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Abstract 

Scalable distributed shared-memory architectures rely on coher- 
ence controllers on each processing node to synthesize cache- 
coherent shared memory across the entire machine. The coher- 
ence controllers execute coherence protocol handlers that may be 
hardwired in custom hardware or programmed in a protocol proces- 
sor within each coherence controller. Although custom hardware 
runs faster, a protocol processor allows the coherence protocol to 
be tailored to specific application needs and may shorten hardware 
development time. Previous research show that the increase in ap- 
plication execution time due to protocol processors over custom 
hardware is minimal. 

With the advent of SMP nodes and faster processors and net- 
works, the tradeoff between custom hardware and protocol proces- 
sors needs to be reexamined. This paper studies the performance 
of custom-hardware and protocol-processor-based coherence con- 
trollers in SMP-node-based CC-NUMA systems on applications 
from the SPLASH-2 suite. Using realistic parameters and detailed 
models of existing state-of-the-art system components, it shows 
that the occupancy of coherence controllers can limit the perfor- 
mance of applications with high communication requirements, 
where the execution time using protocol processors can be twice 
as long as using custom hardware. 

To gain a deeper understanding of the tradeoff, we investigate 
the effect of varying several architectural parameters that influence 
the communication characteristics of the applications and the un- 
derlying system on coherence controller performance. We identify 
measures of applications’ communication requirements and their 
impact on the performance penalty of protocol processors, which 
can help system designers predict performance penalties for other 
applications. We also study the potential of improving the perfor- 
mance of hardware-based and protocol-processor-based coherence 
controllers by separating or duplicating critical components. 
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1 introduction 

Previous research has shown convincingly that scalable shared- 
memory performance can be achieved on directory-based cache- 
coherent multiprocessors such as the Stanford DASH [6] and MIT 
Alewife [I] machines. A key component of these machines is the 
coherence controller on each node that provides cache coherent ac- 
cess to memory that is distributed among the nodes of the multi- 
processor. In DASH and Alewife, the cache coherence protocol is 
hardwired in custom hardware finite state machines (FSMs) within 
the coherence controllers. Instead of hardwiring protocol handlers, 
the Sun Microsystems S3.mp [lo] multiprocessor uses hardware 
sequencers for modularity in implementing protocol handlers. 

Subsequent designs for scalable shared-memory multiproces- 
sors, such as the Stanford FLASH [S] and the Wisconsin Typhoon 
machines 1121, have touted the use of programmable protocol pro- 
cessors instead of custom hardware FSMs to implement the co- 
herence protocols. Although a custom hardware design generally 
yields better performance than a protocol processor for a particular 
coherence protocol, the programmable nature of a protocol proces- 
sor allows one to tailor the cache coherence protocol to the appli- 
cation [2, 81, and may lead to shorter design times since protocol 
errors may be fixed in software. The study of the performance ad- 
vantage of custom protocols is beyond the scope of this paper. 

Performance simulations of the Stanford FLASH and Wiscon- 
sin Qphoon systems find that the performance penalty of protocol 
processors is small. Simulations of the Stanford FLASH, which 
uses a customized protocol processor optimized for handling co- 
herence actions, show that the performance penalty of its protocol 
processor in comparison to custom hardware controllers is within 
12% for most of their benchmarks [3]. Simulations of the Wiscon- 
sin nphoon Simple-COMA system, which uses a protocol pro- 
cessor integrated with the other components of the coherence con- 
troller, also show competitive performance that is within 30% of 
custom-hardware CC-NUMA controllers [12] and within 20% of 
custom-hardware Simple-COMA controllers [13]. 

Even so, the choice between custom hardware and protocol pro- 
cessors for implementing coherence protocols remains a key de- 
sign issue for scalable shared-memory multiprocessors. The goal 
of this research is to examine in detail the performance tradeoffs 
between these two alternatives in designing a CC-NUh4A multi- 
processor coherence controller. We consider symmetric multipro- 
cessor (SMP) nodes as well as uniprocessor nodes as the building 
block for a multiprocessor. The availability of cost-effective SMPs, 
such as those based on the Intel Pentium Pro [l l] makes SMP nodes 
an attractive choice for CC-NUMA designers [7]. However, the 
added load presented to the coherence controller by multiple SMP 
processors may affect the choice between custom hardware FSMs 
and protocol processors. 
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We base our experimental evaluation of the alternative coher- 
ence controller architectures on realistic hardware parameters for 
state-of-the-art system components. What distinguishes our work 
from previous research is that we consider commodity protocol 
processors on SMP-based CC-NUMA and a wider range of ar- 
chitectural parameters. We simulate eight applications from the 
SPLASH-2 benchmark suite [14] to compare the application per- 
formance of the architectures. The results show that for a 64- 
processor system based on four-processor SMP nodes, protocol 
processors result in a performance penalty (increase in execution 
time relative to that of custom hardware controllers) of 4% - 93%. 

The unexpectedly high penalty of protocol processors occurs 
for applications that have high-bandwidth communication require- 
ments, such as Ocean, Radix, and FFT. The use of SMP nodes ex- 
acerbates the penalty. Previous research did not encounter such 
high penalties because they were either comparing customized pro- 
tocol processors in uniprocessor nodes, or they did not consider 
such high-bandwidth applications. We find that under high- 
bandwidth requirements, the high occupancy of the protocol pro- 
cessor significantly degrades performance relative to custom hard- 
ware. 

We also study the performance of coherence controllers with 
two protocol engines. Our results show that for applications with 
high communication requirements on a 4x 16 CC-NUMA system, 
a two-engine hardware controller improves performance by up to 
18% over a one-engine hardware controller, and a controller with 
two protocol processors improves performance by up to 30% over 
a controller with a single protocol processor 

This paper makes the following contributions: 
! It provides an in-depth comparison of the performance trade- 

offs between using custom hardware and protocol proces- 
sors, and demonstrates situations where protocol processors 
suffer a significant penalty. 

! It characterizes the communication requirements for eight 
applications from SPLASH-2 and shows their impact on the 
performance penalty of protocol processors over custom 
hardware. This provides an understanding of application re- 
quirements and limitations of protocol processors. 

! It evaluates the performance gains of using two protocol en- 
gines for custom hardware and protocol-processor-based co- 
herence controllers. 

! It introduces a methodology for predicting the impact of pro- 
tocol engine implementation on the performance of impor- 
tant large applications through the detailed simulation of sim- 
pler applications. 

The rest of this paper is organized as follows. Section 2 presents 
the multiprocessor system and details the controller design altema- 
tives and parameters. Section 3 describes our experimental method- 
ology and presents the experimental results. It demonstrates the 
performance tradeoffs and provides analysis of the causes of the 
performance differences between the architectures. Section 4 dis- 
cusses related work. Finally, Section 5 presents the conclusions 
drawn from this research and gives recommendations for custom 
hardware and protocol processor designs in future multiprocessors. 

2 System Description 

To put our results in the context of the architectures we studied, this 
section details these architectures and their key parameters. First 
we describe the organization and the key parameters of the com- 
mon system components for the architectures. Then, we describe 
the details of the alternative coherence controller architectures. Fi- 
nally, we present key protocol and coherence controller latencies 
and occupancies. 

yr-l__l1 
Figure 1: A node in a SMP-based CC-NUMA system, 

response 
Bus address strobe to next address strobe 4 
Bus address strobe to start of data transfer from 20 
memory II 
Network point-to-point 11 14 

Table 1: Base system no-contention latencies in compute processor 
cycles (5 ns.). 

2.1 General System Organization and Parameters 

The base system configuration is a CC-NUMA multiprocessor 
composed of 16 SMP nodes connected by a 32 byte-wide fast stntc- 
of-the-art IBM switch. Each SMP node includes four 200 MHz 
PowerPC compute processors with 16 Kbyte Ll and 1 Mbyte L2 4- 
way-associative LRU caches, with 128 byte cache lines. The SMP 
bus is a 100 MHz 16 byte-wide fully-pipelined split-transaction 
separate-address-and-data bus. The memory is interleaved and the 
memory controller is a separate bus agent from the coherence con- 
troller. Figure 1 shows a block diagram of an SMP node, Ta- 
ble 1 shows the no-contention latencies of key system components, 
These latencies correspond to those of existing state-of-the-art com- 
ponents. Note that memory and cache-to-cache data transfers drive 
the critical quad-word first on the bus to minimize latency, 

2.2 Coherence Controller Architectures 

We consider two main coherence controller designs: a custom hard- 
ware coherence controller similar to that in the DASH [6] and 
Alewife [l] systems, and a coherence controller based on commod- 
ity protocol processors similar to those in the Typhoon [ 121 system 
and its prototypes [13]. 

The two designs share some common components and fcaturcs 
(see Figures 2 and 3). Both designs use duplicate directories to al- 
low fast response to common requests on the pipelined SMP bus 
(one directory lookup per 2 bus cycles). The bus-side copy IS ab- 
breviated (2-bit state per cache line) and uses fast SRAM memory. 
The controller-side copy is full-bit-map and uses DRAM memory, 
Both designs use write-through directory caches for reducing di- 
rectory read latency. Each directory cache holds up to 8K full-blt- 
map directory entries (e.g. approximately 16 Kbytes for a 16 node 
CC-NUMA system). The hardware-based design uses a custom 
on-chip cache, while the protocol-processor-based design uses the 
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Figure 2: A custom-hardware-based coherence controller design 
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Figure 3: A commodity PP-based coherence controller design 
@PC>. 

commodity processor’s on-chip data caches. ’ We assume perfect 
instruction caches in the protocol processors, as the total size of all 
protocol handlers in our protocol is less than 16 Kbytes. 

Both designs include a custom directory access controller for 
keeping the bus-side copy of the directory consistent with the 
controller-side copy, and a custom protocol dispatch controller for 
arbitration between the request queues from the local bus and the 
network. There are 3 input queues for protocol requests: bus-side 
requests, network-side requests, and network-side responses. The 
arbitration strategy between these queues is to let the network trans- 
action nearest to completion be handled first. Thus, the arbitration 
policy is that network-side responses have the highest priority, then 
network-side requests, and finally bus-side requests. In order to 
avoid live-lock, the only exception to this policy is to allow bus- 
side requests which have been waiting for a long time (e.g. four 
subsequent network-side requests) to proceed before handling any 
more network-side requests. 

Figure 2 shows a block diagram of a custom hardware coher- 
ence controller design (HWC). The controller runs at 100 MHz, the 
same frequency as the SMP bus. All the coherence controller com- 
ponents are on the same chip except the directories. Figure 3 shows 
a block diagram of a protocol-processor-based coherence controller 
(PPC). The protocol processor (PP) is a PowerPC running at 200 
MHz. The other controller components run at 100 MHz. The proto- 
col processor communicates with the other components of the con- 
troller through loads and stores on the local (coherence controller) 
bus to memory-mapped off-chip registers in the other components. 
The protocol processor access to the protocol dispatch controller 

t Although most processors use write-back caches, current processors (e.g. Pentium 
Pm [l I]) allow users to designateregions of memory to be cached write-through. 
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Figure 4: A custom hardware coherence controller design with lo- 
cal and remote protocol FSMs (2HWC). 
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Figure 5: A commodity PP-based coherence controller design with 
local and remote protocol processors (2PPC). 

register is read-only. Its access to the network interface registers is 
write-only (for sending network messages and starting direct data 
transfer from the bus interface), since reading the headers of incom- 
ing network messages is performed only by the protocol dispatch 
controller. 

Both HWC and PPC have a direct data path between the bus 
interface and the network interface. The direct data path is used to 
forward write-backs of dirty remote data from the SMP bus directly 
to the network interface to be sent to the home node without waiting 
for protocol handler dispatch. Also, in the case of PPC, the PP only 
needs to perform a single write to a special register on either the 
bus interface or the network interface to invoke direct data transfer, 
without the need for the PP to read and write the data to perform 
the transfer. 

In order to increase the bandwidth of the coherence controller 
we also consider the use of two protocol processors in the PPC im- 
plementation and two protocol FSMs in the HWC implementation. 
We use the term “protocol engine” to refer to both the protocol pro- 
cessor in the PPC design and the protocol FSM in the HWC design. 
For distributing the protocol requests between the two engines, we 
use a policy similar to that used in the S3.mp system [lo], where 
protocol requests for memory addresses on the local node are han- 
dled by one protocol engine (LPE) and protocol requests for mem- 
ory addresses on remote nodes are handled by the other protocol 
engine (RPE). Only the LPE needs to access the directory. Fig- 
ures 4 and 5 show the two-engine HWC design (2HWC), and the 
two PP controller design (2PPC), respectively. 
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Table 2: Protocol engine sub-operation occupancies for HWC and 
PPC in compute processor cycles (S ns.). 

1 Step 11 H.wc 1 PPC 1 
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Table 3: Breakdown of the no-contention latency of a read miss to 
a remote line clean at home in compute processor cycles (S ns.). 

2.3 Controller Latencies and Occupancies 

We modeled HWC and PPC accurately with realistic parameters. 
Table 2 lists protocol engine sub-operations and their occupancies 2 
for each of the HWC and PPC coherence controller designs, as- 
suming a 100 MHz HWC and a 100 MHz PPC with a 200 MHz 
off-the-shelf protocol processor. The occupancies in the table as- 
sume no contention on the SMP bus, memory, and network, and 
all directory reads hit in the protocol engine data cache. The other 
assumptions used in deriving these numbers are: 

! Accesses to on-chip registers for HWC take one system cycle 

20ccupaocy of sub-operations is the time a protocol engine is occupied by tbe sub- 
operation and camot service otbcrrcquesu. 

(2 CPU cycles). 

! Bit operations on HWC are combined with other actions, 
such as conditions and accesses to special registers. 

! PP reads to off-chip registers on the local PPC bus take 4 
system cycles (8 CPU cycles). Searching a set of associative 
registers takes an extra system cycle (2 CPU cycles). 

! PP writes to off-chip registers on the local PPC bus take 2 
system. cycles (4 CPU cycles) before the PP can proceed, 

! PP compute cycles are based on the PowerPC instruction cy- 
cle counts produced by the IBM XLC C compiler. 

! HWC can decide multiple conditions in one-cycle. 

To gain insight into the effect of these occupancies and delays 
on the latency of a typical remote memory transaction, Table 3 
presents the no-contention latency breakdown of a read miss from 
a remote node to a clean shared line at the home node. The relative 
increase in latency from HWC to PPC is only 49%, which is consis- 
tent with the 33% increase reported for Typhoon [13], taking into 
account that we consider a more decoupled coherence controller 
design and we use a faster network than that used in the Typhoon 
study. It is worth noting that in Table 3 there is no entry for updat- 
ing the directory state at the home node. The reason is that updat- 
ing the directory state can be performed after sending the response 
from the home node, thus minimizing the read miss latency, In our 
protocol handlers, we postpone any protocol operations that arc not 
essential for responding to requests until after issuing responses. 

Finally, in order to gain insight into the relative occupancy times 
of the HWC and PPC coherence controller designs, Table 4 presents 
the no-contention protocol handler occupancies for the most frc- 
quently used handlers. Handler occupancy times include: handler 
dispatch time, directory reference time, access time to special regis- 
ters, SMP bus and local memory access times, and bit held manip- 
ulation for PPC. Note that memory is sequentially consistent, and 
that we use the same full-map directory, invalidation-based, writc- 
back protocol, for both HWC and PPC. In our protocol, we allo\~ 
remote owners to respond directly to remote requesters with data, 
but invalidation acknowledgments are collected only at the home 
node. 

3 Experimental Results 

In this section, we present simulation results of the relative per- 
formance of the different coherence controller architectures with 
several variations of communication-related architectural paramc- 
ters. Then, we present analysis of the key statistics and communi- 
cation measures collected from these simulations, and we conclude 
this section by presenting statistics and analysis of the utilization 
and workload distribution on two-protocol-engine coherence con- 
trollers. We start with the experimental methodology. 

3.1 Experimental Methodology 
Weuse execution-driven simulation (based on a version of the Attg- 
mint simulation toolkit [9] that runs on the PowerPC architecture) 
to evaluate the performance of the four coherence controller de- 
signs, HWC, PPC, 2HWC, and 2PPC. Our simulntor includes dc- 
tailed contention models for SMP buses, memory controllers, in- 
terleaved memory banks, protocol engines, directory DRAM, and 
external point contention for the interconnection network. Protocol 
handlers are simulated at the granularity of the sub-operations in 
Table 2, in addition to accurate timing of the interaction between 
the coherence controller and the SMP bus, memory, directory, and 
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Handler 
bus read remote 
bus read exclusive remote 
bus read local (dirty remote) 
bus read excl. local (cached 
remote) 
remote read to home (clean) 
remote read to home (dirty 
remote) 
remote read excl. to home 
(uncached remote) 
remote read excl. to home 
(shared remote) 
remote read excl. to home 
(dirty remote) 
read from remote owner 
(request from home) 
read from remote owner 
(remote requester) 
read excl. from remote owner 
(request from home) 
read excl. from remote owner 
(remote requester) 
data response from owner to a 
read request from home 
write back from owner to 
home in response to a read 
req. from remote node 
data response from owner to a 
read excl. request from home 
ack. from owner to home in 
response to a read excl. 
request from remote node 
invalidation request from 
home to sharer 
inv. acknowledgment (more 
expected) 
inv. ack. (last ack, local 
request) 
inv. ack. (last ack, remote 
request) 
data in response to a remote 
read request 
data in response to a remote 
read excl. reouest 

PPC 

Table 4: Protocol engine occupancies in compute processor cycles 
(5 ns.). 

network interface. All coherence controller implementations use 
the same cache coherence protocol. 

We use eight benchmarks from the SPLASH-2 suite [14], (,Ta- 
ble 5) to evaluate the performance of the four coherence controller 
implementations. All the benchmarks are written in C and com- 
piled using IBM XLC C compiler with optimization level -02. All 
experimental results reported in this paper are for the parallel phase 
only of these applications. We use a round-robin page placement 
policy except for FFT where we use an optimized version with pro- 
grammer hints for optimal page placement. We observed slightly 
inferior performance for most applications when we used a first- 
touch-after-initialization page placement policy, due to load imbal- 
ance, and memory and coherence controller contention as a result 
of uneven memory distribution. LU and Cholesky are run on 32- 
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r Application Type 
LU Blocked dense linear 

algebra 

Water- Study of forces and 
Spatial potentials of water 

molecules in a 3-D grid 
Barnes Hierarchical N-body 
Cholesky Blocked sparse linear 

Problem size 
512x512 
matrix, 16x16 
blocks 
512 molecules 

SK particles 
tkl5.0 

FFr PFI computation 

Ocean Study of ocean 

keys, radix 1K 
64K complex 
doubles 
258x258 ocean 

movements 1 grid I 

Table 5: Benchmark types and data sets. 

processor systems (8 nodes x 4 processors each) as they suffer 
from load imbalance on 64 processors with the data sets used [14]. 
We ran all the applications with data sizes and systems sizes for 
which they achieve acceptable speedups. 

3.2 Performance Results 

In order to capture the main factors influencing PP performance 
penalty (the increase in execution time on PPC relative to the ex- 
ecution time on HWC), we ran experiments on the base system 
configuration with the four coherence controller architectures. We 
then varied some key system parameters to investigate their effect 
on the PP performance penalty. 

Base Case 

Figure 6 shows the execution times for the four coherence con- 
troller architectures on the base system configuration normalized 
by the execution time of HWC. We notice that the PP penalty can 
be as high as 93% for Ocean and 52% for Radix, and as low as 
4% for LU. The significant PP penalties for Ocean, Radix and 
PPT indicate that commodity PP-based coherence controllers can 
be the bottleneck when running communication-intensive applica- 
tions. This result is in contrast to the results of previous research, 
which showed the cases where custom PP-based coherence con- 
trollers suffer small performance penalties relative to custom hard- 
ware. 

Also, we observe that for applications with high bandwidth re- 
quirements, using two protocol engines improves performance sig- 
nificantly relative to the corresponding single engine implementa- 
tion, up to 18% on IIWC and 30% on PPC, for Ocean. 

We varied other system and application parameters that are ex- 
pected to have a big impact on the communication requirements of 
the applications. We start with the cache line size. 

Smaller cache line size 

with 32 byte cache lines, we expect the PP penalty to increase from 
that experienced with 128 byte cache lines, especially for applica- 
tions with high spatial locality, due to the increase in the rate of 
requests to the coherence controller. Figure 7 shows the execution 



times normalized to the execution time of HWC on the base config- 
uration. We notice a significant increase in execution time (regard- 
less of the coherence controller architecture) relative to the corre- 
sponding execution times on the base system, for FFT, Cholesky, 
Radix, and LU, which have high spatial locality [14], and a minor 
increase in execution time for the other benchmarks. 

Also, we notice a significant increase in the PP penalty (com- 
pared to the PP penahy on the base system) for applications with 
high spatial locality, due to the increase in the number of requests 
to the coherence controllers, which increases the demand on PP oc- 
cupancy. For example, the PP penalty for FFT increases from 45% 
to 68%. 

Slower network 

To determine the impact of network speed on the PP performance 
penalty, we simulated the four applications with the largest PP 
penalties on a system with a slow network (1 ,os. latency). Fig- 
ure 8 shows the execution times normalized to the execution time 
of HWC on the base configuration. We notice a significant de- 
crease in the PP penalty from that for the base system. The PP 
penalty for Ocean drops from 93% to 28%. Accordingly, systems 
designs with slow networks can afford to use commodity protocol 
processors instead of custom hardware, without significant impact 
on performance, when cache line size is large. 

Also, we notice a significant increase in execution time (regard- 
less of the coherence controller architecture) relative to the corre- 
sponding execution times on the base system, for Ocean and Radix, 
due to their high communication rates. 

Larger data size 

To determine the effect of data size on the PP penalty, we sim- 
ulated Ocean and FFT on the base system with larger data sizes, 
256K complex doubles for FPT, and a 514x514 grid for Ocean. 
Figure 9 shows the execution times normalized by the execution 
time of HWC for each data size. We notice a decrease in the PP 
penalty in comparison to the penalty with the base data sizes, since 
the communication-to-computation ratios for Ocean and FPT de- 
crease with the increase of the data size 3. The PP penalty for FFT 
drops from 46% to 33%, and for Ocean from 93% to 67%. 

However, since communication rates for applications like Oc- 
ean increase with the number of processors at the same rate that 
they decrease with larger data sizes, we can think of high PP per- 
formance penalties as limiting the scalability of such applications 
on systems with commodity PP-based coherence controllers. 

Number of processors per SMP node 

Varying the number of processors per SMP node (i.e. per coher- 
ence controller), proportionally varies the demand on the coher- 
ence controller occupancy, and thus is expected to impact the PP 
performance penalty. Figure 10 shows the execution times on 64- 
processor systems (32 for LU and Cholesky) with 1,2,4, and 8 pro- 
cessors per Sh4P node, normalized to the execution time of HWC 
on the base configuration (4 processors/node). 

We notice that for applications with low communication rates, 
the increase in the number of processors per node has only a minor 
effect on the PP performance penalty. For applications with high 
communication rates, the increase in the number of processors in- 
creases the PP performance penalty (e.g. the PP penalty increases 
from 93% for Ocean on 4 processors per node to 106% on 8 pro- 
cessors per node). However, the PP penalty can be as high as 79% 
(for Ocean) even on systems with one processor per node. 

3Applications like Radix maintain a constant communication rate with different 
data sizes [14]. 
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For each of the coherence controller architectures, performance 
of applications with high communication rates degrades with more 
processors per node, due to the increase in occupancy per coher- 
ence controller, which are already critical resources on systems 
with fewer processors per node. 

Also, we observe that for applications with high communica- 
tion rates (except FFI’), the use of two protocol engines in the 
coherence controllers achieves similar or better performance than 
controllers with one protocol engine with half the number of pro- 
cessors per nodes. In other words, using two protocol engines in the 
coherence controllers, allows integrating twice as many processors 
per SMP node, thus saving the cost of half the Sh4P buses, memory 
controllers, coherence controllers, and I/O controllers. 

3.3 Communication Statistics and Measures 

In order to gain more insight into quantifying the application char- 
acteristics that affect PP performance penalty, we present some of 
the statistics generated by our simulations. Table 6 shows commu- 
nication statistics collected from simulations of HWC and PPC on 
the base system configuration (except that Cholesky and LU are run 
on 32 processors). The statistics are: 

! PP penalty: The increase in the execution time of PPC rela- 
tive to the execution time of HWC. 

! RCCPI (Requests to Coherence Controller Per Instruction) 
is the total number of requests to the coherence controllers 
divided by the total number of instructions. 

! The total of the occupancies of all coherence controllers for 
PPC divided by that for HWC. 

! Average HWC (PPC) utilization is the average HWC (PPC) 
occupancy divided by execution time. 

! Average HWC (PPC) queuing delay is the average time a 
request to the coherence controller waits in a queue while 
the controller is occupied by other requests. 

0 Arrival rate of requests to HWC (PPC) per ps. (200 CPU cy- 
cles) is derived from the reciprocal of the mean inter-arrival 
time of requests to each of the coherence controllers. 

In Table 6 we notice that as RCCPI increases, the PP perfor- 
mance penalty increases proportionally except for Cholesky. In the 
case of Cholesky, the high load imbalance inflates the execution 
time with both HWC and PPC. Therefore, the PP penalty which is 
measured relative to the execution time with HWC is less than the 
PP penalty of other applications with similarRCCP1 but with better 
load balance. 

Also, as RCCPI increases, the arrival rate of requests to the co- 
herence controller per cycle for PPC diverges from that of HWC, 
indicating that the PPC has saturated, and that the coherence con- 
troller is the bottleneck for the base system configuration. This is 
also supported by the observation of the high utilization rates of 
HWC with Ocean, and of PPC with Ocean, Radix, and FFT, indi- 
cating that the coherence controller has saturated these cases, and 
it is the main bottleneck. 

However, we notice that the queuing delays do not increase pro- 
portionally with the increase in RCCPI, since the queuing effect of 
the coherence controller behaves like a negative feedback system 
where the increase in RCCPI (the input) increases the queuing de- 
lay in proportion to the difference between the queuing delay and a 
saturation value, thus limiting the increase in queuing delay. Note 
that the high queuing delay for FFT is attributed to its bursty com- 
munication pattern [ 141. 
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Table 6: Communication statistics on the base system configuration. 

Also, we observe that the ratio between the occupancy of PPC 
and the occupancy of HWC is more or less constant for the different 
applications, approximately 2.5. 

Figure 11 plots the arrival rate of requests to each of the coher- 
ence controller architectures against RCCPI for all the applications 
on the base system configuration (except Cholesky and LU as they 
were run on 32 processors) including Ocean and FFI’ with large 
data sizes. The dotted lines show the trend for each architecture. 
The figure shows clearly the saturation levels of the different co- 
herence controller architectures. The divergence in the arrival rates 
demonstrates that the coherence architecture is the performance 
bottleneck of the base system. 

Figure 12 shows the effect of RCCPI on the PP penalty for the 
same experiments as those in Figure 11. We notice a clear propor- 
tional effect of RCCPI on the PP penalty. The gradual slope of the 
curve can be explained by the fact that the queuing model of the co- 
herence controller resembles a negative feedback system. Without 
the negative feedback, the PP penalty would increase exponentially 
with the increase in RCCPI. The lower PP penalty for applications 
with low RCCPI such as Barnes and Water-Spatial is due to the fact 
that in those cases the coherence controller is under-utilized. 

The previous analysis can help system designers predict the 
relative performance of alternative coherence controller designs. 
They can obtain the RCCPI measure for important large applica- 
tions using simple simulators (e.g. PRAM) and relate that RCCPI 
to a graph similar to that in Figure 12 that can be obtained through 
the detailed simulation of simpler applications covering a range of 
communication rates similar to that of the large application. Al- 
though RCCPI is not necessarily independent of the implementa- 
tion of the coherence controller, for practical purposes the effect 
of the architecture on RCCPI can be ignored. In our experiments 
the difference in RCCPI between the four implementations (HWC, 
PPC, 2HWC, and 2PPC) is less than 1% for all applications. 

3.4 Utilization of Two-Engine Controllers 

For coherence controller architectures with two protocol engines, 
there is more than one way to split the workload between the two 
protocol engines. In this study, we use a policy where protocol 
requests for memory addresses on the local node are handled by one 
protocol engine (LPE) and protocol requests for memory addresses 
on remote nodes are handled by the other protocol engine (RPE). 
In order to quantify the effectiveness of this policy, Table 7 shows 
the communication statistics collected from simulations of 2HWC 
and 2PPC on the base system configuration (except ChoIesky and 
LU are run on 32 processors). 

We observe that although most requests are handled by RPE 
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Figure 12: Effect of communication rate on PP penalty. 

(53-630/o), the occupancy of LPE is up to 3 times that of RPE for 
2HWC, and up to 2 times for 2PPC (derived from the utillzntlon 
numbers). This is because the average occupancy of protocol han- 
dlers performed on LPE are more than those on RPE, since the for- 
mer are more likely to access the directory and main memory, Also, 
we observe that the sum of the average utilization numbers for LPE 
and RPE is more than the average utilization for the corresponding 
one-engine coherence controller (Table 6). This is due to the fact 
that the sum of the occupancies of LPE and RPE are almost fhc 
same as that for the one-engine controller, but the execution time 
decreases with the use of two protocol engines. 

Due to the imbalance between the utilization figures of LPE and 
RPE, the queuing delays for RPE are lower than those for the cor- 
responding one-engine controllers, while those for LPE are higher 



Application Architecture Utilization Request distribution 
LPE 1 RPE 

Queuing delay (ns.) 
LPE RPE LPE RPE 

LU ZHWC 3.20% 1.09% 35.67% 64.33% 182 2 
2PPC . 0 . 0 35.74% 64.26% 501 14 

Water-Sp 2HWC 6.82% 4.29% 38.09% 61.91% 60 40 
2PPC 14.66% 12.38% 38.08% 61.92% 263 78 

Barnes ZHWC 8.43% 5.22% 39.38% 60.62% 67 11 
2PPC 16.64% 13.85% 39.41% 60.59% 237 53 

Cholesky ZHWC 20.26% 7.48% 38.27% 61.73% 128 8 
2PPC . 0 . 0 . 0 61.73% 348 36 

Water-Nsq ZHWC 11.30% 7.89% 39.26% 60.74% 82 49 
2PPC 22.87% 19.81% 39.22% 60.78% 384 167 

FFT256K ZHWC 17.93% 5.92% 46.33% 53.67% 378 10 
2PPC 30.64% 15.05% 46.33% 53.67% 934 38 

FFI-64K ZHWC 25.63% 7.45% 41.40% 58.60% 478 8 
2PPC . 0 19.17% 41.40% 58.60% 1137 39 

Radix ZHWC 21.63% 21.32% 39.95% 60.05% 138 91 
2PPC 30.70% 40.86% 39.94% 60.06% 243 366 

ocean-514 ZHWC 38.10% 18.33% 41.03% 58.97% 210 35 
2PPC 50.42% 36.59% 41.02% 58.98% 480 138 

Ocean-258 ZHWC 40.02% 25.97% 40.45% 59.55% 173 48 
2PPC 52.60% 1 44.19% 40.39% 59.61% 476 185 

Table 7: Communication statistics for controllers with two protocol engines on the base system configuration. 

for most applications despite the decrease in demand, due to the ex- 
clusion of the requests to RPE which typically have low occupancy 
requirements. 

The large imbalance in the distribution of occupancy between 
LPE and RPE (derived from the utilization statistics) for most ap- 
plications indicate that there is potential for further improvement in 
performance by using a more even policy for distributing the work- 
load on the two (or possibly more) protocol engines. However, it is 
worth noting that in the design used in this paper, only one protocol 
engine, LPE, needs to access the directory. Furthermore, in the case 
of custom hardware, none of the handlers in the LPE FSM needs 
to be duplicated in the RPE FSM, and vice versa, thus minimiz- 
ing the hardware overhead of two-engine HWC over one-engine 
HWC. Alternative distribution policies, such as splitting the work- 
load dynamically or based on whether the request is from the local 
bus or another node, might lead to a more balanced distribution of 
protocol workloads on the protocol engines, but would also require 
allowing multiple protocol engines to access the directory, which 
increases the cost and complexity of coherence controllers. 

4 Related Work 

The proponents of protocol processors argue that the performance 
penalty of protocol processors is minimal, and that the additional 
flexibility is worth the performance penalty. The Stanford FLASH 
designers find that the performance penalty of using a protocol pro- 
cessor is less than 12% for the applications that they simulated, in- 
cluding Ocean and Radix [3]. Their measured penalties are signifi- 
cantly lower than ours for the following reasons: 1) FLASH uses a 
protocol processor that is highly customized for executing protocol 
handlers, 2) they consider only tmiprocessor nodes in their experi- 
ments, and 3) they assume a slower network latency of 220 ns., as 
opposed to 70 ns. in our base parameters. 

In [12], Reinhardt et al. introduce the Wisconsin Typhoon ar- 
chitecture that relics on a SPARC processor core integrated with the 
other components of the coherence controller to execute coherence 
handlers that implement a Simple COMA protocol. Their simula- 

tions show that Simple COMA on Typhoon is less than 30% slower 
than a custom hardware CC-NUMA system. It is hard to compare 
our results to theirs because of the difficulty in determining what 
fraction of the performance difference is due to Simple COMA vs. 
CC-NUMA, and what fraction is due to custom hardware vs. pro- 
tocol processors. 

In [13], Reinhardt et al. compare the Wisconsin Typhoon and 
its first-generation prototypes with an idealized Simple COMA sys- 
tem. Here, their results show that the performance penalty of using 
integrated protocol processors is less than 20%. In contrast, we 
find larger performance penalties of up to 106%. There are two 
main reasons for this difference: 1) we are considering a more de- 
coupled design than Typhoon, and 2) the application set used in the 
studies. Our results largely agree with theirs for Barnes, the only 
application in common between the two studies. However, we also 
consider applications with higher bandwidth requirements, such as 
Ocean, Radix, and FFT. Other differences between the two studies 
are: a) they compare Simple COMA systems, while we compare 
CC-NUMA systems, b) they assume a slower network with a la- 
tency of 500 ns., which mitigates the penalty of protocol proces- 
sors, and c) they consider only uniprocessor nodes. 

Holt et al. [4] perform a study similar to ours. They also find 
that the occupancy of coherence controllers is critical to the perfor- 
mance of high-bandwidth applications. However, their work uses 
abstract parameters to model coherence controller performance, 
whereas our work considers practical, state-of-the-art controller de- 
signs. Also, our work provides strong insight into coherence con- 
troller bottlenecks, and we study the effect of having multiple pro- 
cessors per node and two protocol engines per coherence controller. 
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5 Conclusions 

The major focus of our research is on characterizing the perfor- 
mance tradeoffs between using custom hardware versus protocol 
processors to implement cache coherence protocols. By comparing 
designs that differ only in features specific to either approach and 
keeping the rest of the architectural parameters identical, we are 



able to perform a systematic comparison of both approaches. We 
find that for applications with high bandwidth requirements, like 
Ocean, Radix, and FFJ?, the occupancy of off-the-shelf protocol 
processors significantly degrades performance by up to 106% for 
the applications we studied. On the other hand, the programmable 
nature of protocol processors allows one to tailor the cache coher- 
ence protocol to the application, and may lead to shorter design 
times since protocol errors may be fixed in software. 

We also find that using a slow network or large data sizes results 
in tolerable protocol processor performance, and that for comm- 
unication-intensive applications, performance degrades with the in- 
crease in the number of processors per node, as a result of the de- 
crease in the number of coherence controllers in the system. 

Our results also demonstrate the benefit of using two protocol 
engines in improving performance or maintaining the same per- 
formance of systems with large? number of coherence controllers. 
We are investigating other optimizations such as using more pro- 
tocol engines for different regions of memory, and using custom 
hardware to implement accelerated data paths and handler paths for 
simple protocol handlers, which usually incur the highest penalties 
on protocol processors relative to custom hardware. 

Our analysis of the application characteristics captures the com- 
munication requirements of the applications and their_impact on 
performance penalty. Our characterization-RCCPI-can help sys- 
tem designers predict the performance of coherence controllers 
with other applications. 

The results of our research imply that it is crucial to reduce pro- 
tocol processor occupancy in order to support high-bandwidth ap- 
plications. One approach is to custom design a protocol processor 
that is optimized for executing protocol handlers, as in the Stanford 
FLASH multiprocessor. Another approach is to customize coher- 
ence protocols to the communication requirements of particular ap- 
plications. We are currently investigating an alternative approach: 
to add incremental custom hardware to a protocol-processor-based 
design to accelerate common protocol handler actions. 
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