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Abstract

Scalable distributed shared-memory architectures rely on
coherence controllers on each processing node to synthesize
cache-coherent shared memory across the entire machine.
The coherence controllers are responsible for executing co-
herence protocol handlers that may be hardwired in custom
hardware, or programmed in a protocol processor within
each coherence controller. Although custom hardware runs
faster, a protocol processor allows the coherence protocol to
be tailored to specific application needs and may shorten de-
velopment time. Previous research show that the increase in
application execution time due to protocol processors over
custom hardware is minimal (< 20%).

However, with the advent of SMP processing nodes and
the availability of faster processors and networks, the trade-
off between custom hardware and protocol processors needs
to be reexamined. This paper studies the performance of
custom-hardware and protocol-processor-based coherence
controllers in SMP-node-based CC-NUMA systems on ap-
plications from the SPLASH-2 suite. Using realistic parame-
ters and detailed models of existing state-of-the-art system
components, it shows that the occupancy of coherence con-
trollers can limit the performance of applications with high
communication bandwidth requirements where the execu-
tion time using protocol processors can be twice as long as
using custom hardware.

To gain a deeper understanding of the tradeoff, we inves-
tigate the effect on performance penalty of varying several
architectural parameters that influence the communication
characteristics of the applications and the underlying system.
We characterize each application’s communication require-
ments and its impact on the performance penalty of protocol
processors. This characterization can help system design-
ers predict performance penalties for other applications. We
also study the potential of improving the performance of�This work was performed at IBM Thomas J. Watson Research Center.

hardware-based and protocol-processor-based controllersby
separating or duplicating critical components.

1 Introduction

Previous research has shown convincingly that scalable
shared-memory performance can be achieved on directory-
based cache-coherent multiprocessors such as the Stanford
DASH [5] and MIT Alewife [1] machines. A key compo-
nent of these machines is the coherence controller on each
node that provides cache coherent access to memory that is
distributed among the nodes of the multiprocessor. In DASH
and Alewife, the cache coherence protocol is hardwired in
custom hardware finite state machines (FSMs) within the
coherence controllers. Instead of hardwiring protocol han-
dlers, the Sun Microsystems S3.mp [8] multiprocessor uses
hardware sequencers for modularity in implementing proto-
col handlers.

Subsequent designs for scalable shared-memory multi-
processors, such as the Stanford FLASH [4] and the Wis-
consin Typhoon machines [11], have touted the use of pro-
grammable protocol processors instead of custom hardware
FSMs to implement the coherence protocols. Although a
custom hardware design generally yields better performance
than a protocol processor for a particular coherence protocol,
the programmable nature of a protocol processor allows one
to tailor the cache coherence protocol to the application, and
may lead to shorter design times since protocol errors may
be fixed in software.

Simulationsof Stanford FLASH, which uses a customized
protocol processor optimized for handling coherence ac-
tions, show that the performance penalty of its protocol
processor in comparison to custom hardware controllers is
within 12% for most of their benchmarks [2]. Simulations of
the Wisconsin Typhoon Simple-COMA system, which uses
a protocol processor integrated with the other components
of the coherence controller, also show competitive perfor-



mance that is within 30% of custom-hardware CC-NUMA
controllers [11] and within 20% of custom-hardware Simple-
COMA controllers [10].

Even so, the choice between custom hardware and pro-
tocol processors for implementing coherence protocols re-
mains a key design issue for scalable shared-memory multi-
processors. The goal of this research is to examine in detail
the performance tradeoffs between these two alternatives
in designing a CC-NUMA multiprocessor coherence con-
troller. We consider symmetric multiprocessor (SMP) nodes
as well as uniprocessor nodes as the building block for a mul-
tiprocessor. The availability of cost-effective SMPs based
on the Intel Pentium-Pro [9] makes SMP nodes an attractive
choice for CC-NUMA designers [6]. However, the added
load presented to the coherence controller by multiple SMP
processors may affect the choice between custom hardware
FSMs and protocol processors.

We base our experimental evaluation of the alternative co-
herence controller architectures on realistic hardware para-
meters for state-of-the-art system components. What distin-
guishes our work from previous research is that we consider
commodity protocol processors on SMP-based CC-NUMA
and a wider range of architectural parameters. We simulate
eight applications from the SPLASH-2 benchmark suite [12]
to compare the application performance of the architectures.
The results show that for a 64-processor system based on
four-processor SMP nodes, protocol processors result in a
performance penalty (increase in execution time relative to
that of custom hardware controllers) of 4% – 93%.

The unexpectedly high penalty of protocol processors oc-
curs for applications that have high-bandwidth communica-
tion requirements, such as Ocean, Radix, and FFT. The use
of SMP nodes exacerbates the penalty. Previous research did
not encounter such high penalties because they were either
comparing customized protocol processors in uniprocessor
nodes, or they did not consider such high-bandwidth appli-
cations. We find that under high-bandwidth requirements,
the high occupancy of the protocol processor significantly
degrades performance relative to custom hardware.

We also study the performance of coherence controllers
with two protocol engines. Our results show that for appli-
cations with high communication requirements on a 4x16
CC-NUMA system, a two-engine hardware controller im-
proves performance by up to 18% over a one-engine hard-
ware controller, and a controller with two protocol proces-
sors improves performance by up to 30% over a controller
with a single protocol processor

This paper makes the following contributions:� It provides an in-depth comparison of the performance
tradeoffs between using custom hardware and protocol
processors, and demonstrates situations where protocol
processors suffer a significant penalty.� It characterizes the communication requirements for

eight applications from SPLASH-2 and shows their im-
pact on the performance penalty of protocol processors
over custom hardware. This provides an understanding
of application requirements and limitations of protocol
processors.� It evaluates the performance gains of using two protocol
engines for custom hardware and protocol processor
based coherence controllers.� It demonstrates a methodology for predicting the im-
pact of protocol engine implementation on the perfor-
mance of important large applications through the de-
tailed simulation of simpler applications.

The rest of this paper is organized as follows. Section 2
presents the multiprocessor system and details the controller
design alternatives and parameters. Section 3 describes our
experimental methodology and presents the experimental
results. It demonstrates the performance tradeoffs and pro-
vides analysis of the causes of the performance differences
between the architectures. Section 4 discusses related work.
Finally, Section 5 presents the conclusions drawn from this
research and gives recommendations for custom hardware
and protocol processor designs in future multiprocessors.

2 System Description

To put our results in the context of the architectures we
studied, this section details these architectures and their key
parameters. First we describe the organization and the key
parameters of the common system components for the CC-
NUMA architectures under study. Then, we describe the
details of the alternative coherence controller architectures.
Finally, we present key protocol and coherence controller
latencies and occupancies.

2.1 General System Organization and Para-
meters

The base system configuration is a CC-NUMA multiproces-
sor composed of 16 SMP nodes connected by a 32 byte-
wide fast state-of-the-art network. Each SMP node includes
four 200 MHz PowerPC 604 compute processors with 16
Kbyte L1 and 1 Mbyte L2 4-way-associative LRU caches,
with 128 byte cache lines. The SMP bus is a 100 MHz 16
byte-wide fully-pipelinedsplit-transaction separate-address-
and-data bus. The memory is interleaved and the memory
controller is a separate bus agent from the coherence con-
troller. Figure 1 shows a block diagram of a SMP node.
Table 1 shows the no-contention latencies of key system
components. These parameters correspond to those of ex-
isting state-of-the-art components. Note that the memory
controller starts memory reads speculatively, thus the fast
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Figure 1: A node in a SMP-based CC-NUMA system.

Event Latency

L1 to processor 1
L1 to L2 8
L2 to L1 4
L2 miss to address strobe on bus 4
Bus address strobe to bus response 14
Bus address strobe to start of cache-to-cache
data response

18

Bus address strobe to next address strobe 4
Bus address strobe to start of data transfer
from memory

20

Network point-to-point 14

Table 1: Base system latencies in compute processor cycles
(5 ns.).

response time, and that memory and cache-to-cache data
transfers drive the critical quad-word first on the bus to min-
imize latency.

2.2 Coherence Controller Architectures

We consider two main coherence controller designs: a cus-
tom hardware coherence controller similar to that in the
DASH [5] and Alewife [1] systems, and a coherence con-
troller based on commodity protocol processors similar to
those in the Typhoon [11] system and its prototypes [10].

The two designs share some common components and
features (see figures 2 and 3). Both designs use duplicate
directories to allow fast response to common requests on the
pipelined SMP bus (one directory lookup per 2 bus cycles).
The bus-side copy is abbreviated (2-bit state per cache line)
and uses fast SRAM memory. The controller-side copy is
full-bit-map and uses DRAM memory. Both designs use
write-through directory caches for reducing directory read
latency. Each directory cache holds up to 8K full-bit-map di-
rectory entries (e.g. approximately 16 Kbytes for a 16 node
CC-NUMA system). The hardware-based design uses a cus-
tom on-chip cache, while the protocol-processor-based de-
sign uses the commodity processor’s on-chip data caches. 11Although most processors use write-back caches, current processors
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Figure 2: A hardware-based coherence controller design
(HWC).
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Figure 3: A commodity PP-based coherence controller de-
sign (PPC).

We assume perfect instruction caches in the protocol proces-
sors, as the total size of all protocol handlers in our protocol
is less than 16 Kbytes.

Both designs include a custom directory access controller
for keeping the bus-side copy of the directory consistent with
the controller-side copy, and a custom protocol dispatch con-
troller for arbitration between the request queues from the
local bus and the network. There are 3 input queues for
protocol requests: bus-side requests, network-side requests,
and network-side responses. The arbitration strategy be-
tween these queues is to let the network transaction nearest
to completion to be handled first. Thus, the arbitration pol-
icy is that network-side responses have the highest priority,
then network-side requests, and finally bus-side requests. In
order to avoid live-lock, the only exception to this policy
is to allow bus-side requests which have been waiting for
a long time (e.g, four subsequent network-side requests) to
proceed before handling any more network-side requests.

Figure 2 shows a block diagram of a custom hardware
coherence controller design (HWC). The controller runs at
100 MHz, the same frequency as the SMP bus. All the
coherence controller components are on the same chip ex-

(e,g. Pentium Pro [9]) allow users to designate regions of memory to be
cached write-through.

3



RPE
bus-side fast

directory

controller-side
directory

cache
directory

controller
access

directory

network interface

to network

bus interface

protocol
dispatch

controller

to SMP bus

LPE

Figure 4: A custom hardware coherence controller design
with local and remote protocol FSMs (2HWC).
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Figure 5: A commodity PP-based coherence controller de-
sign with local and remote protocol processors (2PPC).

cept the directories. Figure 3 shows a block diagram of a
protocol-processor-based coherence controller (PPC). The
protocol processor (PP) is a PowerPC 604 running at 200
MHz. The other controller components run at 100 MHz.
The protocol processor communicates with the other com-
ponents of the controller through loads and stores on the
local bus to memory-mapped off-chip registers in the other
components. The protocol processor access to the protocol
dispatch controller register is read-only. Its access to the
network interface registers is write-only (for sending net-
work message and starting direct data transfer from the bus
interface), since reading the headers of incoming network
messages is performed only by the protocol dispatch con-
troller.

Both HWC and PPC have a direct data path between the
bus interface and the network interface. The direct data path
is used to forward write-backs of dirty remote data from the
SMP bus directly to the network interface to be sent to the
home node without waiting for protocol handler dispatch.
Also, in the case of PPC, the PP only needs to perform a
single write to a special register on either the bus interface or
the network interface to invoke direct data transfer, without
the need for the PP to read and write the data to perform the
transfer.

In order to increase the bandwidth of the coherence con-
troller we also consider the use of two protocol processors
in the PPC implementation and two protocol FSMs in the
HWC implementation. We use the term “protocol engine”
to refer to both the protocol processor in the PPC design and
the protocol FSM in the HWC design. For distributing the
protocol requests between the two engines, we use a policy
similar to that used in the S3.mp system [8], where protocol
requests for memory addresses on the local node are han-
dled by one protocol engine (LPE) and protocol requests
for memory addresses on remote nodes are handled by the
other protocol engine (RPE). Only the LPE needs to access
the directory. Figures 4 and 5 show the two-engine HWC
design (2HWC), and the two PP controller design (2PPC),
respectively.

2.3 Controller Latencies and Occupancies

We modeled HWC and PPC accurately with realistic pa-
rameters. Table 2 lists protocol engine sub-operations and
their occupancies 2 for each of the HWC and PPC coherence
controller designs, assuming a 100 MHz HWC and a 100
MHz PPC with a 200 MHz off-the-shelf protocol processor.
The occupancies in the table assume no contention on the
SMP bus, memory, and network, and all directory reads hit
in the protocol engine data cache. The other assumptions
used in deriving these numbers are:� Accesses to on-chip registers for HWC take one system

cycle (2 CPU cycles).� Bit operations on HWC are combined with other ac-
tions, such as conditions and accesses to special regis-
ters.� PP reads to off-chip registers on the local PPC bus
take 4 system cycles (8 CPU cycles). Searching a set
of associative registers takes an extra system cycle (2
CPU cycles).� PP writes to off-chip registers on the local PPC bus
take 2 system cycles (4 CPU cycles) before the PP can
proceed.� PP compute cycles are based on the PowerPC instruc-
tion cycle counts produced by the IBM XLC C com-
piler.� HWC can decide multiple conditions in one-cycle.

To gain insight into the effect of these occupancies and
delays on the latency of a typical remote memory transac-
tion, Table 3 presents the no-contention latency breakdown
of a read miss from a remote node to a clean shared line at2Occupancy refers to the time a resource is occupied and cannot service
other potentially waiting requests.
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Sub-operation HWC PPC

Issue request to bus 2 8
Detect response from bus 2 8
Issue network message 2 9
Read special bus interface associa-
tive registers

4 10

Write special bus interface registers 2 4
Directory read (cache hit) 2 2
Directory read (cache miss) 22 22
Directory write 2 2
Handler dispatch 2 12
Condition 2 2
Loop (per iteration) 2 5
Clear bit field - 3
Extract bit field - 2
Other bit operations - 1

Table 2: Protocol engine sub-operation occupancies for
HWC and PPC in compute processor cycles (5 ns.).

Step HWC PPC

detect L2 miss 8 8
issue bus read request 4 4
bus response 14 14
dispatch handler 2 12
extract home id - 2
send message to home node 2 9

network latency 14 14
dispatch handler 2 12
read directory entry (cache hit) 2 2
conditions 2 6
issue bus read request 6 12
memory latency 20 20
detect bus response 2 8
extract requester’s id - 2
send message to the requester 2 9

network latency 14 14
dispatch handler 2 12
issue response to bus 6 12
L2 reissues read request 18 18
bus response 14 14
bus interface issues data 4 4
L1 fill 4 4

total 142 212

Table 3: Breakdown of the no-contention latency of a read
miss to a remote line clean at home in compute processor
cycles (5 ns.).

the home node. The relative increase in latency from HWC
to PPC is only 49%, which is consistent with the 33% in-
crease reported for Typhoon [10], taking into account that
we consider a more decoupled coherence controller design
and we use a faster network than that used in the Typhoon
study. It is worth noting that in Table 3, there is no entry for
updating the directory state at the home node. The reason
is that updating the directory state can be performed after
sending the response from the home node, thus minimizing
the read miss latency. In our protocol handlers, we postpone
any protocol operations that are not essential for responding
to requests until after issuing responses.

Finally, in order to gain insight into the relative occu-
pancy times of the HWC and PPC coherence controller de-
signs, Table 4 presents the no-contention protocol handler
occupancies for the most frequently used handlers. Handler
occupancy times include: handler dispatch time, directory
reference time, access time to special registers, SMP bus
and local memory access times, and bit field manipulation
for PPC. Note that we use the same full-map sequentially
consistent directory-based write-back protocol for HWC and
PPC. In our protocol, we allow remote owners to respond
directly to remote requesters with data, but invalidation ac-
knowledgments are collected only at the home node.

3 Performance Results

3.1 Experimental Methodology

We use execution-driven simulation (based on a version of
the Augmint simulation toolkit [7] that runs on the PowerPC
architecture) to evaluate the performance of the four co-
herence controller designs, HWC, PPC, 2HWC, and 2PPC.
Our simulator includes detailed contention models for SMP
buses, memory controllers, interleaved memory banks, pro-
tocol engines, directory DRAM, and external point con-
tention for the interconnection network. Protocol handlers
are simulated at the granularity of the sub-operations in ta-
ble 2, in addition to accurate timing of the interaction be-
tween the coherence controller and the SMP bus, memory,
directory, and network interface. All coherence controller
implementations use the same cache coherence protocol.

We use eight benchmarks from the SPLASH-2 suite [12],
(table 5) to evaluate the performance of the four coherence
controller implementations. All the benchmarks are written
in C and compiled using IBM XLC C compiler with op-
timization level -O2. All experimental results reported in
this paper are for the parallel phase only of these applica-
tions. We use a round-robin page placement policy except
for FFT where we use an optimized version with program-
mer hints for optimal page placement. We observed slightly
inferior performance for most applications when we used
a first-touch-after-initialization page placement policy, due
to load imbalance, and memory and coherence controller
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Handler HWC PPC

bus read remote 4 23
bus read exclusive remote 4 23
bus read local (dirty
remote)

10 33

bus read excl. local
(cached remote)

10 + 4/inv. 32 + 16/inv.

remote read to home
(clean)

38 73

remote read to home (dirty
remote)

10 29

remote read excl. to home
(uncached remote)

38 73

remote read excl. to home
(shared remote)

10 + 4/inv. 32 + 16/inv.

remote read excl. to home
(dirty remote)

10 30

read from remote owner
(request from home)

32 81

read from remote owner
(remote requester)

34 90

read excl. from remote
owner (request from home)

32 81

read excl. from remote
owner (remote requester)

34 90

data response from owner
to a read request from home

8 21

write back from owner to
home in response to a read
req. from remote node

8 24

data response from owner
to a read excl. request from
home

6 16

ack. from owner to home
in response to a read excl.
request from remote node

4 17

invalidation request from
home to sharer

26 49

inv. acknowledgment
(more expected)

8 23

inv. ack. (last ack, local
request)

10 33

inv. ack. (last ack, remote
request)

36 75

data in response to a remote
read request

4 16

data in response to a remote
read excl. request

6 20

Table 4: Protocol engine occupancies in compute processor
cycles (5 ns.).

Application Type Problem size

LU Blocked dense linear
algebra

512�512
matrix, 16x16
blocks

Water-
Spatial

Study of forces and po-
tentials of water mole-
cules in a 3-D grid

512 molecules

Barnes Hierarchical N-body 8K particles
Cholesky Blocked sparse linear

algebra
tk15.O

Water-
Nsquared

O(n2) study of forces
and potentials in water
molecules

512 molecules

Radix Radix sort 1M integer
keys, radix 1K

FFT FFT computation 64K complex
doubles

Ocean Study of ocean
movements

258�258
ocean grid

Table 5: Benchmark types and data sets.

contention as a result of uneven memory distribution. LU
and Cholesky are run on 32-processor systems (8 nodes �
4 processors each) as they suffer from load imbalance on
64 processors with the data sets used [12]. We ran all the
applications with data sizes and systems sizes for which they
achieve acceptable speedups.

3.2 Experimental results

In order to capture the main factors influencing PP perfor-
mance penalty (the increase in execution time on PPC rel-
ative to the execution time on HWC), we run experiments
on the base system configuration with the four coherence
controller architectures, and then we vary some key system
parameters, in order to investigate their effect on the PP
performance penalty.

Base Case

Figure 6 shows the execution times for the four coherence
controller architectures on the base system configuration nor-
malized by the execution time of HWC. We notice that the
PP penalty can be as high as 93% for Ocean and 52% for
Radix, and as low as 4% for LU. The significant PP penalties
for Ocean, Radix and FFT indicate that commodity PP-based
coherence controllers can be the bottle-neck when running
communication-intensive applications. This result is in con-
trast to the results of previous research, which showed the
cases where custom PP-based coherence controllers suffer
small performance penalties relative to custom hardware.

Also, we observe that using two protocol engines im-
proves performance significantly relative to the correspond-
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ing single engine implementation, 18% on HWC and 30%
on PPC, for Ocean, and the gap between the one and two-
engine designs widens for applications with high bandwidth
requirements.

We varied other system and application parameters that
are expected to have big impact on the communication re-
quirements of the applications. We start by the cache line
size.

Smaller cache line size

With 32 byte cache lines, we expect the PP penalty to in-
crease from that experienced with 128 byte cache lines, es-
pecially for applications with high spatial locality, due to
the increase in the rate of requests to the coherence con-
troller. Figure 7 shows the execution times normalized to
the execution time of HWC on the base configuration. We
notice a significant increase in execution time (regardless
of the coherence controller architecture) relative to the cor-
responding execution times on the base system, for FFT,
Water-Nsquared, Cholesky, and LU, which have high spa-
tial locality [12], while there is minor increase in execution
time for the other benchmarks.

Also, we notice a significant increase in the PP penalty
(compared to PP penalty on base system) for applications
with high spatial locality, due to the increase in the number
of requests to the coherence controllers, which increases the
demand on PP occupancy.

Slower network

To determine the impact of network speed on the PP perfor-
mance penalty, we simulated the four applications with the
largest PP penalties on a system with a slow network (1 �s.
latency). Figure 8 shows the execution times normalized to
the execution time of HWC on the base configuration. We
notice a significant decrease in the PP penalty from that for
the base system. The PP penalty for Ocean drops from 93%
to 28%. Accordingly, systems designs with slow networks
can afford to use commodity protocol processors instead
of custom hardware, without significant impact on perfor-
mance, when cache line size is large.

Also, we notice a significant increase in execution time
(regardless of the coherence controller architecture) relative
to the corresponding execution times on the base system, for
Ocean and Radix, due to their high communication rates.

Larger data size

To determine the effect of data size on the PP penalty, we
simulated Ocean and FFT on the base system with larger data
sizes, 256K complex doubles for FFT, and a 514�514 grid
for Ocean. Figure 9 shows the execution times normalized
by the execution time of HWC for each data size. We notice a
decrease in the PP penalty in comparison to the penalty with
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the base data sizes, since the communication-to-computation
ratios for Ocean and FFT decrease with the increase of the
data size 3. The PP penalty for FFT drops from 46% to 33%,
and for Ocean from 93% to 67%.

However, since communication rates for applications like
Ocean increase with the number of processors at the same
rate of its decrease with larger data sizes, we can think of
high PP performance penalties as limiting the scalability
of such applications on systems with commodity PP-based
coherence controllers.

Number of processors per SMP node

Varying the number of processors per SMP node (i.e. per
coherence controller), proportionally varies the demand on
the coherence controller occupancy, and thus is expected
to have impact on the PP performance penalty. Figure 10
shows the execution times on 64-processor systems (32 for
LU and Cholesky) with 1, 2, 4, and 8 processors per SMP
node, normalized to the execution time of HWC on the base
configuration (4 processors/node).

We notice that for applications with low communication
rates, the increase in the number of processors per node has
minor effect on the PP performance penalty. For applications
with high communication rates, the increase in the number of
processors increases the PP performance penalty (e.g. the PP
penalty increases from 93% for Ocean on 4 processor/node
to 106% on 8 processors per node). However, the PP penalty
can be as high as 79% (for Ocean) even on systems with one
processor per node.

For each of the coherence controller architectures, perfor-
mance of applications with high communication rates de-
grades with more processors per node, due to the increase in
occupancy per coherence controller, which are already crit-
ical resources on systems with fewer processors per node.

Also, we observe that for applications with high commu-
nication rates (except FFT), the use of two protocol engines
in the coherence controllers achieves similar or better per-
formance than controllers with one protocol engine with half
the number of processors per nodes. In other words, using
two protocol engines in the coherence controllers, allows
integrating more processors per SMP node, thus saving the
costs of half the SMP buses, memory controllers, coherence
controllers, and I/O controllers.

3.3 Analysis

In order to gain more insight into quantifying the application
characteristics that affect the PP performance penalty, we
present some of the statistics generated by our simulations.
Table 6 shows communication statistics collected from sim-
ulations of HWC and PPC on the base system configuration3Applications like Radix maintain a constant communication rate with
different data sizes [12].
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(except Cholesky and LU are run on 32 processors). The
statistics are:� PP penalty: The increase in execution time of PPC

relative to the execution time of HWC.� RCCPI (Requests to Coherence Controller Per Instruc-
tion) is the total number of requests to the coherence
controllers divided by the total number of instructions.
This measure is independent of the coherence controller
implementation (but depends on the cache coherence
protocol) and can be obtained from a simple PRAM
simulation model.� The total occupancies of all coherence controllers for
PPC divided by that for HWC.� Average HWC (PPC) utilization is the average HWC
(PPC) occupancy divided by execution time.� Average HWC (PPC) queuing delay is the average time
a request to the coherence controller waits in a queue
while the controller is occupied by other requests.� Arrival rate of requests to HWC (PPC) per �s. (200
CPU cycles) is derived from the reciprocal of the mean
inter-arrival time of requests to each of the coherence
controllers.
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Application PP
Penalty

1000
RCCPI

PPC/HWC
occupancy

HWC
util.

PPC util. HWC
queuing
delay

PPC
queuing
delay

Avg. re-
quests
to HWC.
per �s.

Avg. re-
quests to
PPC. per�s.

LU 4.37% 1.3 2.37 4.21% 9.58% 20.2 61.0 0.41 0.40
Water-Sp 11.69% 1.8 2.65 10.95% 25.99% 20.0 75.0 1.19 1.06
Barnes 15.81% 2.3 2.52 13.26% 28.88% 13.4 53.2 1.26 1.09
Cholesky 24.38% 4.1 2.23 26.38% 47.37% 22.6 73.0 2.34 1.86
Water-Nsq 30.15% 3.3 2.69 17.86% 36.87% 31.4 125.2 1.85 1.43
FFT 45.59% 6.3 2.31 29.61% 46.96% 68.0 172.6 2.58 1.77
Radix 52.83% 9.8 2.36 36.82% 56.75% 45.8 128.0 3.66 2.33
Ocean 92.88% 23.2 2.47 52.89% 67.72% 46.4 144.0 4.69 2.41

Table 6: Communication statistics on the base system configuration.

In table 6 we notice that as RCCPI increases , the PP
performance penalty increases proportionally except for
Cholesky. In the case of Cholesky, the high load imbal-
ance inflates the execution time with both HWC and PPC.
Therefore, the PP penalty which is measured relative to the
execution time with HWC, is less than the PP penalty of
other applications with similar RCCPI but with better load
balance.

Also, as RCCPI increases, the arrival rate of requests to
the coherence controller per cycle for PPC diverges from
that of HWC, indicating the saturation of PPC, and that the
coherence controller is the bottle-neck for the base system
configuration. This is also supported by the observation of
the high utilization rates of HWC with Ocean, and of PPC
with Ocean, Radix, and FFT, indicating the saturation of the
coherence controllers in these cases, and that it is the main
bottle-neck.

However we notice that the queuing delays do not in-
crease proportionally with the increase in RCCPI, since the
queuing model of the coherence controller behaves like a
negative feedback system where the increase in RCCPI (the
input) increases the queuing delay in proportion to the dif-
ference between the queuing delay and a saturation value,
thus limiting the increase in queuing delay. Note that the
high queuing delay for FFT is attributed to its bursty com-
munication pattern [12].

Also, we observe that the ratio between the occupancy of
PPC and the occupancy of HWC is more or less constant for
the different applications, approximately 2.5.

Figure 11 plots the arrival rate of requests to each of
the coherence controller architecture against RCCPI for all
the applications on the base system configuration (except
Cholesky and LU as they were run on 32 processors) in-
cluding Ocean and FFT with large data sizes. The dotted
lines show the trend for each architecture. The figure shows
clearly the saturation levels of the different coherence con-
troller architectures, and the divergence in the arrival rates
for the different coherence controller architectures demon-

strates that the coherence architecture is the performance
bottle-neck of the base system.

Figures 12 shows the effect of RCCPI on the PP penalty
for the same experiments as those in figure 11. We notice a
clear proportional effect of RCCPI on the PP penalty. The
low slope of the curve can be explained by the fact that the
queuing model of the coherence controller resembles a neg-
ative feedback system. Without the negative feedback, the
PP penalty would increase exponentially with the increase
in RCCPI. The lower PP penalty for applications with low
RCCPI such as Barnes and Water-Spatial is due to the fact
that in those cases the coherence controller is under-utilized.

The previous analysis can help system designers predict
the relative performance of alternative coherence controller
designs. They can obtain the RCCPI measure for important
large applications using simple simulators (e.g. PRAM) and
relate that RCCPI to a graph similar to that in figure 12 that
can be obtained through the detailed simulation of simpler
applications covering a range of communication rates similar
to that of the large application.

4 Related Work

The proponents of protocol processors argue that the perfor-
mance penalty of protocol processors is minimal, and that
the additional flexibility is worth the performance penalty.
The Stanford FLASH designers find that the performance
penalty of using a protocol processor is less than 12% for the
applications that they simulated, including Ocean and Radix
[2]. Their measured penalties are significantly lower than
ours for the following reasons: i) FLASH uses a protocol
processor that is highly customized for executing protocol
handlers, ii) they consider only uniprocessor nodes in their
experiments, and iii) they assume a slower network latency
of 220 ns, as opposed to 70 ns in our base parameters.

In [11], Reinhardt et al. introduce the Wisconsin Typhoon
architecture that relies on a SPARC processor core integrated
with the other components of the coherence controller to
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Figure 11: Coherence controller bandwidth limitations.
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Figure 12: Effect of communication rate on PP penalty.

execute coherence handlers that implement a Simple COMA
protocol. Their simulations show that Simple COMA on
Typhoon is less than 30% slower than a custom hardware
CC-NUMA system. It is hard to compare our results to
theirs because of the difficulty in determining what fraction
of the performance difference is due to Simple COMA vs.
CC-NUMA, and custom hardware vs. protocol processors.

In [10], Reinhardt et al. compare the Wisconsin Typhoon
and its first-generation prototypes with an idealized Simple
COMA system. Here, their results show that the perfor-
mance penalty of using integrated protocol processors is less
than 20%. In contrast, we find larger performance penalties
of close to 100%. There are two main reasons for this dif-
ference: i) we are considering a more decoupled design than
Typhoon, and ii) the application set used in the studies. Our
results largely agree with theirs for Barnes, the only applica-
tion in common between the two studies. However, we also
consider applications with higher bandwidth requirements,
such as Ocean, Radix, and FFT. Other differences between
the two studies are: i) they compare Simple COMA systems,
while we compare CC-NUMA systems, ii) they assume a
slower network with a latency of 500 ns, which mitigates
the penalty of protocol processors, and iii) they considered
only uniprocessor nodes.

Holt et al. [3] perform a study similar to ours on compar-
ing various coherence controller architectures and the effect
of latency, occupancy and bandwidth on application per-

formance. They also find that the occupancy of coherence
controllers is critical to the performance of high-bandwidth
applications. However, their study is more theoretical in
nature, as they use simple exponential multiplicative fac-
tors in modeling the ratios between the occupancies of the
various architectures. For instance, the assume that off-the-
shelf protocol processor occupancy is 8 times that of custom
hardware. In contrast, by modeling the alternative designs
in detail, we find that protocol processor occupancy is only
2.5 times that of custom hardware.

5 Conclusions

The major focus of our research is on characterizing the
performance tradeoffs between using custom hardware ver-
sus protocol processors to implement cache coherence pro-
tocols. By comparing designs that differ only in features
specific to either approach and keeping the rest of the ar-
chitectural parameters identical, we are able to perform a
systematic comparison of both approaches. We find that
for bandwidth-limited applications, like Ocean, Radix, and
FFT, the occupancy of off-the-shelf protocol processors sig-
nificantly degrades performance.

We also find that using a slow network or large data sizes
results in tolerable protocol processor performance, and that
for communication-intensive applications, performance de-
grades with the increase in the number of processors per
node, as a result of the decrease in the number of coherence
controllers in the system.

Our results also demonstrate the benefit of using two pro-
tocol engines in improving performance or maintaining the
same performance of systems with larger number of coher-
ence controllers. We are investigating other optimizations
such as using more protocol engines for different regions
of memory, and using custom hardware to implement ac-
celerated data paths and handler paths for simple protocol
handlers. that usually incur the highest penalties on protocol
processors relative to custom hardware.

Our analysis of the application characteristics captures
the communication requirements of the applications and its
impact on performance penalty. Our characterization can
help system designers predict the performance of coherence
controllers with other applications.

The results of our research imply that it is crucial to re-
duce protocol processor occupancy in order to support high-
bandwidth applications. One can either custom design a
protocol processor that is optimized for executing protocol
handlers, or add custom hardware to accelerate common pro-
tocol handler actions. The Stanford FLASH multiprocessor
takes the former approach. We are currently investigating
the latter approach.
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