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Abstract

Object systems, such as COM, promise to greatly sim-
plify applicationdevelopment through the reuse of “black-
box” components. Unfortunately, opaque components
create new challenges to understanding application per-
formance, behavior and structure.

We propose a conceptual framework, inter-component
communication analysis (ICCA), for understanding and
exploring the structure of component applications. ICCA
models an application as a graph with vertices represent-
ing components and edges representing communication
links and instantiationrelationships between components .
Communicationedges are labeled with the amount of com-
munication that would cross the interface if the connected
components were located in separate address spaces.

We describe the Coign runtime system for gathering the
data necessary to create the ICCA graph. Coign is dis-
tinctive in that it creates the entire ICCA graph using only
application binaries. It can in fact be used on components
lacking source code.

Quantifying inter-component communication is vital to
understanding and exploiting the architecture of compo-
nent applications. We demonstrate the use of ICCA and
Coign to determine an optimal distributionof a component
application across a network. ICCA helps programmers
by providing important information about the application
at exactly the level needed: the level of component com-
position.
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1 Introduction

Component systems offer programmers and users great
potential for simplifying development, increasing object
reuse, and reducing application costs. Systems such as
ActiveX/COM [19], OpenDoc [1], Java Beans [15] and
others [7, 13] support creation of applications by aggregat-
ing components. Components may come from a program-
mer’s private library, from code shared by a colleague,
or from a commercial component provider. Components
can be combined to create applications cheaply and with
relatively little effort.

Components create new challenges to understanding
application performance, behavior and structure. With
often dissimilar origins, components may be written in
any of a number of languages. An application may even
use components for which a programmer has no access to
source code. Given these obstacles, it can be very difficult
for the programmer to explore and explain an application’s
runtime structure.

We propose a conceptual framework, inter-component
communication analysis (ICCA), for understanding the
software architecture of component applications. ICCA
depicts the runtime structure and behavior of an applica-
tion as a graph. Vertices represent components. Edges rep-
resent connections between components including com-
munication links and instantiation relationships. Edges
are labeled with quantitative measurements of the com-
munication between the connected components. Edges
and vertices are also labeled with constraints, such as lim-
its on where a component may be instantiated or which
components must reside in isolated address spaces.

Using the ICCA graph, the programmer can easily see
the runtime software architecture of the application. By
examining vertices the programmer can determine the
numbers and types of components used by the application.
Instantiation edges let a programmer see parent-child cre-
ation relationships; for example, a programmer could see
that a form component created a number of text field and
button controls. Communication edges provide valuable
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information about which components communicate with
each other during execution and quantify data flow across
communication interfaces.

With ICCA the programmer can make informed deci-
sions on how to modify an application to achieve specific
goals. Given the ICCA graph for a non-distributedcompo-
nent application,we show how the programmer can choose
an optimal component distribution across a network to
create client-server, groupware-enabled, or multiprocess
versions of the application. ICCA can help a program-
mer determine which components are the best candidates
for locating in a common dynamic link library (DLL) or
when a DLL should be split to reduce virtual memory us-
age. Finally, ICCA information can help a programmer
understand the impact of interface factorization in sys-
tems, such as COM, that support multiple interfaces per
component.

We have developed Coign, an efficient instrumentation
system for gathering the runtime information needed to
create ICCA graphs. Implemented on Windows NT, Coign
measures in-process, inter-component communication by
calculating the amount of data that would be transported
between two components if they were located in separate
processes. Using a single instrumented execution of a
non-distributed application, Coign can predict communi-
cation costs for a variety of distributions and networks.
In addition to communication Coign captures other data
useful for the ICCA graph including component instanti-
ation and connectivity. Although tailored to the specific
requirements of the Component Object Model (COM), the
Coign strategy and all of the related ICCA techniques are
readily adaptable to other component systems.

In the next section we describe the implementation of
Coign. In Section 3 we demonstrate how information
gathered by Coign for ICCA can be used to determine
an optimal distribution for a client-server application. We
enumerate a number of other areas where we believe ICCA
will prove effective for understanding and exploiting ap-
plication architecture in Section 4. Section 5 describes
application overhead of the Coign runtime. We describe
related work in Section 6. Finally, in Section 7 we discuss
our conclusions and propose future work.

2 Coign: An ICCA Toolkit

Coign is a runtime instrumentation system for gathering
information needed for inter-component communication
analysis (ICCA). Coign gathers ICCA data by re-routing
calls for the component system runtime and component
member functions. Summary data is stored in a log file.
Utilities in the Coign toolkit analyze the log file to create an
ICCA graph and assist the programmer in understanding
and exploiting the information contained within the graph.

interface IStreamOps : IUnknown
{

HRESULT write([in, size_is(nSize)]
BYTE *pData,
[in] long nSize,
[out] long *nWrote);

HRESULT read([out, size_is(nSize),
length_is(*nRead)]
BYTE *pData,
[in] long nSize,
[out] long *nRead);

HRESULT seek([in] long offset);
};

Figure 1: IDL definition for the IStreamOps interface.
Like all COM interfaces, IStreamOps inherits from
IUnknown. The size is and length is attributes
declare dynamic sizes for marshaling parameters.

The Coign runtime consists of a single dynamic link
library, coign.dll. In the current implementation,
coign.dll is manually linked into the application for
analysis. In a future version of Coign, an execution loader
will load the application and patch coign.dll into it
using the same OS APIs used by debuggers.

2.1 Communication Measurement

Creating a full ICCA graph requires measurement of com-
munication across interfaces between components. Con-
sider the case where an array is passed between two com-
ponents using a pointer. If both components are in the same
address space, only the pointer moves from one component
to the other. The array is not copied. If the components are
located in separate address spaces, the entire array must be
copied from the caller’s address space to that of the callee.
We quantify the communication between two components
as the number of bytes that would be passed between them
if they were located in separate address spaces.

To measure the communication that would be necessary
if a message had to be passed between two address spaces,
Coign uses the same information the system would use to
marshal the data. Figure 1 contains the interface definition
language (IDL) description of a sample COM interface,
IStreamOps. Function parameters in IDL interfaces are
strongly typed and labeled as either input ([in]), output
([out]) or both ([in out]). In addition, bounds are
given for all arrays and pointer attributes are specified to
aid marshaling.

For a distributed application, the IDL source files are
passed through the IDL compiler to generate header files
for the programmer’s language of choice and RPC stubs for
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marshaling and unmarshaling function parameters across
address-space boundaries. It is standard practice for com-
ponent providers to supply IDL definitions for the inter-
faces their components export.

All of the information needed for gathering ICCA data
on a message is in the IDL file for the interface. Specif-
ically, the IDL declaration of an interface contains in-
formation about the number of member functions in the
interface, the number of parameters passed to each func-
tion, and complete type information about each parameter.
Rather than create a new compiler to parse IDL files, we
utilize information from the output files generated by the
standard COM IDL compiler.

The Coign instrumentationuses information from prox-
ies created by the IDL compiler to measure communication
between components within the same address space. In
essence, measurement is a side product of data marshaling
with the optimization that no data needs to be copied.

2.2 Aliases

ICCA requires that all inter-component messages be in-
strumented. Unlike Smalltalk [11], or Objective-C [9],
COM has no central message dispatcher. All messages
are passed as indirect function calls through an interface’s
virtual function table (vtable). The COM runtime drops
out of the way once a component has been instantiated.

While the COM calling mechanism results in fast inter-
component communication, it also complicates the instru-
mentation required for ICCA. There is no single location
where ICCA instrumentation can be inserted into an ex-
ecutable. Instrumentation must be inserted around every
vtable.

The Coign runtime inserts instrumentation around a
component by creating an alias. An alias is a dynamic
component, created at runtime, that acts as a proxy for the
real component. Any client of the real component receives
an interface pointer to the alias not to the component. Any
calls to alias member functions are processed by the Coign
instrumentation then forwarded to the alias.

Figure 2 shows a component and its alias. The alias
holds pointers to each interface instantiated by the real
component. A separate interface alias exists for each
real interface. Whenever the COM library or an in-
strumented component returns a pointer to an interface,
Coign replaces the interface pointer with a pointer to
the corresponding interface alias. Interface alias cre-
ation is demand driven. If the component returns a
pointer to a new interface, Coign creates a new inter-
face alias. Important functions that can trigger inter-
face alias creation include CoCreateInstance and
IUnknown::QueryInterface.

Interface Alias

Interface Alias

Interface Alias

Interface Alias

Alias

Interface

Interface

Interface

Interface

Component

Figure 2: A component and its alias. The component alias
creates an interface alias for each real interface.

2.3 Aliased Function Calls

Each interface alias must strictly observe COM calling
conventions when forwarding messages. COM follows
modified C++ calling conventions for member functions.
Specifically, the first parameter to any member function is
the interface pointer, the implicit this parameter. The
implicit interface pointer is followed by any explicit pa-
rameters. On the Windows NT platform, parameters are
always passed on the stack from right to left. For a fixed
number of arguments, the callee pops the stack.

All interface aliases within an address space use a single
vtable. Entries in the alias vtable point to an array of
trampoline functions. The trampoline functions call into
the Coign runtime with a pointer to the alias being called,
an the index of the trampoline function in the vtable,
and a pointer to the current stack frame.. The alias pointer
and vtable index are sufficient to uniquely describe the
component function intended by the caller.

In the common case, where Coign can retrieve informa-
tion from the IDL-generated proxy, calls on an alias pointer
jump through the trampoline to the Coign runtime. The
runtime records information about the input parameters
and forwards the call to the “real” component function.
Control returns through the runtime, where information
about output parameters is recorded, to the trampoline and
back to the caller. (See Figure 3.) The Coign runtime
forwards the call by making a copy of the trampoline’s
stack frame. The runtime returns to the trampoline the
size of the stack frame to be popped as needed to follow
the callee-pops-stack calling convention.
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Figure 3: Calling sequence for an aliased function. Con-
trol passes from caller to trampoline function (1), through
the Coign runtime (2) into the component (3) and back
(4,5,6).
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Figure 4: Calling sequence for first call to an aliased func-
tion without IDL information. Control passes from caller
to trampoline function (1) then into the Coign runtime
(2). The runtime returns a special value to the trampo-
line (3) which patches the stack. Control jumps directly
into the component function (4) which returns to another
trampoline (5) and then jumps back into the caller (6).

In the uncommon case, Coign has no IDL information
about the interface. Shown in Figure 4, control passes
from the caller through the trampoline into the Coign run-
time. In this case, the call can’t be forwarded through the
runtime because it has no reliable way of determine the
stack frame size. The runtime returns a special token to
the trampoline which passes control directly into the “real”
component function using a jump rather than a function
call. The jump gives the component function the stack
frame passed to the trampoline. However, before jump-
ing, the trampoline modifies the return instruction pointer
on the stack to point to a special return trampoline. Con-
trol returns from the component function directly to the
return trampoline which records the size of the used stack
frame by comparing the current stack pointer with the stack
pointer saved before starting the call. The trampoline then
jumps directly back into the caller. All future calls to
the same component member function will be forwarded

through the Coign runtime using the newly acquired stack
frame size.

2.4 Recorded ICCA Data

The Coign runtime creates a single output file,
coign.msg containing summary information about the
component application. Coign.msg contains the fol-
lowing information (listed by event type):

Component creation (instantiation) :
Component class GUID.
Runtime identifier (RTID) of new component.
RTID of component that requesting creation.
Time of creation.

Component destruction :
Component RTID.
Time of destruction (last release).

Interface creation (instantiation) :
Interface class GUID.
RTID of new interface.
RTID of the owning component.
Time of creation.

Interface destruction :
Interface RTID.
Time of destruction (last release).

Interface member-function calls :
Interface RTID.
RTID of calling component.
RTID of called component.
Total size of incoming parameters.
Total size of outgoing parameters.

Information for member-function calls is aggregated by
[caller, callee, interface] tuple. Running totals accumulate
separately for incoming and outgoing parameters. Coign
accumulates the number of messages and number of bytes
communicated for messages of several sizes including
messages up to 16 bytes, 64 bytes, 256 bytes, 1K, 4K,
16K, 64K, and messages over 64K in a form of log4 his-
togram. Accumulating message totals by message size
gives the programmer information about communication
granularity independent of network parameters. Message
totals can then be combined with parameters for a specific
network to determine total networking costs.

As alluded to in the previous section, Coign cannot al-
ways find IDL information for an interface. It is usually
the case that IDL information is missing or incomplete
only for interfaces internal to a component. Lacking IDL
information, Coign cannot determine message size. Coign
still manages to install sufficient instrumentation around
the interface to count the number incoming calls. Coign
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labels the affected ICCA graph edges with an uncertainty
count of the number of calls that could not be fully mea-
sured.

2.5 Other Utilities

In addition to the coign.dll runtime, the Coign toolkit
also contains a utility, regcoi for caching, in the sys-
tem registry, information about all interfaces known to
have IDL information. Another utility,netcoimeasures
available computation and network resources. Given a list
of distributed machines, netcoi instantiates one bench-
mark component on each machine. The benchmakr com-
ponent measures the relative computation power of the
machine and gathers information about available memory
from the operating system. Netcoi then sends multiple
messages between each machine measuring average avail-
able network bandwidth and latencies for a wide range of
message sizes. The network parameters are placed in the
registry for use when calculating distributed communica-
tion costs.

3 Component Distribution

The shared goal of ICCA and the Coign toolkit is to
make it easier for programmers not only to understand,
but also to exploit the software architecture of component
applications. In this section we present preliminary data
demonstrating the power of ICCA to help solve a difficult
software challenge: given an existing application deciding
how to distribute its components across a network to create
either a client-server or a groupware-enabled application.

Much effort has been invested in attempts to reduce
the difficulty of developing distributed applications. Run-
time systems, such as RPC [22], DCE [12], DSOM [14],
CORBA [23], and DCOM [5] ease development of dis-
tributed applications by providing convenient mechanisms
for transferring control and data from one machine to an-
other.

Other systems, including Amoeba [21], , DOME [8],
Globe [13], Infospheres [7] and Legion [18], attempt to
reduce the development costs of distributed applications by
creating completely distributed environments. Their gen-
eral philosophy is that all objects, regardless of their loca-
tion, are treated equal. The downside of these locality-free
models is that they often fail to exploit local optimizations
and place strict requirements on application structure.

The solution to creating distributed applications with
ICCA is to distribute existing applications rather than
create new distributed applications. A distributed client-
server application normally consists of a graphical user in-
terface (GUI) front-end and a storage back-end. The GUI
resides on the user’s workstation and the storage resides

on a remote server. The GUI and storage may each consist
of multiple components. Between GUI and storage may
be a large number of processing components. The ICCA
graph contains nodes for each of the components with lo-
cation constraints on the GUI and storage components.
The programmer’s goal is often to create a distribution
of the remaining components that uses minimum network
resources and provides maximum performance. To a first
approximation, the problem is to cut the ICCA graph so
that communication costs across the cut are minimized.

Client-server and groupware applications differ mainly
in their motivation for distribution and use of consistency
models. The simple model for a multi-user, groupware
application is similar to a client-server application with
the exception that GUI components must be replicated for
each user. Again the problem is to create a cut between
components located on the server and components located
on user workstations.

3.1 Experimental Environment

Our experimental environment consists of a suite of
document-processing components. The suite contains
over 180 component classes supporting approximately 200
interfaces. Components range in functionality from single
buttons and labels to a word processor and a spreadsheet.
The larger components, such as the word processor, ag-
gregate many of the smaller components.

Our test application is a small shell that instantiates
components from the suite based on document require-
ments. Code for the application and the entire component
suite is over 115,000 lines of C code.

Our test equipment consists of four 486dx2 66MHz PCs
connected with an isolated 10 Mb/s Ethernet network.
Each machine has 32MB of RAM and at least 500MB
of local disk. Unless otherwise noted, numbers reported
are the average from multiple runs. The first timing for
each run was discarded to limit the effects of startup VM
operations.

Our experimental results were gathered using a small
set of documents. The documents are categorized by their
principle type of component (see Figure 5). Figure 6 lists
number of components, interfaces, interface calls for each
document, number of calls with uncertain parameter size,
and bytes of communication across interfaces.

3.2 Experimental Procedure

To verify the applicability of ICCA to the problem of
creating distributed applications, we experimented with
several hand-created distributions of the word processing
application. Our goal is to show that given several possi-
ble distributions, ICCA can provide the programmer with
sufficient information to determine which distribution is
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Execution
Document Category Size (Bytes) Time (ms)

text0 word proc. 8,192 2,136
text1 word proc. 1,793,024 7,173
text2 word proc. 4,955,648 20,597
text3 word proc. 10,528,768 37,811
grid0 spreadsheet 8,704 2,276
grid1 spreadsheet 895,488 20,132
grid2 spreadsheet 1,808,384 40,047
grid3 spreadsheet 6,450,176 73,606

Figure 5: Experimental Documents. Documents are cat-
egorized by their principle type of component. Execution
time listed is on a 66MHz Intel 486dx2 PC.

Comm.
Doc. Comp. Inter. Calls Unc. (KB)

text0 307 1,166 3,879 102 102
text1 309 1,164 5,166 196 29,478
text2 308 1,167 5,112 192 90,648
text3 309 1,165 5,166 203 163,770
grid0 254 981 3,775 63 115
grid1 254 984 3,775 63 115
grid2 254 987 3,775 63 115
grid3 254 983 3,775 63 115

Figure 6: Principle Coign Measurements. Listed for each
document is the number of instrumented components,
instrumented interfaces, interface calls, uncertainty, and
bytes communicated across interfaces

optimal before requiring any coding. Our criterion for
optimality is that the distribution minimize network usage
and execution time.

In the future, we plan to identify algorithms for enumer-
ating all possible distributions of an application’s compo-
nents and for finding the optimal distribution. We also
plan to explore issues related to adapting the algorithms
for dealing with other constraints on component location
including binary compatibility, licensing, security and re-
source availability.

For our experiments we used the word-processing doc-
uments (text0 - text3) described in Section 3.1. Our
goal is to find a distribution of the word-processing appli-
cation for a client who wants to load and view a subset of
the document. The documents reside on a central server.

At runtime, the word processor uses over 300 compo-
nents. The application execution, however, is dominated
by four components (see Figure 7). Progressing from the
server-based document file to the client display, the com-

Client Display

Document File

Document Component

Layout Component

Paint Component

Viewer Component

Figure 7: Simplified composition of the word-processing
components.

ponents are: document component, layout component,
viewer component, and paint component.

We examine three possible distributions:

File System The first distribution retrieves files directly
from the server using the CIFS [17] distributed file
system. In this case, all of the components are located
on the client. For this experiment, we calculate net-
work traffic as the number of bytes retrieved from the
server, namely the size of the document. While this is
a conservative estimate, it is the estimate that would
be calculated by ICCA if we had instrumented inter-
faces between components and the operating system.

Window System In the second distribution, the applica-
tion is split at the interface between the display sub-
system and the components. This is analogous to
running the application on the server using the X
Window System [24] to display documents on the
client’s screen. To measure network traffic in this
case, we use the calculation of message traffic be-
tween the paint component and all other components
in the system. Again, this is a conservative estimate,
but will suffice for our needs.

Layout The final distribution splits the system roughly
between the layout component and the document
component. Communication at this interface is mea-
sured directly by Coign.

The first two distributions where chosen because they
represent distributions normally available to programmers
in workstation environments. They represent a level of
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Figure 8: Execution times for application distributions
normalized against time for the non-distributed (local) ap-
plication.

Document File System Layout Window Sys.

text0 1,793,024 5,068 842
text1 1,793,024 24,720 30,034,116
text2 4,955,648 24,756 92,673,476
text3 10,528,768 24,938 167,548,626

Figure 9: Estimated traffic (in bytes) across distributed
interfaces for each distribution.

distribution most readily available to a programmer. The
third distribution is entirely across interface boundaries.
The program modifications to achieve this distribution
were trivial. Our eventual goal is to create a future version
of Coign that could load an application and create distri-
butions similar to the third one without any source code
modification.

3.3 Experimental Results and Discussion

Figure 8 shows execution times for two of the applica-
tion distributions normalized against execution time for the
non-distributedapplication. Times for the window system
distribution are not shown. Measurements of communi-
cation into the paint component are sufficiently high to
suggest that a window system distribution would perform
very poorly. Text3 sends just under 160MB to the paint
component. While we could improve the performance of
the display-system distribution with caching, the required
source modifications would be non-trivial.

Execution of the layout distribution ranges from 48%
slower to 26% faster than execution using the CIFS dis-
tributedfile system. For small documents, such as text0,
the layout distribution suffers because it must wait for
the document component process to start on the server.
The file system distribution incurs no similar delays be-
cause the file server is always loaded. In many distribu-
tion scenarios, the process containing the server-located
components will be started prior to most clients. This
is particularly true for groupware applications where the
server document components will be instantiated for the
first user and reused for additional users. In other cases,
such as clients on low bandwidth connections, high mes-
sage cost will increase the performance gains of the layout
distribution.

As can be seen in Figure 9, for the large documents
the number of bytes transferred using the file system is
much larger than the number transferred across the lay-
out/document interface. This might lead one to predict a
greater improvement in performance. However, the lay-
out distribution suffers some performance degredation be-
cause it sends very small network packets. CIFS uses
larger packets to amortize network latency delays.

Our experimental data suggests that a layout distri-
bution will have the lowest communication costs for a
simple client/server application. A groupware applica-
tion would have a similar optimal distribution as multiple
clients would widen the performance gap between the lay-
out/document distribution and other distributions.

We should note that it is impossible for the Coign run-
time to create automatically a groupware application. Sup-
porting multiple concurrent users requires correct use of
a consistency model for controlling access by multiple
readers and writers. Correct implementation of a con-
sistency model requires semantic information beyond the
scope of ICCA. While Coign and ICCA can’t create a
groupware-enabled application, they can tell the program-
mer which interfaces are most desirable for distribution.
The programmer can use this information to decide how
to implement semantic consistency.

4 Other Uses of ICCA and Coign

ICCA provides programmers with information about the
number and types of components instantiated at runtime. It
also provides informationabout who created a component,
what interfaces a component has exported and who has
communicated with a component. Data gathered by the
Coign instrumentation system contains information about
the amount of communication from one component to
another and the interfaces used.

We have already shown how ICCA can be used in de-
termining how to distribute components of an application,
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either for a client-server distribution or for multiple users.
ICCA is also useful in answering programmer questions
about the following issues:

Unknown Connections Carmichael et al. [6] document
that even in well-designed, well-written programs
there are often connections between components that
are either not well understood or not known to ex-
ist by the system designers. A simple application
of ICCA is to provide the designer with a mapping
of the existing connections between components at
runtime.

Component Space Overhead Components are normally
grouped into collections in DLLs. Applications that
use only a few of the components in a DLL are un-
necessarily burdened. Using the ICC graph, the pro-
grammer can determine when a DLL should be split
to reduce memory usage or working-set size.

Component Temporal Locality It is quite easy for the
programmer to turn the Coign instrumentationon and
off at desired points of execution by disabling call
measurement and recording. Using time-bounded
ICCA, a programmer can explore how the make-up
of active components and interfaces changes during
the temporal execution of an application. Program-
mers can tune working set size, for example, by re-
leasing references to components that aren’t being
using during a memory-critical section of execution.

Custom Marshalling and Caching Candidates COM
provides support for custom marshaling of interfaces.
Using custom marshaling a programmer can optimize
the marshaling protocol for a particular component.
Custom marshaling can be used, for example, for
message aggregation or local caching of information
from a remote component. Again, ICCA is important
because it helps a programmer know what interfaces
are critical to performance. Using ICCA a program-
mer can also predict the benefit of reducing commu-
nication by a specified amount on a given interface
before actually coding the modification.

Components pose new challenges to programmers be-
cause they are often used in large applications with dy-
namic behavior. ICCA helps programmers by providing
important information about the application at exactly the
level needed: the level of component composition.

5 Coign Runtime Overhead

A programmer gathers data needed for ICCA by running
the application with Coign instrumentation. In this section
we describe the overhead of the Coign runtime.
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Figure 10: Normalized execution time. Execution times
with Coign instrumentation are normalized against those
without Coign.

Figure 10 shows the time to load, process, and display
the first page of each of the documents listed in Figure 5 .
Execution time with Coign instrumentation is normalized
against execution time without Coign instrumentation.

The current Coign implementation requires a relatively
large amount of time during startup to load information
from the IDL proxies for each interface. After IDL in-
formation has been loaded, there is a marginal execution
overhead for measuring and recording parameter data with
each function call across an interface.

As can be seen in Figure 10, Coignslows application ex-
ecution anywhere from 9% to 142%. Importantly, the pro-
portion of overhead reduces with longer execution times
as the cost of loading IDL proxies is amortized.

Figure 11 shows the absolute time overhead of the Coign
runtime for each document. Overhead for the larger word-
processing documents is much higher than that of the
spreadsheet documents. Several of the interfaces used
extensively by the word-processing components pass data
proportional to the size of the document. The current
Coign instrumentation scans all parameter data sequen-
tially. Overhead increases linearly with parameter size.
Spreadsheet document overhead stabilizes because the in-
terfaces used don’t pass data proportional to the document
size. We believe that for most cases we can remove the
need to scan sequentially all parameters. This modifica-
tion would tend to stabilize overhead as the size of word-
processing documents grows.

Memory overhead for Coign is approximately 3.5MB
for either the word-processing or spreadsheet documents.
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Figure 11: Absolute Coign execution overhead (in mil-
liseconds).

For grid0, total overhead is 3424KB including 152KB
for coign.dll and 2120KB for the IDL proxies. The
remainder of the overhead, 1152KB, consists of aliases and
running totals for gathering message statistics. Average
runtime overhead per interface, not counting IDL proxies,
is about 1K.

It should be noted that for all of the documents, the
size of the coign.msg file was less than 64K. The only
isolated events logged to coign.msg are instantiation
and destruction of components and interfaces. Since in-
stantiation and destruction tend to be relatively expensive
operations, they easily hide the cost of logging the event.
Information about member function calls is accumulated
using the log4 histograms described in Section 2.4. Mem-
ory costs of the histograms do not increase over time. All
of the histograms are logged to coign.msg when the
application terminates.

6 Related Work

A number of researchers have recognized the potential
benefits of instrumenting message communication. Their
work highlights the richness of information available from
monitoring inter-object messages.

Cunningham and Beck [10] instrument message calls
by modifying the Smalltalk-80 debugger. The purpose
of their system is to create object call diagrams when the
programmer issues step or send commands. Unlike
the debugger’s runtime stack display, which reflects only
the current state of computation, the call diagram contains
accumulated calling information.

Kleyn and Gingrich [16] describe the GraphTrace sys-
tem for program visualization. They instrument the
LISP runtime in STROBE to record all method invoca-
tions. Runtime information is combined with static anal-
ysis to provide several views animating the execution of
the instrumented program. They use two instrumenta-
tion systems. One records message information, specifi-
cally sender, receiver and arguments; the second animates
method invocations.

Böcker and Herczeg [4] instrument individual meth-
ods to uncover dynamic properties of Smalltalk programs.
Their work consists of two parts, TRICK, an instrumenta-
tion system, and TRACK [2, 3], a graphical front end for
manipulating the instrumentation. As with GraphTrace,
the focus is on visualizing different parts of program exe-
cution. Using TRACK, the programmer can place a tracer
around a particular class, object, or method. Execution
enters the tracer before proceeding into the surrounded
code. The user defines and attaches trace filters to the
tracer. Applicable filters are called before and after the
instrumented code. They suggest using filters to display
message arguments and return values, check argument val-
ues for validity, and update program animations.

HookOLE [20] is a general purpose instrumentatin sys-
tem for instrumenting COM interface. HookOLE redirects
vtable function pointers to special interface wrappers.
Interface wrappers call out to user-defined interface fil-
ters that are allowed to examine message parameters and
return values. HookOLE is used primarily to verify com-
pliance to interface standards using filters that check the
validityand conformance of member-function parameters.
HookOLE provides neither statistical information about
messages nor a standard procedure for determining the
sender of a message.

Our use of application internal communication mea-
surements is distinctive. We can measure internal com-
munication by leveraging IDL stubs to quantify the amount
of data that would have been copied if the communication
was not internal to the process. Whereas past researches
have focused on individual messages between objects, our
work focuses on the importance of total communication
between objects.

7 Conclusions and Future Work

We have presented inter-component communication anal-
ysis (ICCA), a technique for understanding component
programs. The principle tool of ICCA is the ICCA graph
containing vertices for each component and edges describ-
ing component relationships including total communica-
tion costs.

As demonstrated in Section 3, quantifying communica-
tion between components can be extremely useful. The
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component suite in our experiments includes a low-level
component for painting document details in a window. In
a number of our experiments, even for large documents
there are only three components connected to the painting
component. However, in one case almost 160MB flows
across a single interface connection into the paint compo-
nent. If the programmer had distributed the paint com-
ponent without knowing predicted communication costs,
the application would have suffered a 12-fold increase in
execution time on a 10Mb/s Ethernet.

We have described the implementation of Coign, a
toolkit for gathering runtime data and creating the ICCA
graph. Among Coign’s strengths are low instrumentation
overhead, full support for dynamic applications and the
ability to instrument components for which the program-
mer lacks source code.

We are currently exploring a number of areas for future
work including:

Distributed Runtime Our primary test domain deals
with client-server and groupware distributed appli-
cations. While our preliminary research has dealt
with the issue of how to take a single-machine ap-
plication and distribute it, it is also important to be
able to tune the performance of an existingdistributed
application. We plan to add full distributed support
through a distributed Coign runtime.

ICCA Visualization The current ICCA graph generated
by Coign is quite primitive. We plan to create a GUI
interface to the runtime to aid the programmer in anal-
ysis and visualization of the graph. An important part
of such a GUI interface would let programmers ask
and receive immediate answers to “what-if” ques-
tions about possible application distributions.

Automatic Distribution Our eventual goal is to take an
unmodified component application and distribute it
without modifying any source across a network.
There are two ways of distributing the application.
One is to distribute the application components ac-
cording to a one-time distribution suggested and ap-
proved by the programmer. The alternative is to de-
termine the distribution dynamically every time the
program is run. The second alternative would allow
the program in effect to customize its distribution to
the currently available resources. We consider this a
promising direction for further research.
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[3] H.-D. Böcker and J. Herczeg. TRACK- A Trace
Construction Kit. In CHI-90, Human Factors in
Computer Systems Conference Proceedings, pages
415–422, Seattle, WA, April 1990.
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