryInterface function, a
client can query for any interface supported by the ob-
ject. Every object must support the IUnknown inter-
face. An object’s IUnknown interface pointer is the
object’s COM identity. The COM specification states
that a client calling QueryInterface-
(IID_IUnknown) on any interface must always re-
ceive back the same IUnknown interface pointer (the
same COM identity).

Unfortunately, an object need not provide the same
COM identity (the same IUnknown interface pointer)
to different clients. An object that exports one COM
identity to one client and another COM identity to a
second client is said to have a split identity. Split iden-
tities are especially common in applications in which
objects are composed together through a technique
known as aggregation. In aggregation, multiple objects
operate as a single unit by exporting a common
QueryInterface function to all clients. Due to
split identities, COM objects have no system-wide,
unique identifier.

The Obvious Solution
A client can query an interface for its owning

IUnknown interface (its COM identity). In the most
obvious implementation, the interception system could
maintain a list of known COM identities for each ob-
ject. The runtime could identify the owning object by
querying an interface for its COM identity and com-
paring it to a dictionary of known identities.

In practice, calling QueryInterface to identify
the owning object fails because QueryInterface is
not free of side effects. QueryInterface incre-
ments the reference count of the returned interface.
Calling Release on the returned interface would dec-
rement its reference count. However, the Release
function also has side effects. Release instructs the

object to check if its reference count has gone to zero
and to free itself from memory in the affirmative.
There are a few identification scenarios under which the
object’s reference count does in fact go to zero. In the
worse case scenario, attempting to identify an inter-
face’s owner would produce the unwanted side effect of
instructing the object to remove itself from memory!

Sources of Interface Pointers
To find a correct solution to the interface ownership

problem, one must understand how a client receives an
interface pointer. It is also important to understand
what information is available about the interface. A
client can receive an object interface pointer in one of
four ways: from one of the COM API object instantia-
tion functions; by calling QueryInterface on an
interface to which it already holds a pointer; as an out-
put parameter from one of the member functions of an
interface to which it already holds a pointer; or as an
input parameter on one of its own member functions.
Recall that our system intercepts all COM API func-
tions for object instantiation. At the time of instantia-
tion, the interception system wraps the interface and
returns to the caller a pointer to the interface wrapper.

An Analogy for the Interface Ownership Problem
The following analogy is helpful for understanding

the interface ownership problem. A person finds her-
self in a large multi-dimensional building. The building
is divided into many rooms with doors leading from
one room to another. The person is assigned the task of
identifying all of the rooms in the building and deter-
mining which doors lead to which rooms. Unfortu-
nately, all of the walls in the building are invisible.
Additionally, from time to time new doors are added to
the building and old doors are removed from the build-
ing.

Mapping the analogy to the interface ownership
problem; the building is the application, the rooms are
the objects, and the doors are the interfaces.

We describe the solution first in terms of the invisi-
ble room analogy, then as it applies to the interface
ownership problem. In the analogy, the solution is to
assign each room a different color and to paint the
doors of that room as they are discovered. The person
starts her search in one room. She assigns the room a
color—say red. Feeling her way around the room, she
paints one side of any door she can find without leaving
the room. The door must belong to the room because
she didn’t pass through a door to get to it. After paint-
ing all of the doors, she passes through one of the doors
into a new room. She assigns the new room a color—
say blue. She repeats the door-painting algorithm for
all doors in the blue room. She then passes through one
of the doors and begins the process again. The person
repeats the process, passing from one room to another.

If at some point the person finds that she has passed
into a room where the door is already colored, then she
knows the identity of the room (by the color on the
door). She looks for any new doors in the room, paints
them the appropriate color, and finally leaves through
one of the doors to continue her search.

The Solution to the Interface Ownership Problem
From the analogy, the solution to the interface own-

ership problem is quite simple. Each object is assigned
a unique identifier. Each thread holds in a temporary
variable the identity of the object in which it is cur-
rently executing. Any newly found interfaces are in-
strumented with an interface wrapper. The current
object identity is recorded in the interface wrapper as
the owning object. Finding the doors in a room is
analogous to examining interface pointers passed as
parameters to member functions. When execution exits
an object, any unwrapped interface pointers passed as
parameters are wrapped and given the identity of their
originating object. By induction, if an interface pointer
is not already wrapped, then it must belong to the cur-
rent object.

The most important invariant for solving the inter-
face ownership problem is that at any time the inter-
ception system must know exactly which object is
executing. Stored in a thread-local variable, the current
object identifier is updated as execution crosses through
interface wrappers. The new object identifier is pushed
onto a local stack on entry to an interface. On exit from
an interface wrapper (after executing the object’s code),
the object identifier is popped from the top of the stack.
At any time, the interception system can examine the
top values of the identifier stack to determine the iden-
tity of the current object and any calling objects.

There is one minor caveat in implementing the solu-
tion to the interface ownership problem. While clients
should only have access to interfaces through interface
wrappers, an object should never see an interface wrap-
per instead of one of its own interfaces because the ob-
ject uses its interfaces to access instance-specific data.
An object could receive an interface wrapper to one of
its own interfaces if a client passes an interface pointer
back to the owning object as an input parameter on an-
other call. The solution is simply to unwrap an inter-
face pointer whenever the pointer is passed as a
parameter to its owning object.

4.5. Acquiring Static Interface Metadata

Interface wrapping requires static metadata about
interfaces. The interface wrapper must be able to iden-
tify all interface pointers passed as parameters to an
interface member function. There are a number of
sources for acquiring static interface metadata. Possible
sources include the MIDL description of an interface,
COM type libraries, and interface proxies and stubs.

Acquiring static interface metadata from the MIDL
description of an interface requires static analysis tools
to parse and extract the appropriate metadata from the
MIDL source code. In essence, it needs the MIDL
compiler. Ideally, interface static metadata should be
available to the interface wrapping code in a compact
binary form.

Another alternative is to acquire static interface
metadata from the COM type libraries. COM type li-
braries allow access to COM objects from interpreters
for scripting languages, such as JavaScript [18] or Vis-
ual Basic [13]. While compact and readily accessible,
type libraries describe only a subset of possible COM
interfaces. Interfaces described in type libraries cannot
have multiple output parameters. In addition, the meta-
data in type libraries does not contain sufficient infor-
mation to determine the size of all possible dynamic
array parameters.

Static interface metadata is also contained in the in-
terface proxies and stubs. MIDL-generated proxies and
stubs contain marshaling metadata encoded in strings of
marshaling operators (called MOP strings). Static inter-
face metadata can be acquired easily by interpreting the
MOP strings. Unfortunately, the MOP strings are not
publicly documented. Through an extensive process of
trial and error involving more than 600 interfaces, at the
University of Rochester, we were able to determine the
meanings of all MOP codes emitted by the MIDL com-
piler.

Our interception system contains a MOP interpreter
and a MOP precompiler. A heavyweight, more accu-
rate interception subsystem uses our homegrown MOP
interpreter. A lightweight interception subsystem uses
the MOP precompiler to simplify the MOP strings (re-
moving full marshaling information) before application
execution.

The MOP precompiler uses dead-code elimination
and constant folding to produce an optimized metadata
representation. The simplified metadata describes all
interface pointers passed as interface parameters, but
does not contain information to calculate parameter
sizes or fully walk pointer-rich arguments. Processed
by a secondary interpreter, the simplified metadata al-
lows the lightweight runtime to wrap interfaces in a
fraction of the time required with full MOP strings.

While other COM instrumentation systems do use
the MOP strings to acquire static interface metadata,
ours is the first system to exploit a precompiler to opti-
mize parameter access

The interception system acquires MOP strings di-
rectly from interface proxies and stubs. However, in
some cases, components are distributed with MIDL
source code, but without interface proxies and stubs. In
those cases, the programmer can easily create interface
proxies and stubs from the IDL sources with the MIDL
compiler. OLE ships with about 250 interfaces without

MOP strings. We were able to create interface proxies
and stubs with the appropriate MOP string in under one
hour using MIDL files from the OLE distribution.

4.6. Coping With Undocumented Interfaces

A final difficulty in interface wrapping is coping
with undocumented interfaces, those interfaces without
static metadata. While all documented COM interfaces
should have static metadata, we have found cases where
components from the same vendor will use an undocu-
mented interface to communicate with each other.

When a function call on a documented interface is
intercepted, the interface wrapper processes the in-
coming function parameters, creates a new stack frame,
and calls the object interface. Upon return from the
object’s interface, the interface wrapper processes the
outgoing function parameters and returns execution to
the client. Information about the number of parameters
passed to the member function is used to create the new
stack frame for calling the object interface. For docu-
mented interfaces, the size of the new stack frame can
easily be determined from the marshaling byte codes.

When intercepting an undocumented interface, the
interface wrapper has no static information describing
the size of stack frame used to call the member func-
tion. The interface wrapper cannot create a stack frame
to call the object. It must reuse the existing stack
frame. In addition, the interface wrapper must intercept
execution return from the object in order to preserve the
interface wrapping invariants used to identify objects
and to determine interface ownership.

For function calls on undocumented interfaces, the
interface wrapper replaces the return address in the
stack frame with the address of a trampoline function.
The original return address and a copy of the stack
pointer are stored in thread-local temporary variables.
The interface wrapper transfers execution to the object
directly using a jump rather than a call instruction.

When the object finishes execution, it issues a return
instruction. Rather than return control to the caller—as
would have happened if the interface wrapper had not
replaced the return address in the stack frame—execu-
tion passes directly to the trampoline. As a fortuitous
benefit of COM’s callee-popped calling convention, the
trampoline can calculate the function’s stack frame size
by comparing the current stack pointer with the copy
stored before invoking the object code. The trampoline
saves the frame size for future calls, and then returns
control to the client directly through a jump instruction
to the temporarily stored return address.

The return trampoline is used only for the first invo-
cation of a specific member function. Subsequent calls
to the same interface member function are forwarded
directly through the interface wrapper.

By using the return trampoline, the interception
system continues to function correctly even when con-
fronted with undocumented interfaces. To our knowl-
edge, our is the only COM instrumentation system to
tolerate undocumented interfaces.

4.7. Evaluation of Interface Wrapping

Detailed in Table 2, wrapping the interface by re-
placing the interface pointer adds a 36% overhead to
trivial function like IUnknown::AddRef and just a
3% overhead to a function like IStream::Read.
Processing the function arguments with interpreted
MOP strings adds on average about 20% additional
execution overhead while processing with precompiled
MOP strings adds under 3% additional overhead. Re-
placing the interface pointer is preferred over the alter-
native interception mechanisms because it does not
break under common COM programming idioms.

Function

vs.

Interception Technique

IU
nk

no
w

n:
:A

dd
R

ef

IS
tr

ea
m

::R
ea

d

Direct Call 0.19us 15.73us

Replace Interface Pointer 0.26us 16.24us

Replace VTBL 0.26us 16.24us

Replace Function Pointer 0.26us 16.24us

Intercept Object Code 0.30us 16.29us

Table 2. Interface Interception Times.
Listed are the times for intercepting the IUnknown::-
AddRef and IStream::Read (with 256 bytes of payload
data) on a 200MHz Pentium PC.

5. Related Work

Brown [1, 2] describes an interception system for
COM using Universal Delegators (UDs). To use
Brown’s UD, the application programmer is entirely
responsible for wrapping COM interfaces. The pro-
grammer must manually wrap each outgoing or in-
coming parameter with a special call to the UD code.
While providing robust support for applications such as
object aggregation, Brown’s UD is not suitable for bi-
nary-only interception and instrumentation.

HookOle [10] is a general interception system for in-
strumenting COM applications. Like our system,
HookOle extracts interface metadata from MIDL MOP
strings. However, rather than replacing interface point-
ers, HookOLE replaces function pointers (in the VTBL)
and assumes that the same function will not be used to
implement multiple, dissimilarly typed interfaces.
HookOLE breaks whenever an object uses universal
delegation. HookOle provides no support for undocu-
mented interfaces. The ITest Spy Utility [14] uses
HookOle to provide a test harness for OLE DB compo-
nents.

Microsoft Transaction Server (MTS) [21] intercepts
inter-component communication to enforce transaction
boundaries and semantics. MTS wraps COM interfaces
in a manner similar to our interception system. How-
ever, MTS supports only a subset of possible COM
interfaces and does not provide support for undocu-
mented interfaces.

COM+ [9] provides a generalized mechanism called,
interceptors, for intercepting communication between
COM+ objects. A significant redesign of COM, COM+
has complete control over the memory layout of all
objects. This control significantly reduces the com-
plexity of interception, but only works for newly de-
signed COM+ components.

COMERA [24] is an extensible remoting architec-
ture for distributed COM communication. COMERA
relies on existing DCOM [3] proxies and stubs to inter-
cept cross-process communication. Neither COMERA
nor DCOM support in-process interception.

Eternal [17] intercepts CORBA IIOP-related mes-
sages via the Unix /proc mechanism. Intercepted
messages are broadcast to objects replicated for fault
tolerance. The /proc mechanism is limited to cross-
process communication and extremely expensive (re-
quiring at least two crossings of process boundaries).

Finally, a number of CORBA [23] vendors support
interception and filtering mechanisms. In general, in-
strumenting COM applications is more difficult than
equivalent CORBA applications. COM standardizes
interface format, but not object format. Each ORB
specifies parts of the CORBA object format related to
interception. So for example, the interface ownership
problem has no equivalent in CORBA, but the problem
of instrumenting binary CORBA application independ-
ent of ORB vendor remains unsolved.

6. Conclusions and Future Work

We have described a general-purpose interception
system for instrumenting COM components and appli-
cations. Important features of our interception system
include inline redirection of all COM object-
instantiation functions, interception of COM interfaces
through interface wrappers, accurate tracking of inter-

face ownership, and robust support for undocumented
interfaces.

Our interception system has been tested on over 300
COM binary components, 700 unique COM interfaces,
and 2 million lines of code. Using our interception
system, the Coign ADPS has automatically partitioned
and distributed three major applications including Mi-
crosoft PhotoDraw 2000.

While our interception system is COM specific, the
techniques described are relevant to CORBA ORBs.
For example, inline redirection and interface wrappers
could be used to intercept Portable Object Adapter
(POA) [20] functions and object invocations [22].

Bibliography

[1] Brown, Keith. Building a Lightweight COM Intercep-
tion Framework, Part I: The Universal Delegator. Mi-
crosoft Systems Journal, vol. 14, pp. 17-29, January
1999.

[2] Brown, Keith. Building a Lightweight COM Intercep-
tion Framework, Part II: The Guts of the UD. Microsoft
Systems Journal, vol. 14, pp. 49-59, February 1999.

[3] Brown, Nat and Charlie Kindel. Distributed Component
Object Model Protocol -- DCOM/1.0. Microsoft Corpo-
ration, Redmond, WA, 1996.

[4] Hartman, D. Unclogging Distributed Computing.
IEEE Spectrum, 29(5), pp. 36-39, May 1992.

[5] Hunt, Galen. Automatic Distributed Partitioning of
Component-Based Applications. Ph.D. Dissertation,
Department of Computer Science. University of Roch-
ester, 1998.

[6] Hunt, Galen. Detours: Binary Interception of Win32
Functions. Proceedings of the 3rd USENIX Windows
NT Symposium, pp. to appear. Seattle, WA, July 1999.

[7] Hunt, Galen and Michael Scott. A Guided Tour of the
Coign Automatic Distributed Partitioning System. Pro-
ceedings of the Second International Enterprise Dis-
tributed Object Computing Workshop (EDOC ’98), pp.
252-262. La Jolla, CA, November 1998. IEEE.

[8] Hunt, Galen C. and Michael L. Scott. The Coign
Automatic Distributed Partitioning System. Proceed-
ings of the Third Symposium on Operating System De-
sign and Implementation (OSDI ’99), pp. 187-200. New
Orleans, LA, February 1999. USENIX.

[9] Kirtland, Mary. Object-Oriented Software Develop-
ment Made Simple with COM+ Runtime Services. Mi-
crosoft Systems Journal, vol. 12, pp. 49-59, November
1997.

[10] Microsoft Corporation. HookOLE Architecture. Alpha
Release, Redmond, WA, October 1996.

[11] Microsoft Corporation. Internet Explorer. Version 2.0,
Redmond, WA, October 1997.

[12] Microsoft Corporation. Overview of the Corporate
Benefits System. Microsoft Developer Network, Janu-
ary 1997.

[13] Microsoft Corporation. Visual Basic Scripting Edition.
Version 3.1, Redmond, WA, October 1997.

[14] Microsoft Corporation. ITest Spy Utility. OLE DB
SDK, Version 1.5. Microsoft Corporation,, Redmond,
WA, January 1998.

[15] Microsoft Corporation. PhotoDraw 2000. Version 1.0,
Redmond, WA, November 1998.

[16] Microsoft Corporation and Digital Equipment Corpora-
tion. The Component Object Model Specification,
Redmond, WA, 1995.

[17] Narasimhan, P., L. E. Moser, and P. M. Melliar-Smith.
Exploiting the Internet Inter-ORB Protocol Interface to
Provide CORBA with Fault Tolerance. Proceedings of
the Thrid USENIX Conference on Object-Oriented
Technologies. Portland, OR, June 1997.

[18] Netscape Communications Corporation. Netscape
JavaScript Guide, Mountain View, CA, 1997.

[19] Object Management Group. The Common Object Re-
quest Broker: Architecture and Specification, Revision
2.0. vol. Revision 2.0, Framingham, MA, 1995.

[20] Object Management Group. Specification of the Port-
able Object Adapter (POA). OMG Document orbos/97-
05-15 ed. June 1997.

[21] Reed, Dave, Tracey Trewin, and Mai-lan Tomsen.
Microsoft Transaction Server Helps You Write Scal-
able, Distributed Internet Apps. Microsoft Systems
Journal, vol. 12, pp. 51-60, August 1997.

[22] Schmidt, Douglas C. and Steve Vinoski. Object Adapt-
ers: Concepts and Terminology. C++ Report, 9(11),
November 1997.

[23] Vinoski, Steve. CORBA: Integrating Diverse Applica-
tions within Distributed Heterogeneous Environments.
IEEE Communications, 14(2), February 1997.

[24] Wang, Yi-Min and Woei-Jyh Lee. COMERA: COM
Extensible Remoting Architecture. Proceedings of the
4th USENIX Conference on Object-Oriented Technolo-
gies and Systems (COOTS ’98), pp. 79-88. Santa Fe,
NM, April 1998. USENIX.

[25] Williams, Sara and Charlie Kindel. The Component
Object Model: A Technical Overview. Dr. Dobb’s
Journal, December 1994.

