
Simple, Fast, and Practical Non-Blocking and Blocking
Concurrent Queue Algorithms�

Maged M. Michael Michael L. Scott

Department of Computer Science
University of Rochester

Rochester, NY 14627-0226
fmichael,scottg@cs.rochester.edu

Abstract

Drawing ideas from previous authors, we present a new
non-blocking concurrent queue algorithm and a new two-
lock queue algorithm in which one enqueue and one de-
queue can proceed concurrently. Both algorithms are sim-
ple, fast, and practical; we were surprised not to find them
in the literature. Experiments on a 12-node SGI Challenge
multiprocessor indicate that the new non-blocking queue
consistently outperforms the best known alternatives; it is
the clear algorithm of choice for machines that provide a
universal atomic primitive (e.g. compare and swap or
load linked/store conditional). The two-lock
concurrent queue outperforms a single lock when several
processes are competing simultaneously for access; it ap-
pears to be the algorithm of choice for busy queues on ma-
chines with non-universal atomic primitives (e.g. test
and set). Since much of the motivation for non-blocking
algorithms is rooted in their immunity to large, unpre-
dictable delays in process execution,we report experimental
results both for systems with dedicated processors and for
systems with several processes multiprogrammed on each
processor.

Keywords: concurrent queue, lock-free, non-blocking,
compare and swap, multiprogramming.

�This work was supported in part by NSF grants nos. CDA–94–01142
and CCR–93–19445, and by ONR research grant no. N00014–92–J–1801
(in conjunction with the DARPA Research in Information Science and
Technology—HighPerformance Computing, Software Science and Tech-
nology program, ARPA Order no. 8930).

1 Introduction
Concurrent FIFO queues are widely used in parallel ap-

plications and operating systems. To ensure correctness,
concurrent access to shared queues has to be synchronized.
Generally, algorithms for concurrent data structures, in-
cluding FIFO queues, fall into two categories: blocking
and non-blocking. Blocking algorithms allow a slow or de-
layed process to prevent faster processes from completing
operations on the shared data structure indefinitely. Non-
blocking algorithms guarantee that if there are one or more
active processes trying to perform operations on a shared
data structure, some operation will complete within a finite
number of time steps. On asynchronous (especially multi-
programmed) multiprocessor systems, blocking algorithms
suffer significant performance degradation when a process
is halted or delayed at an inopportune moment. Possible
sources of delay include processor scheduling preemption,
page faults, and cache misses. Non-blocking algorithms
are more robust in the face of these events.
Many researchers have proposed lock-free algorithms

for concurrent FIFO queues. Hwang and Briggs [7],
Sites [17], and Stone [20] present lock-free algorithms
based oncompare and swap. 1 These algorithms are in-
completely specified; they omit details such as the handling
of empty or single-item queues, or concurrent enqueues
and dequeues. Lamport [9] presents a wait-free algorithm
that restricts concurrency to a single enqueuer and a single
dequeuer.2

Gottlieb et al. [3] and Mellor-Crummey [11] present
algorithms that are lock-free but not non-blocking: they do
not use locking mechanisms, but they allow a slow process
to delay faster processes indefinitely.

1Compare and swap, introduced on the IBM System 370, takes as
arguments the address of a shared memory location, an expected value,
and a new value. If the shared location currently holds the expected value,
it is assigned the new value atomically. A Boolean return value indicates
whether the replacement occurred.

2A wait-free algorithm is both non-blocking and starvation free: it
guarantees that every active process will make progress within a bounded
number of time steps.

Treiber [21] presents an algorithm that is non-blocking
but inefficient: a dequeue operation takes time propor-
tional to the number of the elements in the queue. Her-
lihy [6]; Prakash, Lee, and Johnson [15]; Turek, Shasha,
and Prakash [22]; and Barnes [2] propose general method-
ologies for generating non-blocking versions of sequential
or concurrent lock-based algorithms. However, the result-
ing implementations are generally inefficient compared to
specialized algorithms.
Massalin and Pu [10] present lock-free algorithms based

on a double compare and swap primitive that oper-
ates on two arbitrarymemory locations simultaneously, and
that seems to be available only on later members of the Mo-
torola 68000 family of processors. Herlihy and Wing [4]
present an array-based algorithm that requires infinite ar-
rays. Valois [23] presents an array-based algorithm that re-
quires either an unaligned compare and swap (not sup-
ported on any architecture) or a Motorola-like double
compare and swap.
Stone [18] presents a queue that is lock-free but non-

linearizable3 and not non-blocking. It is non-linearizable
because a slow enqueuer may cause a faster process to
enqueue an item and subsequently observe an empty queue,
even though the enqueued item has never been dequeued.
It is not non-blocking because a slow enqueue can delay
dequeues by other processes indefinitely. Our experiments
also revealed a race condition inwhich a certain interleaving
of a slow dequeue with faster enqueues and dequeues by
other process(es) can cause an enqueued item to be lost
permanently. Stone also presents [19] a non-blocking queue
based on a circular singly-linked list. The algorithm uses
one anchor pointer to manage the queue instead of the usual
head and tail. Our experiments revealed a race condition in
which a slow dequeuer can cause an enqueued item to be
lost permanently.
Prakash, Lee, and Johnson [14, 16] present a lineariz-

able non-blocking algorithm that requires enqueuing and
dequeuing processes to take a snapshot of the queue in
order to determine its “state” prior to updating it. The algo-
rithm achieves the non-blockingproperty by allowing faster
processes to complete the operations of slower processes in-
stead of waiting for them.
Valois [23, 24] presents a list-based non-blocking algo-

rithm that avoids the contention caused by the snapshots
of Prakash et al.’s algorithm and allows more concurrency
by keeping a dummy node at the head (dequeue end) of
a singly-linked list, thus simplifying the special cases as-
sociated with empty and single-item queues (a technique
suggested by Sites [17]). Unfortunately, the algorithm al-
lows the tail pointer to lag behind the head pointer, thus
preventing dequeuing processes from safely freeing or re-

3An implementation of a data structure is linearizable if it can always
give an external observer, observing only the abstract data structure opera-
tions, the illusion that each of these operations takes effect instantaneously
at some point between its invocation and its response [5].

using dequeued nodes. If the tail pointer lags behind and a
process frees a dequeued node, the linked list can be broken,
so that subsequently enqueued items are lost. Since mem-
ory is a limited resource, prohibiting memory reuse is not
an acceptable option. Valois therefore proposes a special
mechanism to free and allocate memory. The mechanism
associates a reference counter with each node. Each time a
process creates a pointer to a node it increments the node’s
reference counter atomically. When it does not intend to
access a node that it has accessed before, it decrements the
associated reference counter atomically. In addition to tem-
porary links from process-local variables, each reference
counter reflects the number of links in the data structure
that point to the node in question. For a queue, these are the
head and tail pointers and linked-list links. A node is freed
only when no pointers in the data structure or temporary
variables point to it.
We discovered and corrected [13] race conditions in the

memory management mechanism and the associated non-
blocking queue algorithm. Even so, the memory manage-
ment mechanism and the queue that employs it are imprac-
tical: no finite memory can guarantee to satisfy the memory
requirements of the algorithm all the time. Problems oc-
cur if a process reads a pointer to a node (incrementing the
reference counter) and is then delayed. While it is not run-
ning, other processes can enqueue and dequeue an arbitrary
number of additional nodes. Because of the pointer held
by the delayed process, neither the node referenced by that
pointer nor any of its successors can be freed. It is therefore
possible to run out of memory even if the number of items
in the queue is bounded by a constant. In experiments with
a queue of maximum length 12 items, we ran out of mem-
ory several times during runs of ten million enqueues and
dequeues, using a free list initialized with 64,000 nodes.
Most of the algorithms mentioned above are based on

compare and swap, and must therefore deal with the
ABAproblem: if a process reads a valueA in a shared loca-
tion, computes a new value, and then attempts a compare
and swap operation, the compare and swap may suc-
ceed when it should not, if between the read and the
compare and swap some other process(es) change the
A to aB and thenback to anA again. The most common so-
lution is to associate a modification counter with a pointer,
to always access the counter with the pointer in any read-
modify-compare and swap sequence, and to increment
it in each successful compare and swap. This solution
does not guarantee that theABAproblemwill not occur, but
it makes it extremely unlikely. To implement this solution,
one must either employ a double-word compare and
swap, or else use array indices instead of pointers, so that
they may share a single word with a counter. Valois’s ref-
erence counting technique guarantees preventing the ABA
problem without the need for modification counters or the
double-word compare and swap. Mellor-Crummey’s
lock-free queue [11] requires no special precautions to avoid

the ABA problem because it uses compare and swap in
a fetch and store-modify-compare and swap se-
quence rather than the usual read-modify-compare and
swap sequence. However, this same feature makes the
algorithm blocking.
In section 2 we present two new concurrent FIFO queue

algorithms inspired by ideas in the work described above.
Both of the algorithms are simple and practical. One is
non-blocking; the other uses a pair of locks. Correctness
of these algorithms is discussed in section 3. We present
experimental results in section 4. Using a 12-node SGI
Challenge multiprocessor, we compare the new algorithms
to a straightforward single-lock queue, Mellor-Crummey’s
blocking algorithm [11], and the non-blocking algorithms
of Prakash et al. [16] and Valois [24], with both dedicated
and multiprogrammed workloads. The results confirm the
value of non-blockingalgorithmsonmultiprogrammed sys-
tems. They also show consistently superior performance
on the part of the new lock-free algorithm, both with and
without multiprogramming. The new two-lock algorithm
cannot compete with the non-blocking alternatives on a
multiprogrammed system, but outperforms a single lock
when several processes compete for access simultaneously.
Section 5 summarizes our conclusions.

2 Algorithms
Figure 1 presents commented pseudo-code for the non-

blocking queue data structure and operations. The algo-
rithm implements the queue as a singly-linked list with
Head and Tail pointers. As in Valois’s algorithm, Head
always points to a dummy node, which is the first node in
the list. Tail points to either the last or second to last node
in the list. The algorithm uses compare and swap, with
modification counters to avoid the ABA problem. To allow
dequeuing processes to free dequeued nodes, the dequeue
operation ensures that Tail does not point to the dequeued
node nor to any of its predecessors. This means that de-
queued nodes may safely be re-used.
To obtain consistent values of various pointers we rely

on sequences of reads that re-check earlier values to be sure
they haven’t changed. These sequences of reads are similar
to, but simpler than, the snapshots of Prakash et al. (we
need to check only one shared variable rather than two). A
similar technique can be used to prevent the race condition
in Stone’s blocking algorithm. We use Treiber’s simple and
efficient non-blocking stack algorithm [21] to implement a
non-blocking free list.
Figure 2 presents commented pseudo-code for the two-

lock queue data structure and operations. The algorithm
employs separate Head and Tail locks, to allow complete
concurrency between enqueues and dequeues. As in the
non-blocking queue, we keep a dummy node at the begin-
ning of the list. Because of the dummy node, enqueuers
never have to access Head, and dequeuers never have to
access Tail, thus avoiding potential deadlock problems that

arise from processes trying to acquire the locks in different
orders.

3 Correctness
3.1 Safety
The presented algorithms are safe because they satisfy

the following properties:

1. The linked list is always connected.

2. Nodes are only inserted after the last node in the linked
list.

3. Nodes are only deleted from the beginning of the
linked list.

4. Head always points to the first node in the linked list.

5. Tail always points to a node in the linked list.

Initially, all these properties hold. By induction, we
show that they continue to hold, assuming that the ABA
problem never occurs.

1. The linked list is always connected because once a
node is inserted, its next pointer is not set to NULL
before it is freed, and no node is freed until it is deleted
from the beginning of the list (property 3).

2. In the lock-free algorithm, nodes are only inserted
at the end of the linked list because they are linked
through the Tail pointer, which always points to a node
in the linked-list (property 5), and an inserted node is
linked only to a node that has a NULL next pointer,
and the only such node in the linked list is the last one
(property 1).

In the lock-based algorithm nodes are only inserted at
the end of the linked list because they are inserted after
the node pointed to by Tail, and in this algorithm Tail
always points to the last node in the linked list, unless
it is protected by the tail lock.

3. Nodes are deleted from the beginning of the list, be-
cause they are deleted only when they are pointed to
by Head and Head always points to the first node in
the list (property 4).

4. Head always points to the first node in the list, because
it only changes its value to the next node atomically
(either using the head lock or using compare and
swap). When this happens the node it used to point
to is considered deleted from the list. The new value
ofHead cannot be NULL because if there is one node
in the linked list the dequeue operation returnswithout
deleting any nodes.

structure pointer t fptr: pointer to node t, count: unsigned integerg
structure node t fvalue: data type, next: pointer tg
structure queue t fHead: pointer t, Tail: pointer tg

initialize(Q: pointer to queue t)
node = new node() # Allocate a free node
node–>next.ptr = NULL # Make it the only node in the linked list
Q–>Head = Q–>Tail = node # Both Head and Tail point to it

enqueue(Q: pointer to queue t, value: data type)
E1: node = new node() # Allocate a new node from the free list
E2: node–>value = value # Copy enqueued value into node
E3: node–>next.ptr = NULL # Set next pointer of node to NULL
E4: loop # Keep trying until Enqueue is done
E5: tail = Q–>Tail # Read Tail.ptr and Tail.count together
E6: next = tail.ptr–>next # Read next ptr and count fields together
E7: if tail == Q–>Tail # Are tail and next consistent?
E8: if next.ptr == NULL # Was Tail pointing to the last node?
E9: if CAS(&tail.ptr–>next, next, <node, next.count+1>) # Try to link node at the end of the linked list
E10: break # Enqueue is done. Exit loop
E11: endif
E12: else # Tail was not pointing to the last node
E13: CAS(&Q–>Tail, tail, <next.ptr, tail.count+1>) # Try to swing Tail to the next node
E14: endif
E15: endif
E16: endloop
E17: CAS(&Q–>Tail, tail, <node, tail.count+1>) # Enqueue is done. Try to swing Tail to the inserted node

dequeue(Q: pointer to queue t, pvalue: pointer to data type): boolean
D1: loop # Keep trying until Dequeue is done
D2: head = Q–>Head # Read Head
D3: tail = Q–>Tail # Read Tail
D4: next = head–>next # Read Head.ptr–>next
D5: if head == Q–>Head # Are head, tail, and next consistent?
D6: if head.ptr == tail.ptr # Is queue empty or Tail falling behind?
D7: if next.ptr == NULL # Is queue empty?
D8: return FALSE # Queue is empty, couldn’t dequeue
D9: endif
D10: CAS(&Q–>Tail, tail, <next.ptr, tail.count+1>) # Tail is falling behind. Try to advance it
D11: else # No need to deal with Tail

Read value before CAS, otherwise another dequeue might free the next node
D12: *pvalue = next.ptr–>value
D13: if CAS(&Q–>Head, head, <next.ptr, head.count+1>) # Try to swing Head to the next node
D14: break # Dequeue is done. Exit loop
D15: endif
D16: endif
D17: endif
D18: endloop
D19: free(head.ptr) # It is safe now to free the old dummy node
D20: return TRUE # Queue was not empty, dequeue succeeded

Figure 1: Structure and operation of a non-blocking concurrent queue.

scott
Highlight
Q–>Head.ptr = Q–>Tail.ptr = node

scott
Highlight
next = head.ptr–>next

structure node t fvalue: data type, next: pointer to node tg
structure queue t fHead: pointer to node t, Tail: pointer to node t, H lock: lock type, T lock: lock typeg

initialize(Q: pointer to queue t)
node = new node() # Allocate a free node
node–>next.ptr = NULL # Make it the only node in the linked list
Q–>Head = Q–>Tail = node # Both Head and Tail point to it
Q–>H lock = Q–>T lock = FREE # Locks are initially free

enqueue(Q: pointer to queue t, value: data type)
node = new node() # Allocate a new node from the free list
node–>value = value # Copy enqueued value into node
node–>next.ptr = NULL # Set next pointer of node to NULL
lock(&Q–>T lock) # Acquire T lock in order to access Tail

Q–>Tail–>next = node # Link node at the end of the linked list
Q–>Tail = node # Swing Tail to node

unlock(&Q–>T lock) # Release T lock

dequeue(Q: pointer to queue t, pvalue: pointer to data type): boolean
lock(&Q–>H lock) # Acquire H lock in order to access Head

node = Q–>Head # Read Head
new head = node–>next # Read next pointer
if new head == NULL # Is queue empty?

unlock(&Q–>H lock) # Release H lock before return
return FALSE # Queue was empty

endif
*pvalue = new head–>value # Queue not empty. Read value before release
Q–>Head = new head # Swing Head to next node

unlock(&Q–>H lock) # Release H lock
free(node) # Free node
return TRUE # Queue was not empty, dequeue succeeded

Figure 2: Structure and operation of a two-lock concurrent queue.

5. Tail always points to a node in the linked list, because
it never lags behind Head, so it can never point to a
deleted node. Also, when Tail changes its value it
always swings to the next node in the list and it never
tries to change its value if the next pointer is NULL.

3.2 Linearizability
The presented algorithms are linearizable because there

is a specific point during each operation at which it is con-
sidered to “take effect” [5]. An enqueue takes effect when
the allocated node is linked to the last node in the linked
list. A dequeue takes effect when Head swings to the next
node. And, as shown in the previous subsection (properties
1, 4, and 5), the queue variables always reflect the state of
the queue; they never enter a transient state in which the
state of the queue can be mistaken (e.g. a non-empty queue

appears to be empty).

3.3 Liveness
The Lock-Free Algorithm is Non-Blocking

The lock-free algorithm is non-blockingbecause if there are
non-delayed processes attempting to perform operations on
the queue, an operation is guaranteed to complete within
finite time.
An enqueue operation loops only if the condition in line

E7 fails, the condition in line E8 fails, or the compare
and swap in line E9 fails. A dequeue operation loops
only if the condition in line D5 fails, the condition in line
D6 holds (and the queue is not empty), or the compare
and swap in line D13 fails.
We show that the algorithm is non-blocking by showing

that a process loops beyond a finite number of times only if

another process completes an operation on the queue.

� The condition in line E7 fails only if Tail is written
by an intervening process after executing line E5. Tail
always points to the last or second to last node of
the linked list, and when modified it follows the next
pointer of the node it points to. Therefore, if the condi-
tion in line E7 fails more than once, then another pro-
cess must have succeeded in completing an enqueue
operation.

� The condition in line E8 fails if Tail was pointing to
the second to last node in the linked-list. After the
compare and swap in line E13, Tail must point to
the last node in the list, unless a process has succeeded
in enqueuing a new item. Therefore, if the condition in
line E8 failsmore thanonce, then another processmust
have succeeded in completing an enqueue operation.

� The compare and swap in line E9 fails only if an-
other process succeeded in enqueuing a new item to
the queue.

� The condition in line D5 and the compare and
swap in line D13 fail only if Head has been writ-
ten by another process. Head is written only when a
process succeeds in dequeuing an item.

� The condition in line D6 succeeds (while the queue
is not empty) only if Tail points to the second to last
node in the linked list (in this case it is also the first
node). After the compare and swap in line D10,
Tailmust point to the last node in the list, unless a pro-
cess succeeded in enqueuing a new item. Therefore,
if the condition of line D6 succeeds more than once,
then another process must have succeeded in complet-
ing an enqueue operation (and the same or another
process succeeded in dequeuing an item).

The Two-Lock Algorithm is Livelock-Free

The two-lock algorithm does not contain any loops. There-
fore, if themutual exclusion lock algorithmused for locking
and unlocking the head and tail locks is livelock-free, then
the presented algorithmis livelock-free too. There aremany
mutual exclusion algorithms that are livelock-free [12].

4 Performance
We use a 12-processor Silicon Graphics Challenge mul-

tiprocessor to compare the performance of the new algo-
rithms to that of a single-lock algorithm, the algorithm of
Prakash et al. [16], Valois’s algorithm [24] (with correc-
tions to the memory management mechanism [13]), and
Mellor-Crummey’s algorithm [11]. We include the algo-
rithm of Prakash et al. because it appears to be the best of
the known non-blocking alternatives. Mellor-Crummey’s

algorithm represents non-lock-based but blocking alterna-
tives; it is simpler than the code of Prakash et al., and
could be expected to display lower constant overhead in
the absence of unpredictable process delays, but is likely
to degenerate on a multiprogrammed system. We include
Valois’s algorithmto demonstrate that onmultiprogrammed
systems even a comparatively inefficient non-blocking al-
gorithm can outperform blocking algorithms.
For the two lock-based algorithms we use test-and-

test and set locks with bounded exponential back-
off [1, 12]. We also use backoff where appropriate in
the non-lock-based algorithms. Performance was not
sensitive to the exact choice of backoff parameters in
programs that do at least a modest amount of work
between queue operations. We emulate both test
and set and the atomic operations required by the
other algorithms (compare and swap, fetch and
increment, fetch and decrement, etc.) using the
MIPSR4000load linked and store conditional
instructions.
To ensure the accuracy of the experimental results, we

used the multiprocessor exclusively and prevented other
users from accessing it during the experiments. To evaluate
the performance of the algorithms under different levels of
multiprogramming,we used a feature in the Challenge mul-
tiprocessor that allows programmers to associate processes
with certain processors. For example, to represent a ded-
icated system where multiprogramming is not permitted,
we created as many processes as the number of processors
we wanted to use and locked each process to a different
processor. And in order to represent a system with a multi-
programming level of 2,we created twice asmany processes
as the number of processors we wanted to use, and locked
each pair of processes to an individual processor.
C code for the tested algorithms can be ob-

tained from ftp://ftp.cs.rochester.edu/pub/
packages/sched conscious synch/
concurrent queues. The algorithms were compiled
at the highest optimization level, and were carefully hand-
optimized. We tested each of the algorithms in hours-long
executions on various numbers of processors. It was during
this process that we discovered the race conditions men-
tioned in section 1.
All the experiments employ an initially-empty queue to

which processes perform a series of enqueue and dequeue
operations. Each process enqueues an item, does “other
work”, dequeues an item, does “other work”, and repeats.
With p processes, each process executes this loop b106�pc
or d106�pe times, for a total of one millionenqueues and de-
queues. The “other work” consists of approximately 6 �s of
spinning in an empty loop; it serves tomake the experiments
more realistic by preventing long runs of queue operations
by the same process (whichwoulddisplay overly-optimistic
performance due to an unrealistically low cache miss rate).
We subtracted the time required for one processor to com-

plete the “other work” from the total time reported in the
figures.
Figure 3 shows net elapsed time in seconds for one

million enqueue/dequeue pairs. Roughly speaking, this
corresponds to the time in microseconds for one en-
queue/dequeue pair. More precisely, for k processors, the
graph shows the time one processor spends performing
106�k enqueue/dequeue pairs, plus the amount by which
the critical path of the other 106�k � 1��k pairs performed
by other processors exceeds the time spent by the first pro-
cessor in “other work” and loop overhead. For k � 1, the
second term is zero. As k increases, the first term shrinks to-
ward zero, and the second term approaches the critical path
length of the overall computation; i.e. one million times
the serial portion of an enqueue/dequeue pair. Exactly how
much executionwill overlap in different processors depends
on the choice of algorithm, the number of processors k, and
the length of the “other work” between queue operations.
With only one processor, memory references in all but

the first loop iteration hit in the cache, and completion
times are very low. With two processors active, contention
for head and tail pointers and queue elements causes a high
fraction of references to miss in the cache, leading to sub-
stantially higher completion times. The queue operations of
processor 2, however, fit into the “other work” time of pro-
cessor 1, and vice versa, so we are effectively measuring the
time for one processor to complete 5�105 enqueue/dequeue
pairs. At three processors, the cache miss rate is about the
same as it was with two processors. Each processor only
has to perform 106�3 enqueue/dequeue pairs, but some of
the operations of the other processors no longer fit in the
first processor’s “other work” time. Total elapsed time
decreases, but by a fraction less than 1�3. Toward the
right-hand side of the graph, execution time rises for most
algorithms as smaller and smaller amounts of per-processor
“other work” and loop overhead are subtracted from a total
time dominated by critical path length. In the single-lock
and Mellor-Crummey curves, the increase is probably ac-
celerated as high rates of contention increase the average
cost of a cache miss. In Valois’s algorithm, the plotted time
continues to decrease, as more and more of the memory
management overhead moves out of the critical path and
into the overlapped part of the computation.
Figures 4 and 5 plot the same quantity as figure 3, but for

a system with 2 and 3 processes per processor, respectively.
The operating systemmultiplexes the processor among pro-
cesses with a scheduling quantum of 10 ms. As expected,
the blocking algorithms fare much worse in the presence of
multiprogramming, since an inopportune preemption can
block the progress of every process in the system. Also as
expected, the degree of performance degradation increases
with the level of multiprogramming.
In all three graphs, the new non-blocking queue outper-

forms all of the other alternatives when three or more pro-
cessors are active. Even for one or two processors, its per-

1 2 3 4 5 6 7 8 9 10 11 12

5

10

15

20

25

Processors

se
co

nd
s

Single lock

MC lock−free

Valois non−blocking

new two−lock

PLJ non−blocking

new non−blocking

Figure 3: Net execution time for one million en-
queue/dequeue pairs on a dedicated multiprocessor.

1 2 3 4 5 6 7 8 9 10 11 12

5

10

15

20

25

Processors

se
co

nd
s

Figure 4: Net execution time for one million en-
queue/dequeue pairs on a multiprogrammed system with 2
processes per processor.

1 2 3 4 5 6 7 8 9 10 11 12

5

10

15

20

25

Processors

se
co

nd
s

Figure 5: Net execution time for one million en-
queue/dequeue pairs on a multiprogrammed system with 3
processes per processor.

formance is good enough that we can comfortably recom-
mend its use in all situations. The two-lock algorithm out-
performs the one-lock algorithmwhen more than 5 proces-
sors are active on a dedicated system: it appears to be a rea-
sonable choice for machines that are not multiprogrammed,
and that lack a universal atomic primitive (compare and
swap or load linked/store conditional).

5 Conclusions
Queues are ubiquitous in parallel programs, and their

performance is a matter of major concern. We have pre-
sented a concurrent queue algorithm that is simple, non-
blocking, practical, and fast. We were surprised not to find
it in the literature. It seems to be the algorithm of choice
for any queue-based application on a multiprocessor with
universal atomic primitives (e.g. compare and swap or
load linked/store conditional).
We have also presented a queue with separate head and

tail pointer locks. Its structure is similar to that of the non-
blocking queue, but it allows only one enqueue and one
dequeue to proceed at a given time. Because it is based on
locks, however, it will work on machines with such simple
atomic primitives as test and set. We recommend it
for heavily-utilized queues on such machines (For a queue
that is usually accessed by only one or two processors, a
single lock will run a little faster.)
This work is part of a larger project that seeks to

evaluate the tradeoffs among alternative mechanisms for
atomic update of common data structures. Structures under
consideration include stacks, queues, heaps, search trees,
and hash tables. Mechanisms include single locks, data-
structure-specific multi-lock algorithms, general-purpose
and special-purpose non-blocking algorithms, and function
shipping to a centralized manager (a valid technique for
situations in which remote access latencies dominate com-
putation time).
In related work [8, 25, 26], we have been developing

general-purpose synchronization mechanisms that coop-
erate with a scheduler to avoid inopportune preemption.
Given that immunity to processes delays is a primary bene-
fit of non-blocking parallel algorithms, we plan to compare
these two approaches in the context of multiprogrammed
systems.

References
[1] T.E.Anderson. ThePerformance ofSpinLockAlter-

natives for Shared-Memory Multiprocessors. IEEE
Transactions on Parallel and Distributed Systems,
1(1):6–16, January 1990.

[2] G. Barnes. A Method for Implementing Lock-Free
Data Structures. In Proceedings of the Fifth Annual
ACM Symposium on Parallel Algorithms and Archi-
tectures, Velen, Germany, June – July 1993.

[3] A. Gottlieb, B. D. Lubachevsky, and L. Rudolph.
Basic Techniques for the Efficient Coordination of
Very Large Numbers of Cooperating Sequential Pro-
cessors. ACM Transactions on Programming Lan-
guages and Systems, 5(2):164–189, April 1983.

[4] M. P. Herlihy and J. M.Wing. Axions for Concurrent
Objects. InProceedings of the 14thACMSymposium
onPrinciples of ProgrammingLanguages, pages 13–
26, January 1987.

[5] M. P. Herlihy and J. M. Wing. Linearizability: A
Correctness Condition for Concurrent Objects. ACM
Transactions on Programming Languages and Sys-
tems, 12(3):463–492, July 1990.

[6] M. Herlihy. A Methodology for Implementing
Highly Concurrent Data Objects. ACM Trans-
actions on Programming Languages and Systems,
15(5):745–770, November 1993.

[7] K. Hwang and F. A. Briggs. Computer Architecture
and Parallel Processing. McGraw-Hill, 1984.

[8] L. Kontothanassis and R. Wisniewski. Using Sched-
uler Information to Achieve Optimal Barrier Syn-
chronization Performance. In Proceedings of the
Fourth ACM Symposium on Principles and Practice
of Parallel Programming, May 1993.

[9] L. Lamport. Specifying Concurrent Program Mod-
ules. ACMTransactions onProgrammingLanguages
and Systems, 5(2):190–222, April 1983.

[10] H. Massalin and C. Pu. A Lock-Free Multiproces-
sor OS Kernel. Technical Report CUCS-005-91,
Computer Science Department, Columbia Univer-
sity, 1991.

[11] J. M. Mellor-Crummey. Concurrent Queues: Practi-
cal Fetch-and-ΦAlgorithms. TR 229, Computer Sci-
ence Department, University of Rochester, Novem-
ber 1987.

[12] J. M. Mellor-Crummey and M. L. Scott. Algorithms
for Scalable Synchronization on Shared-Memory
Multiprocessors. ACM Transactions on Computer
Systems, 9(1):21–65, February 1991.

[13] M. M. Michael and M. L. Scott. Correction of a
Memory Management Method for Lock-Free Data
Structures. Technical Report 599, Computer Sci-
ence Department, University of Rochester, Decem-
ber 1995.

[14] S. Prakash, Y. H. Lee, and T. Johnson. A
Non-Blocking Algorithm for Shared Queues Using
Compare-and Swap. In Proceedings of the 1991
International Conference on Parallel Processing,
pages II:68–75, 1991.

[15] S. Prakash, Y. H. Lee, and T. Johnson. Non-Blocking
Algorithms for Concurrent Data Structures. Techni-
cal Report 91-002, University of Florida, 1991.

[16] S. Prakash, Y. H. Lee, and T. Johnson. A
Nonblocking Algorithm for Shared Queues Using
Compare-and-Swap. IEEE Transactions on Com-
puters, 43(5):548–559,May 1994.

[17] R. Sites. OperatingSystems and ComputerArchitec-
ture. In H. Stone, editor, Introduction to Computer
Architecture, 2nd edition, Chapter 12, 1980. Science
Research Associates.

[18] J.M. Stone. A Simple andCorrect Shared-Queue Al-
gorithm Using Compare-and-Swap. In Proceedings
Supercomputing ’90, November 1990.

[19] J. M. Stone. A Non-Blocking Compare-and-Swap
Algorithm for a Shared Circular Queue. In S. Tzafes-
tas et al., editors, Parallel and Distributed Comput-
ing in Engineering Systems, pages 147–152, 1992.
Elsevier Science Publishers.

[20] H. S. Stone. High Performance Computer Architec-
ture. Addison-Wesley, 1993.

[21] R. K. Treiber. Systems Programming: Coping with
Parallelism. In RJ 5118, IBM Almaden Research
Center, April 1986.

[22] J. Turek, D. Shasha, and S. Prakash. Locking with-
out Blocking: Making Lock Based Concurrent Data
Structure Algorithms Nonblocking. In Proceedings
of the 11th ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems, pages
212–222, 1992.

[23] J. D. Valois. Implementing Lock-Free Queues. In
Seventh International Conference on Parallel and
Distributed ComputingSystems, Las Vegas, NV, Oc-
tober 1994.

[24] J. D. Valois. Lock-Free Data Structures. Ph. D.
dissertation, Rensselaer Polytechnic Institute, May
1995.

[25] R. W. Wisniewski, L. Kontothanassis, and M. L.
Scott. Scalable Spin Locks for Multiprogrammed
Systems. In Proceedings of the Eighth Interna-
tional Parallel Processing Symposium, pages 583–
589, Cancun, Mexico, April 1994. Earlier but ex-
panded version available as TR 454, Computer Sci-
ence Department, University of Rochester, April
1993.

[26] R. W. Wisniewski, L. I. Kontothanassis, and M. L.
Scott. High Performance Synchronization Algo-
rithms for Multiprogrammed Multiprocessors. In

Proceedings of the Fifth ACM Symposium on Prin-
ciples and Practice of Parallel Programming, Santa
Barbara, CA, July 1995.

