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The rapid evolution of RISC microprocessors has left memory speeds lagging behind: as

of early 1994, typical main memory (DRAM) access times are on the order of 100 processor
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cycles, and this number is expected to increase for at least the next few years. Multiproces-

sors, like uniprocessors, use memory to store both instructions and data. The cost of the

typical memory access can therefore have a major impact on program execution time.

To minimize the extent to which processors wait for memory, modern computer systems

depend heavily on caches. Caches work extremely well for instructions: most programs

spend most of their time in loops that fit entirely in the cache. As a result, instruction

fetches usually have a negligible impact on a processor’s average number of cycles per

instruction (CPI). Caches also work well for data, but not as well. If we assume a simple

RISC processor that can issue a single register-to-register instruction every cycle and that

can hide the latency of a cache hit, then we can calculate CPI from the following formula:

CPI = % non memory instructions +

% memory instructions ∗ miss rate ∗ memory access cost

The percentages of memory and non-memory instructions vary with the type of appli-

cation, the level of optimization, and the quality of the compiler. A good rule of thumb,

however, is that somewhere between one fifth and one third of all dynamically executed

program instructions have to access memory. For a memory access cost of 100 and a dy-

namic instruction mix consisting of one quarter memory instructions, a 4% drop in the hit

rate, from 95% to 91%, translates into a 50% increase in the CPI, from 2 to 3. Maximizing

the hit rate (and minimizing the memory access cost) is clearly extremely important. As

we shall see in section 0.2, this goal is made substantially more difficult on shared-memory

multiprocessors by the need to maintain a consistent view of data across all processors.

Performance issues aside, the memory model exported to the user can have a large effect

on the ease with which parallel programs can be written. Most programmers are accustomed

to a uniprocessor programming model in which memory accesses are all of equal cost, and

in which every program datum can be accessed simply by referring to its name. Physical

constraints on multiprocessors, however, dictate that data cannot be close to all processors

at the same time. Multiprocessor hardware therefore presents a less convenient view of

memory, either making some data accessible to a given processor only via a special interface
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(message passing), or making some data accesses substantially more expensive than others

(distributed shared memory).

In this chapter we describe a variety of issues in the design and use of memory systems

for parallel and distributed computing. We focus on tightly-coupled multiprocessors, for

these are the systems that display the greatest diversity of design alternatives, and in

which the choice between alternatives can have the greatest impact on performance and

programmability.

We begin in section 0.1 with technological issues: the types of memory chips currently

available and their comparative advantages and costs. We then consider the major ar-

chitectural alternatives in memory-system design (section 0.2), and the impact of these

alternatives on the programmer (section 0.3). We argue that a shared-memory model is

desirable from the programmer’s point of view regardless of the underlying hardware archi-

tecture. Assuming a shared-memory model, we turn in section 0.4 to the issue of memory

consistency models, which determine the extent to which processors must agree about the

contents of memory at particular points in time. We discuss the implementation of various

consistency models in section 0.5. We conclude in section 0.6 with a description of current

trends in memory system design, and speculation as to what one may expect in future years.

0.1 Memory Hardware Technology

The ideal memory system from a programmer’s point of view is one that is infinitely large

and infinitely fast. Unfortunately physics dictates that these two properties are mutually

antagonistic: the larger a memory is the slower it will tend to respond.

Memory systems are generally measured in terms of size, latency, and bandwidth. Size

is simply the number of bytes of information that can be stored in the memory. Latency is

usually characterized by two measures: access time and cycle time. Access time is the time

it takes memory to produce a word of data requested by a processor, while cycle time is the

minimum time between requests. Bandwidth measures the number of bytes that memory
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can supply per unit of time. Bandwidth is related to cycle time but is also dependent on

other memory organization features discussed later in this section. These features include

the width of the memory and the number of memory banks.

There are two basic types of memory chips available in the market today: dynamic

random access memory (DRAM) and static random-access memory (SRAM). DRAMs re-

quire that the data contained in the chip be occasionally rewritten if they are not to be

lost. DRAM chips must therefore be made unavailable to service requests every few mil-

liseconds, in order to refresh themselves. Furthermore read accesses to DRAM chips must

be followed by writes of the data read, because a read destroys the contents of the accessed

location. As a result, DRAMs have a larger cycle time than access time. SRAMs on the

other hand require neither refresh nor write-back, and thus have equal cycle and access

times. Unfortunately, SRAM memories require more transistors per bit than DRAMs and

thus have lower density. A general rule of thumb is that the product of size and speed is

constant given a particular technology level. Current SRAMs are approximately 16 times

faster than DRAMs but have about 16 times less capacity.

SRAM and DRAM are not the only options when building a memory system. There

are also hybrid options that take advantage of common memory-access patterns. Cached

DRAMs [16] attempt to combine the best features of DRAM and SRAM (high density

and fast cycle time) by integrating a small SRAM buffer and a larger DRAM memory on

a single integrated circuit. Recently-accessed data is cached in the SRAM buffer. If the

memory access pattern displays a high degree of temporal locality (see section 0.2), then

many requests will be able to be serviced by the SRAM, for a faster average cycle time.

The SRAM buffer in a cached DRAM is obviously slower than a processor-local cache (it

is on the other side of the processor-memory interconnect), but it is automatically shared

by all processors using the memory, and does not introduce the need to maintain coherence

(see section 0.2.3).

Pagemode DRAMs [31] take advantage of the fact that addresses are presented in two

steps to a DRAM chip. The first step specifies a row in the internal chip grid; the second
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Memory Type Size Access Time Cycle Time

DRAM 16Mbit 85ns 140ns

SRAM 1Mbit 8ns 8ns

Cached DRAM 16Mbit 8ns (85ns) 8ns (140ns)

Pagemode DRAM 16Mbit 30ns (85ns) 80ns (140ns)

Table 1: Performance characteristics of different memory types. Numbers in parentheses

denote worst case response times.

step specifies the column. If successive accesses are to the same row then the first addressing

step can be omitted, improving the access time. Table 1 presents the basic performance

characteristics of current technology RAM.

The bandwidth of a memory system is related to the cycle time, but we can get high

bandwidth out of slow memory chips by accessing more of them in parallel, or by interleav-

ing successive memory references across different memory modules. Interleaving allows a

pipelined processor to issue memory references to either DRAM or SRAM at a faster rate

than the memory cycle time. Interleaving also allows a DRAM memory to re-write the

accessed data before being accessed again.

Most memory chips are one to eight bits wide, meaning that a given access returns from

one to eight bits of data. Since most systems access data with at least word granularity

(and many retrieve many-word cache lines), several chips are used in parallel to provide the

desired granularity in a single memory cycle. A collection of memory chips that can satisfy

one memory request is termed a memory bank.

There is a strong motivation to build a system from the densest available chips, to

minimize cost, physical bulk, power requirements, and heat dissipation. Unfortunately, the

goals of high density and interleaving are at odds. If we use 16 Mbit chips and assume that

each chip can supply 4 bits of data in one access, then 8 chips in parallel are needed to

supply a 32 bit word. This means that a single bank in our system would have 16 Mbytes of
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memory and our total memory size would have to increase in 16 Mbyte increments. Using

lower-density DRAM to increase interleaving sacrifices much of the cost advantage over

SRAM.

In practice, most memory systems for microprocessors (including those employed in mul-

tiprocessors) are currently built from DRAM, with caches at the processor. Most memory

systems for vector supercomputers (including modestly-parallel machines) are built from

highly-interleaved SRAM without caches. The Cray Research C-90, for example, can have

up 1024 banks of memory. Historically, supercomputer workloads have not displayed suffi-

cient locality of reference to make good use of caches, and supercomputer customers have

been willing to pay the extra cost for the SRAM memory.

0.2 Memory System Architecture

Beyond issues of chip technology, there are many architectural decisions that must be made

in designing a multiprocessor memory system. In this section we address three principal

categories of decisions. We begin with the high level organization of memory into modules,

the physical location of those modules with respect to processors and to each other, the

structure of the physical address space, and the role to be played by caches. We then turn

to lower-level issues in cache design, most of which pertain equally well to uniprocessors.

Finally we consider the issue of coherence, which arises on shared-memory multiprocessors

when copies of data to be modified may reside in more than one location.

0.2.1 High-level Memory Architecture

The most basic design decisions for multiprocessor memory systems hinge on the concept

of locality. Programs that display a high degree of locality make heavier use of different

portions of the address space during different intervals in time. Computer architects can

take advantage of locality via caching: keeping copies of heavily used information near to
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Figure 1: Levels in a memory hierarchy

the processors that use it, thereby presenting the illusion of a memory that is both large

and fast.

There are two dimensions of locality of importance on a uniprocessor, and a third of

importance on parallel machines:

1. Temporal Locality. If a data item is referenced once, then it is likely to be referenced

again in the near future.

2. Spatial Locality. If a data item is referenced, then items with nearby addresses are

likely to be referenced in the near future.

3. Processor Locality. If a data item item is referenced by a given processor, then that

data item (and others at nearby addresses) are likely to be referenced by that same

processor in the near future.

Hierarchical memory systems take advantage of locality by providing multiple levels

of memory, usually organized so that each higher level contains a subset of the data in
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Level Name Capacity Response Time

Processors Registers 64-256 bytes 0 cycles

First Level Cache 4-64 Kbytes 1-2 cycles

Second Level Cache 256-4096 Kbytes 10-20 cycles

Main memory 16-4096 Mbytes 60-200 cycles

Swap & Disk > 1Gbyte > 200,000 cycles

Table 2: Characteristics of memory hierarchy levels

the level below it. Figure 1 presents the levels in a typical memory hierarchy and table 2

summarizes typical size and speed characteristics for each level. The performance of the

memory hierarchy depends heavily on the success of the cache level(s) in satisfying requests,

so that the number of references that need to access slow main memory is minimized.

Successful caches reduce both average memory latency and the bandwidth required of main

memory and the interconnection network [36], allowing the use of cheaper parts.

Because it imposes lookup costs, a cache can actually reduce performance if the hit rate

is very low. For programs without significant amounts of locality, it may make sense to

build flat memory systems, in which all references access main memory directly. Workloads

on vector supercomputers, for example, have traditionally shown little locality, and require

more memory bandwidth than can be provided by a typical cache. As a result, supercom-

puters are often built with flat memory. For the sake of speed, this memory usually consists

of highly-interleaved SRAM, and is a major—perhaps the dominant—component in the cost

of these machines. Even so, supercomputer compilers must employ aggressive prefetching

techniques, and supercomputer processors must be prepared to execute instructions out of

order, to hide the latency of memory.

Current hardware and software trends suggest that caches are likely to become more

effective for future supercomputer workloads. Hardware trends include the development

of very large caches with multiple banks, which address the bandwidth problem. Software
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Figure 2: Simplified Distributed and Dance-Hall Memory Architecture Multiprocessors

trends include the development of compilers that apply techniques such as blocking [7] to

increase locality of reference.

Independent of the existence of caches, designers must address the question of where to

locate main memory. They can choose to co-locate a memory module with each processor

or group of processors, or to place all memory modules at one end of an interconnection

network and all processors at the other. The first alternative is known as a distributed

memory architecture; the second is known as a dance-hall architecture.1 Figure 2 depicts

the basic difference between the distributed and dance-hall designs. Distributed memory

architectures improve the scalability of systems when running applications with significant

amounts of processor locality. This scalability comes at the expense of a slightly more

complicated addressing scheme: node controllers must figure out where in the system to

send each memory request that cannot be satisfied locally.

Dance-hall architectures dominate among small-scale multiprocessors, where all system

components can share a single bus. The bus makes it easy for modules to monitor each

other’s activities, e.g. to maintain cache coherence. Large-scale dance-hall machines have

also been designed. Examples include the Illinois Cedar machine [47], the BBN Monarch

proposal [67], and the forthcoming Tera machine [4]. The dominant wisdom, however, holds

1Dance-hall machines take their name from the image of boys and girls standing on opposite sides of a

high school dance floor.

9



that scalability issues dictate a hierarchical distributed memory organization for large-scale

multiprocessors, and the trend toward such machines is likely to continue.

There are several important classes of distributed memory machines. The simplest

are the so-called multicomputers, or NORMA (no remote access) machines. In these each

processor is able to access only its local memory. All communication between processors is

by means of explicit message passing. Commercially-available NORMA machines include

the Intel Paragon, the Thinking Machines CM-5, the NCube 2, and a variety of products

based on the INMOS Transputer.

The remaining classes of distributed memory machines share with the dance-hall ma-

chines the provision of a single global physical address space. The machines in these classes

are sometimes referred to as a group as shared-memory multiprocessors. Among them,

the simplest are the so-called NUMA (non-uniform memory access) multiprocessors. Mod-

ern NUMA machines have caches, but the hardware does nothing to keep those caches

consistent. Examples of NUMA machines include the BBN TC2000, the Hector machine

at the University of Toronto [73], the Cray Research T3D, and the forthcoming Shrimp

machine [12].

The most complex of the large-scale machines are those that maintain cache coherence

in hardware, beyond the confines of a single bus. Examples of such machines include

the commercially-available Kendall Square KSR-1 and 2, the Convex Exemplar (based on

the IEEE Scalable Coherent Interface standard [43]), and the Dash [52], Flash [48], and

Alewife [3] research projects. Alternative approaches to cache coherence are discussed in

section 0.4.

A cache-less dance-hall machine is sometimes called an UMA (uniform memory access)

multiprocessor. Several companies produced such machines prior to the RISC revolution,

when processor cycle times were closer to memory cycle times. The Tera machine will be an

UMA, but will incorporate extremely aggressive techniques to hide memory latency. The

UMA name is sometimes applied to bus-based machines with caches, but this is an abuse

of terminology: caches make memory highly non-uniform.
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Figure 3: Lookup in a typical cache organization

0.2.2 Basic Issues in Cache Design

There are several metrics for judging the success of caches in a hierarchical memory system,

the most common being hit rate, miss rate and mean cost per reference (MCPR). Hit rate

is defined as the percentage of a program’s total memory references that are satisfied by

the cache; miss rate respectively indicates the percentage of references that could not be

satisfied by the cache. The hit rate and miss rate sum to one.

Figure 3 illustrates a typical single level cache organization and its cache lookup mech-

anism. When a tag check succeeds (the desired tag is found in the cache), we have a cache

hit and data is returned by the cache. When a tag check fails we have a miss and data must

be fetched from main memory, possibly replacing some data already in the cache.

MCPR is defined to be the average cost of a memory access. It provides a more detailed

performance measure for a cache, because it takes into account the cost of misses. If we

assume a single level of cache, then the formula for MCPR is as follows:
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MCPR = HitRate ∗HitT ime + MissRate ∗MissT ime

The actual MCPR observed by an application depends on many factors. Some of these

are application dependent, while others are architecture dependent. The application de-

pendent factors involve the locality properties of the application and will be discussed in

more detail in section 0.3. The architecture dependent parameters are: cache size, cache

block size, associativity, tag and index organization, replacement policy, write

policy, and choice of coherence mechanism. These parameters can affect performance

by changing the cost of cache hits,2 changing the cost of cache misses, or changing the ratio

of hits and misses.

With the exception of the coherence mechanism which will be discussed in section 0.2.3

the remaining parameters apply equally well to uniprocessor cache architectures, and are

discussed in most computer architecture books [41].

0.2.3 The Cache Coherence Problem

Simply stated, the coherence problem is to ensure that no processor reads a stale copy of

data in a system in which more than one copy may exist. The coherence problem arises on

uniprocessors equipped with direct memory access (DMA) I/O devices, but it can generally

be solved in this context via ad-hoc OS-level mechanisms. The problem also arises in

multiprocessors with caches, and is not as easily solved.

In small scale multiprocessors the coherence problem has been addressed by snooping

on a shared bus. A processor writing a shared datum broadcasts its action on the bus. The

remaining processors monitor the bus for all transactions on shared data and take whatever

actions are needed to keep their caches consistent. The main problem with this approach is

2It is common but not entirely accurate to assume that cache hits cost a single cycle. In reality, most

on-chip caches take 2 or 3 cycles to respond. The compiler attempts to hide cycles beyond the first by

scheduling independent operations in the next 1 or 2 instructions, but it cannot always do so.
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that the bus is a serial bottleneck, and limits system scalability. With current technology,

buses can supply as much as 1.2 Gbytes/sec of data, while processors may consume data at

a peak rate of as much as 200 Mbytes/sec. At these rates fewer than ten processors suffice

to saturate the bus. In practice caches satisfy most of the processor requests, but even so

the number of processors that can successfully share a bus is limited to 20 or 30.

In the absence of a fast, system-wide broadcast mechanism, the cache coherence problem

is addressed by maintaining some form of directory data structure [20]. A processor access-

ing a shared datum consults the directory, updates it if necessary, and sends individual

messages to all processors that may be affected by its actions, so that they can keep their

caches consistent. Directory data structures have to maintain information for every cache

line and every processor in the system. The obvious organization poses serious scalability

problems, since the memory overhead for directory information increases with the square

of the number of processors (Θ(P 2)) [21]. Fortunately, studies indicate that most data are

shared among a relatively small number of processors, even on very large machines [39],

so a directory structure can be effective while maintaining only a small number of pointers

for each sharable line [22]. In the exceptional case in which the small number of pointers

is not sufficient, the system can emulate broadcast with point-to-point messages, or use

dynamically allocated (slower) memory to store the additional pointers.

Most directory-based machines store the information about a given cache line at the pro-

cessor that holds the corresponding portion of main memory. Machines of this sort are said

to have a CC-NUMA (cache-coherent NUMA) architecture. An alternative approach is to

treat all of a processor’s local memory as a secondary or tertiary cache, with a more dynamic

directory structure and with no particular designated location for a given physical address.

Machines of this sort are referred to as COMA (cache-only memory architecture) [40].

The Stanford Dash machine [52] uses the Θ(P 2) directory organization. The MIT

Alewife machine has a limited number of pointers for each directory entry; it traps to

software on overflow. The Convex Examplar is based on the IEEE SCI standard [43], which

maintains a distributed directory whose total space overhead is linear in the size of the sys-
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tem’s caches. The newer Stanford Flash machine [48] has a programmable cache controller;

its directory structure is not fixed in hardware. The KSR-1 and 2 are COMA machines;

their proprietary coherence protocol relies in part on hardware-supported broadcast over a

hierarchical ring-based interconnection network. The Swedish Data Diffusion Machine [40]

is also a COMA, with a hierarchical organization whose space overhead grows as Θ(P log P ).

Independent to the scalability issue is the question of the actual mechanism used to main-

tain coherence. The available alternatives include write-invalidate and write-update [29].

Write-invalidate makes sure that there is only a single copy of a datum before it can be

written, by sending invalidation messages to processors that may currently have a copy of

the cache line in which the datum resides. Subsequent accesses to this line by processors

other than the writer will contact the writer for the latest value of the data. Write-update

makes sure that all copies are consistent by sending new values as they are written to ev-

ery processor with a copy of the line in its cache. The basic tradeoff is that write-update

leads to lower average latency for reads, but generates more interprocessor communication

traffic. In bus based multiprocessors the tradeoff has traditionally been resolved in favor of

write-invalidate [44, 63], because the interconnection network (the bus) is a scarce resource.

In large scale multiprocessors with network-based interconnects the latency for cache

misses on read accesses is the most serious impediment to parallel program performance.

Write update helps reduce this latency at the expense of higher network traffic. Depending

on the amount of bandwidth available in the system and the sharing pattern exhibited by

the program, write-update may yield better performance than write-invalidate. Hybrid pro-

tocols that choose between the two mechanisms dynamically have also been suggested [72]

and have been shown to provide performance advantages over each of the individual mech-

anisms in isolation. The question of which is the best coherence mechanism for large scale

multiprocessors is still a topic of active research.

Techniques that tolerate (hide) latency can serve to tilt the balance toward write-

invalidate protocols. Examples of such techniques include aggressive data prefetching [60]

and the use of micro-tasking processors [2, 5], which switch contexts on a cache miss. Ex-
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tensive discussion of the issues encountered in designing coherence protocols can be found

in several surveys [10, 38, 55, 71].

The choice of cache line size also has a significant impact on the efficiency of coherence

mechanisms. Long cache lines amortize the cost of cache misses by transferring more data

per cache miss in the hope of reducing the miss rate. In this sense they constitute a form

of hardware-initiated prefetching. At the same time, large cache lines can lead to false

sharing [14, 27, 30], in which processors incur coherence overhead due to accesses to non-

overlapping portions of a line. False sharing results in both higher miss rates and useless

coherence traffic. Conventional wisdom has historically favored short cache lines (8-32

bytes) for multiprocessor systems, but the evolution of compiler techniques for partitioning

data among cache lines, and the effort by programmers to produce programs with good

locality, will likely allow future machines to use longer cache lines safely.

0.3 User-Level Memory Models

0.3.1 Shared Memory v. Message Passing

Memory models are an issue not only at the hardware level, but also at the programmer

level. The model of memory presented to the user can have a significant impact on the

amount of effort required to produce a correct and efficient parallel program. Depending on

system software, the programmer-level model may or may not resemble the hardware-level

model.

We have seen that hardware memory architectures can be divided into message-passing

and shared-memory classes. In a very analogous way, programmer-level memory models can

be divided into message-passing and shared-memory classes as well. In a shared-memory

model, processes can access variables irrespective of location (subject to the scoping rules

of the programming language), simply by using the variables’ names. In a message-passing

model, variables are partitioned among the instances of some language-level abstraction of
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a processor. A process can access directly only those variables located on its own processor,

and must send messages to processes on other processors in order to access other variables.

There is a wide variety of programming models in both the message-passing and shared-

memory classes. In both cases, models may be implemented

• via library routines linked into programs written in a conventional sequential language;

• via features added to some existing sequential language by means of preprocessors or

compiler extensions of various levels of complexity; or

• via special-purpose parallel or distributed programming languages.

Library packages have the advantage of portability and simplicity, but are limited to

a subroutine-call interface, and cannot take advantage of compiler-based static analysis of

program control and data flow. Languages and language extensions can use more elaborate

syntax, and can implement compile-time optimizations. Because message-passing is based

on send and receive operations, which can for the most part be expressed as subroutine

calls, library-based implementations of message-passing models have tended to be more

successful than library-based implementations of shared-memory models. The latter are

generally forced to access all shared data indirectly through pointers obtained from library

routines.

Andrews and Schneider [8] provide an excellent introduction to parallel programming

models; a more recent book by Andrews [9] provides additional detail. Bal, Steiner, and

Tanenbaum provide a survey of message-passing programming models [11]. A technical

report by Cheng [23] surveys a large number of programming models and tools in use in the

early 1990s. Probably the most widely-used library-based shared-memory model is a set of

macros for Fortran and C developed by researchers at Argonne National Laboratory [15].

Widespread experience with library-based message-passing models has led to efforts to

standardize on a single interface [26].

It is widely believed that shared memory programming models are easier to use than

message passing models. This belief is supported by the dominance of (small-scale) shared-
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memory multiprocessors in the market, and by the many efforts by compiler writers [32,

68, 56] and operating system developers [19, 62] to provide a shared memory programming

model on top of message-passing hardware. We focus on shared-memory models in the

remainder of this chapter.

0.3.2 Implementation of Shared-Memory Models

Any user-level parallel programming model must deal with several issues. These include

• specifying the computational tasks to be performed and the data structures to be

used;

• identifying data dependences among tasks;

• allocating tasks to processes, and scheduling and synchronizing processes on proces-

sors, in a way that respects the dependences;

• determining (which copies of) which data should be located at which processors at

which points in time, so that processes have the data they need when they need it;

• arranging for communication among processors to effect the location decisions.

Programming models and their implementations differ greatly in the extent to which

the user, compiler, run-time system, operating system, and hardware are responsible for

each of these issues. The programmer’s view of memory is intimately connected to the final

two issues, and more peripherally to all of the others.

At one extreme, some programming models make the user responsible for all aspects of

parallelization and data placement. Message-passing models fall in this camp, as do some

models developed for non-cache-coherent machines. Split-C [25], for example, provides a

global namespace for C programs on multicomputers, with a wealth of mechanisms for

data placement, remote load/store, prefetch, bulk data transfer, etc. Other simple models

(e.g. Sun’s LWP (Light Weight Processes) and OSF’s pthreads) require the user to manage

processes explicitly, but rely on hardware cache coherence for data placement.
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At the next level of implementation complexity, several models employ optimizing com-

pilers to reduce the burden of process management. Early work on parallel Fortran di-

alects [65] focused on the problem of restructuring loops to minimize data dependences and

maximize the amount of work that could be performed in parallel. These dialects were pri-

marily intended for vector supercomputers with an UMA memory model at both the user

and hardware levels. Gelernter and Carriero’s work on Linda has focused on minimizing

communication costs for an explicitly-parallel language in which processes communicate

via loads and stores in an associative global “tuple space” [18]. More recently, several

groups have addressed the goal of increasing processor locality on cache-coherent machines

by adopting scheduling techniques that attempt to place processes close to the expected

current location of the data they access most often [57].

For large-scale scientific computing, where multicomputers dominate the market, much

attention has recently been devoted to the development of efficient shared-memory pro-

gramming models. Most notably, a large number of research groups have cooperated in the

development of High Performance Fortran (HPF) [56]. HPF is intended not as an ideal

language, but as a common starting point for future developments. To first approximation,

it combines the syntax of Fortran-90 (including operations on whole arrays and slices) with

the data distribution and alignment concepts developed in Fortran-D [42]. Users specify

which elements of which arrays are to be located on which processors, and which loops are

to be executed in parallel. The compiler then bases its parallelization on the owner com-

putes rule, which specifies that the computations on the right-hand side of an assignment

statement are performed on the processor at which the variable on the left-hand side of the

assignment is located. Similar approaches are being taken in the development of pC++, a

parallel C++ dialect [32], and Jade, a parallel dialect of C [68].

Many alternatives and extensions to the owner-computes approach are currently under

development. Li and Pingali, for example, have addressed the goal of restructuring loops

and assigning computations to processors in order to maximize data locality and minimize

communication on machines with a single physical address space [54]. Saltz et al. have
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developed code generation techniques that defer dependence analysis to the execution of

loop prologues at run time, to maximize parallelism and balance load in programs whose

dependence patterns are determined by input data [69].

Ideally, programmers would presumably prefer a programming model in which both par-

allelization and locality were managed by the compiler, with no need for the user to specify

process creation, synchronization, or data distribution. As of 1994 no system approaches

this ideal. It is possible that full automation of process and locality management will require

that users program in a non-imperative style [17].

0.3.3 Performance of Shared-Memory Models

While bus-based shared memory machines dominate the market for general-purpose multi-

processors, message passing machines have tended to dominate the market for large-scale

high-performance machines. There are two main reasons for this contrast. First, large-

scale shared-memory multiprocessors are much harder to build than either their small-scale

bus-based counterparts or their large-scale message-based competitors. Second, widespread

opinion (supported by some good research; see e.g. [61]) holds that the shared memory

programming paradigm is inefficient, even on machines that provide hardware support for

it. We believe, however, that the observed performance problems of shared memory models

are actually artifacts of the way in which those models have been used, and are not intrinsic

to shared memory itself. Specifically:

• Shared memory models have evolved in large part out of concurrent (“quasi-parallel”)

computing on uniprocessors, in which it is natural to associate a separate process with

each logically distinct piece of work. To the extent, then, that shared-memory pro-

grams are written with a large number of processes, they will display high overhead

for process creation and management. This overhead can be minimized by adopt-

ing a programming style with fewer processes, or by using more lightweight thread

management techniques [6].
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• The shared memory programming style requires use of explicit synchronization. Naive

implementations of synchronization based on busy-waiting can perform extremely

badly on large machines. Recent advances in both hardware and software synchro-

nization techniques have eliminated the need to spin on non-local locations, mak-

ing synchronization a much less significant factor in shared-memory program perfor-

mance [1, 58].

• Communication is a dominant source of overhead in parallel programs. Communi-

cation in shared-memory models is implicit, and happens as a side-effect of ordinary

references to variables. It is consequently easy to write shared-memory programs that

have very bad locality, and that therefore generate large amounts of communication.

This communication was much less costly in early shared-memory machines than it is

today, leading many shared-memory programmers to assume incorrectly that locality

was not a concern. This should be viewed as an indictment not of shared-memory,

but of the naive use of shared memory. Recent studies have shown that when pro-

grammed in a locality conscious way, shared memory can provide performance equal

to or better than that of message passing [51, 57].

Reducing communication is probably the most important task for a programmer/compiler

that wants to get good performance out of a shared memory parallel program. Improving

locality is a multidimensional problem that is a topic of active research. Some of its most

important aspects (but by no means the only ones) are:

Mismatch between the program data structures and the coherence units. If data

structures are not aligned with the coherence units, accesses to unrelated data struc-

tures will cause unnecessary communication. This effect is known as false shar-

ing [14, 27, 30] and can be addressed using sophisticated compilers, advanced co-

herence protocols, or careful data allocation and alignment by the programmer.

Relative location of computational tasks and the data they access. Random place-

ment of tasks (as achieved by centralized work queues) results in very high commu-
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nication rates. Programmer/compilers should attempt to place all tasks that access

the same data on the same processor to take advantage of processor locality.

Poor spatial locality. In some cases programs access array data with non-unit strides. In

that case a potentially large amount of data fetched in the cache remains untouched.

Blocking techniques and algorithmic restructuring can often help alleviate this prob-

lem.

Poor temporal locality. Data is invalidated or evicted from a processor’s cache before it

is touched again. As in the previous case restructuring the program can help improve

its access pattern and as a consequence its temporal locality.

Conflicts between data structures. Data structures that map into the same cache lines

will cause this problem in caches with limited associativity. If these data structures

are used in the same computational phase performance can suffer severe degradation.

Skewing or relocating data structures can help to solve this problem.

Communication intrinsic in the algorithm. Such communication is necessary for cor-

rectness and cannot be removed. However it may be tolerated if data is pre-fetched

before it is needed, or if the processor is able to switch to other computation while a

miss is being serviced.

One might argue that if considerable effort is going to be needed to tune programs

to run well under a shared memory programming model then the conceptual simplicity

argument in favor of shared memory is severely weakened. This is not the case however,

since tuning effort is required only for the computationally intensive parts of a shared-

memory program, whereas message passing would require similar effort throughout the

program text, including initialization, debugging, error recovery, and statistics gathering

and printing. Furthermore most people find it easier to write a correct program and then

spend effort in refining and tuning it, as opposed to writing a correct and efficient program

from the outset. The principal argument for shared memory is that it provides referential
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transparency: everything can be referenced with a common syntax, and a simple and naive

programming style can be used in non-performance-critical sections of code.

0.4 Memory Consistency Models

Shared-memory coherence protocols, whether implemented in hardware or in software, must

resolve conflicting accesses—accesses to the same coherence block that are made by different

processors at approximately the same time. The precise semantics of this conflict resolution

determine the memory consistency model for the coherence protocol. Put another way, the

memory consistency model determines the values that may be returned by read operations

in a given set of parallel reads and writes. The goal of most parallel system architects has

been to exhibit behavior as close as possible to that of sequential machines. Therefore the

model of choice has traditionally been sequential consistency [50] (see definition later in

the section). Unfortunately, sequential consistency imposes a strict ordering on memory

access operations, and precludes many potentially valuable performance optimizations in

coherence protocols. Relaxing the constraints of sequential consistency offers the oppor-

tunity to achieve significant performance gains in parallel programs. The memory models

discussed in this section achieve these gains at the expense of a slightly more complicated

programming model.

Several attributes of memory references can be considered when defining a consistency

model. These attributes include the locations of the data and the accessing processor, the

direction of access (read, write, or both), the value transmitted in the access, the causality

of the access (what other operations caused control to reach this point, and produced the

value(s) involved), and the “category” of the access [59]. Non-uniform or hybrid consistency

models distinguish among memory accesses in different categories; uniform models do not.

Of the uniform memory models the two most important are sequential consistency [50]

and processor consistency [37]. Others include atomic consistency, causal consistency,

pipelined RAM, and cache consistency. A concise definition of all memory models men-
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Processor 0 Processor 1

X = 10 Y = 10

A = Y B = X

Print A Print B

Figure 4: Code segment that may yield different results under sequential and processor

consistency

tioned in this section can be found in a technical report by Mosberger [59].

• Sequential Consistency: A memory system is sequentially consistent if the result of

any execution is the same as if the operations of all the processors were executed

in some sequential order, and the operations of each individual processor appear in

this sequence in the order specified by its program. In simpler words this definition

requires all processors to agree on the order of memory events. If for example a

memory location is written by two different processors, then all processors must agree

as to which of the writes happened first.

• Processor Consistency: A memory system is processor consistent if all the reads issued

by a given processor appear to all other processors to occur before any of the given

processor’s subsequent reads and writes, and all the writes issued by a given processor

appear to all other processors to occur before any of the given processor’s subsequent

writes. Processors can disagree on the order of reads and writes by different pro-

cessors, and a write can be delayed past some of its processor’s subsequent reads.3

(“Subsequent” here refers to the ordering specified by the processor’s program.)

3This definition is from the Stanford Dash project [33]. Processor consistency was originally defined

informally by Goodman, and has been formalized differently by other researchers.
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Figure 4 shows a code segment that has a potential outcome under processor consistency

that is impossible under sequential consistency. Under sequential consistency, regardless of

the interleaving of instructions, variable A, variable B, or both will have the value 10 so at

least one 10 will be printed. Under processor consistency, however, processors do not have

to agree on the order of writes by different processors. As a result, both processors may

fail to see the other’s update in our example, so that neither prints a 10. While processor

consistency seems unintuitive it is easier to implement than sequential consistency, and

it allows several important performance optimizations. Most programs written with the

sequential consistency model in mind execute correctly under processor consistency.

By constraining the order in which memory accesses can be observed by other processors,

sequential and processor consistency force a processor to stall until its previous accesses have

completed.4. This prevents or severely limits the pipelining of memory requests, sacrificing

a potentially significant performance improvement. More relaxed consistency models solve

this problem by taking advantage of the fact that user programs do not depend on the

coherence protocol alone to impose an ordering on the operations of their programs. Even

with the strictest of consistency models (i.e. sequential consistency) there are still too

many valid interleavings of a parallel execution. Higher level synchronization primitives are

therefore used to impose a desired ordering. Most relaxed consistency models distinguish

between regular and synchronization accesses, and sometimes between different categories

of synchronization accesses. They then impose different ordering constraints on the accesses

in different categories. Figure 5 shows a possible categorization of memory accesses [59].

Other categorizations can be found in other papers [33, 35].

Relaxed consistency models can be viewed either from an architectural point of view

(what does the coherence protocol do?) or from the programmer’s point of view (what

does the program have to do to ensure the appearance of sequential consistency?). The

two most important relaxed consistency models from the architectural point of view are

4A read access is considered completed when no future write can change the value returned by the read;

a write access is considered completed when all future reads will return the value of this or a future write
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Figure 5: Categories of memory references

weak consistency [28] and release consistency [33]. The most important models from the

programmer’s point of view are DRF0 (data-race-free 0), DRF1, and PLpc (properly-labeled

processor consistent) [35]. Other relaxed models include TSO (total store ordering), PSO

(partial store ordering), and entry consistency.

• Weak Consistency: A system is weakly consistent if a) accesses to synchronization

variables are sequentially consistent, b) accesses to synchronization variables are issued

(made visible to other processors) only after all of the local processor’s previous data

accesses have completed, and c) accesses to data are issued only after all of the local

processor’s previous synchronization accesses have completed.

• Release Consistency: A system is release consistent if a) accesses to data are issued

only after all of the local processor’s previous acquire accesses have completed, b)

release accesses are issued only after all previous data accesses have completed, and

c) special (synchronization) accesses are processor consistent.

Both weak and release consistency violate the constraints of sequential consistency as

shown in figure 4. The difference between the relaxed models and processor consistency
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stems from the ordering of writes. Under processor consistency writes by a single processor

must be observed by all processors in the order they were issued. Under the weaker models

writes that occur between a matched pair of synchronization operations can be observed

in any order, so long as they all complete before the second operation of the pair. This

relaxation allows a given processor’s writes to be pipelined, and their ordering changed.

Release consistency improves on weak consistency by allowing acquire accesses to occur

immediately (regardless of what data accesses may be outstanding at the moment) and by

allowing data accesses to proceed even if there are release accesses outstanding.

The programmer-centric consistency models take the form of a contract between the

programmer and the coherence system. The contract defines a notion of conflicting accesses,

and specifies rules that determine a partial order on the operations in a program. A program

obeys the contract if for every pair of conflicting accesses, one access comes before the other

in the partial order. A coherence system obeys the contract if it provides the appearance

of sequential consistency to programs that obey the contract.

DRF0 says that two accesses conflict if they access the same location, and at least

one of them is a write. It defines an order on a pair of accesses if they are issued by

the same processor, or if they are synchronization references to the same location (or if

there is a transitive chain of such orderings between them). DRF1 extends DRF0 by

distinguishing between acquire and release operations. Synchronization reference A precedes

synchronization reference B iff A is a release operation, B is an acquire operation, and A

and B are paired (e.g. B returns a value written by A). PLpc extends DRF1 by further

distinguishing loop and non-loop synchronization accesses. Informally, the final read in a

busy-wait loop is ordered with respect to the write that changed the value, but earlier

reads in the loop are not ordered with respect to that write, or with respect to previous

loop-terminating writes made by the spinning processor.
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0.5 Implementation and Performance of Memory Consistency

Models

The implementation of memory consistency models presents architects with several design

decisions:

• Should coherence be implemented in hardware, software, or some combination of the

two?

• What should be the size of coherence blocks?

• Should copies of data be updated or invalidated on a write?

• Should the updates/invalidates be performed in an eager or lazy fashion?

While all combinations of answers to the above question are possible the choice between

hardware and software has a strong influence on the remaining questions. For this reason

we will discuss hardware and software implementation of consistency models separately.

0.5.1 Hardware Implementations

The coherence unit of choice under a hardware implementation is usually a cache line (cache

line sizes currently vary between about 32 and 256 bytes). Existing hardware systems use

an eager coherence protocol, performing updates or invalidations as soon as inconsistencies

arise. A lazy protocol would delay updates or invalidations until an inconsistency might

be detected by the user program. It would require memory and logic that have generally

been considered too expensive to implement in hardware. The choice between updating and

invalidating has generally been made in favor of invalidation, due to its lesser amount of

communication (see section 0.2), but recent studies have shown that hybrid protocols using

an update mechanism on some program data may provide performance benefits [72].

Hardware coherence protocols have been implemented with a wide range of consistency

models. The differences between the models are mainly seen in the design and use of write
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buffers.5 Specifically, the consistency model dictates answers to the following questions:

a) can reads bypass writes? b) can writes be pipelined? and c) can writes that belong to

the same cache line be merged? Sequential consistency does not allow any of these opti-

mizations, since the concept of sequential execution requires that each operation complete

before the next one can be started.

All of the relaxed consistency models described in section 0.4 allow reads to bypass

writes. That is, they allow a read instruction to complete (e.g. from the cache) before one

or more previous write instruction(s) have completed. The non-uniform models relax the

constraints even further by allowing writes between synchronization accesses to be pipelined

and merged. The models that distinguish between different categories of synchronization

accesses allow some of those accesses to be pipelined with neighboring data accesses.

Pipelining of writes means more than simply requesting another cache line before a

previous one has arrived from memory:6 it also means temporally overlapping the coherence

protocol messages required to obtain writable copies of the lines. In an invalidate-based

protocol, a processor performing a write must obtain an exclusive copy of the relevant line. If

the protocol is sequentially or processor consistent, then acknowledgments must be received

from all former holders of copies of the line before invalidations are sent out for lines written

by any subsequent instructions: otherwise different processors might see the invalidations,

and hence the writes, in different orders. Non-uniform relaxed models allow a processor

to retire a write from its write buffer once all the invalidation messages have been sent,

and to issue a subsequent write before acknowledgments of the earlier invalidations have

been received. Table 3 summarizes the differencies in behavior of the four most common

consistency models encountered in the literature. A more detailed version of the table

5A write buffer allows a processor to continue executing immediately after a write miss. It holds the

written data until the appropriate line can be retrieved. A several-entry-deep write buffer can hide the

performance impact of a burst of write instructions.

6Note that cache lines must generally be fetched from memory on a write miss, because only one part of

the line is being written at the moment, and the entire line will be written back (under a write-back policy)

when it is again evicted.
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Action SC PC WC RC

Processor stalls for Processor issues

pending writes to per- Processor issues read and stalls for read Processor issues

form (or, read and stalls for read to perform. read and stalls for read

in very aggressive im- to perform. to perform.

plementations, to gain Notes:

1. Read ownership). Note: Read are allowed to Note:

Reads are allowed to bypass pending writes. Reads are allowed to

Processor issues bypass pending writes. For interaction with bypass pending writes

read and stalls for read pending releases, see and releases.

to perform. point 4.

Processor sends write to write buffer (stalls Processor sends write to write buffer (stalls

if write buffer is full) if write buffer is full)

2. Write Note: Notes:

Write buffer retires a write only after the Write buffer does not require ownership to

write is performed, or in very aggressive im- be gained before retiring a write.

plementations, when ownership is gained For interactions with acquires/releases, see

points 3,4.

Processor stalls for Processor issues ac-

pending writes and re- quire and stalls for ac-

leases to perform. quire to perform.

3. Acquire Treated as Read Treated as Read

Processor issues ac- Note:

quire and stalls for ac- Processor does not

quire to perform. need to stall for pend-

ing writes and releases.

Processor sends re-

lease to write buffer

(stalls if write buffer is

full) Processor sends re-

lease to write buffer

Notes: (stalls if write buffer

Write buffer can not full).

4. Release Treated as Write Treated as Write retire the release until

all previous writes are Note:

performed. Write buffer can not

Write buffer stalls Write buffer can not

for release to perform. retire the release until

Processor stalls at all previous writes and

next read after release releases are performed.

for release to perform.

Table 3: Implementation issues of consistency models (Reproduced with permission
from [34])
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along with a complete description of the behavior of hardware implementations of different

memory consistency models can be found in a paper by Gharachorloo et al. [34].

Allowing reads to bypass writes is crucial for achieving good performance, and all relaxed

memory models (processor consistency, weak consistency, release consistency, etc.) provide

significant performance benefits over sequential consistency. The pipelining of writes and the

ability to overlap some of the synchronization operations with data accesses is of secondary

importance and the benefits depend on specific program patterns that are not very common

in practice. The ability to merge writes provides performance improvements mainly for

update protocols. It allows one to collect writes to the same line and then send them in

one operation. Such an approach reduces interconnect traffic and therefore the potential

latency of other operations.

The importance of letting reads bypass writes stems from the fact that current processors

stall on a read miss. Any latency added to reads is completely lost to the processors.

Bypassing becomes less important if processors are able to perform non-blocking loads (i.e.

prefetch operations), or to switch to a different context. In this case pipelining and merging

of writes become significantly more important and the hybrid consistency models provide

significant performance advantages over both sequential and processor consistency.

0.5.2 Software Implementations

Coherence can be implemented in software in two very different ways: via compiler code

generation, as in HPF (see section 0.3), or via runtime or OS-level observation of pro-

gram behavior. We focus here on the behavior-driven approach, which is analogous to the

functioning of hardware cache coherence.

Most behavior-driven software coherence schemes are the intellectual descendants of Li

and Hudak’s Ivy [53]. Ivy was designed to run on a network of workstations, and uses con-

ventional virtual memory protection bits to implement a simple single-writer sequentially-

consistent coherence scheme for pages. “Uncached” pages are marked invalid in the (per

processor) TLB and page table. On a page fault, the OS interrupt handler (or user-level
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signal handler) uses message-passing to obtain a copy of the page and place it in local

memory, possibly invalidating other copies, and modifying the page table to make the new

copy accessible.

Most systems since Ivy have abandoned sequential consistency and exclusive writers,

but continue to implement consistency at the level of pages, using VM hardware. These

systems are generally referred to as DSM (distributed shared memory) or SVM (shared

virtual memory) emulations. They have been implemented both on networks of workstations

and on more tightly-coupled NORMA machines. Recent work suggests that it may be

feasible to implement finer-grain software coherence, by exploiting special hardware features

(e.g. error-correcting codes), or by automatically modifying programs to perform in-line

coherence checks prior to accessing memory [70, 74].

While an eager hardware protocol can run in parallel with the execution of the applica-

tion, a software protocol must compete with the application for processor cycles. An eager

software protocol therefore incurs as much overhead per transaction as a lazy protocol, and

may introduce a larger number of transactions[45]. As a result, most recent DSM systems

use lazy protocols. The choice of update versus invalidate is less clear-cut in software than

it is in hardware protocols: the large (page sized) coherence blocks imply that reacquiring

an invalidated block can be very expensive, while updating it a small piece at a time can

be comparatively cheap.

Page sized coherence blocks also tend to result in a large amount of false sharing. To

minimize the performance impact, recent software systems (e.g. Munin [19]) permit a page

to be written concurrently by multiple processors, so long as none of them executes a

synchronization operation. The assumption is that the processors would use explicit syn-

chronization to protect any truly-shared data, so any non-synchronized accesses to the same

page must constitute false sharing. At synchronization points the protocol must determine

the set of changes made by each processor, and must combine these changes to obtain a

new consistent copy of the page. This process usually involves a word-by-word comparison

of the modified copies of the page with respect to an unmodified, shadow copy.
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The existence of a shared physical address space on NUMA machines permits several

optimizations in software coherence systems [64]. Simple directory operations can be per-

formed via (uncached) remote reference, rather than by sending a message. Pages can also

be mapped remotely, so that cache fills bring lines into the local node on demand, eliminat-

ing the need for a copy in local memory. If the caches use write-through, or write-back of

only dirty words, then remote mapping of a single main-memory copy eliminates the need

to merge inconsistent copies. It is also possible to map pages remotely and uncached, so

that each individual reference traverses the interconnection network. This option was heav-

ily used in so-called NUMA memory management for older CISC-based NUMA machines

without caches [13, 24, 49], and may still be desirable in unusual cases for pages with very

poor processor locality.

The main performance benefits of relaxed consistency models over sequential consis-

tency, when implemented in software, stem from the reduction in coherence transactions

due to the removal of the single writer restriction. Processors perform protocol actions only

at synchronization points and thus spend more time doing useful work and less time pro-

cessing protocol operations. Reduced coherence traffic can in turn help alleviate memory

and network congestion, thereby speeding up other memory operations. The choice between

software and hardware implementation of the different consistency models is a topic of active

research. Recent work suggests that software coherence with lazy relaxed consistency can be

competitive with the fastest hardware alternatives (eager relaxed consistency). Hardware

architects also seem to be concluding that the flexibility available in software can be a sig-

nificant performance advantage: some designs are beginning to incorporate programmable

protocol engines [48, 66].

0.6 Conclusions and Trends

The way we think of memory has an impact at several layers of system design, starting

with hardware and spanning architecture, choice of programming model, and choice and
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implementation of memory consistency model. Three important concepts can help us build

cheap, efficient and convenient memory systems:

1. Referential transparency. Shared memory is closer to the sequential world to which

most programmers are accustomed. Message passing can make an already difficult

task (parallel programming) even harder. Message passing provides performance ad-

vantages in some situations, however, and some newer machines and systems support

both classes of programming model [12, 46, 48].

2. The principle of locality. The importance of locality is evident throughout the memory

hierarchy, with page mode DRAMs at the hardware level, hierarchical memory systems

at the memory architecture level, and NUMA programming models at the user level.

Taking advantage of locality can help us build cheap memory systems, and having

locality principles in mind when programming can help us get good performance out

of the systems we build.

3. Sequentially consistent ordering of events. When imposed on arbitrary parallel pro-

grams, sequential consistency precludes a large number of hardware/software op-

timizations. Weaker models allow programs to run faster but make programming

harder. A promising way to deal with the complexity is to adopt programmer-centric

consistency models, which guarantee sequential consistency when certain synchroniza-

tion rules are obeyed.

Effective memory system design and usage is probably the most active research topic

in multiprocessors today. Several trends can be discerned. Deeper memory hierarchies are

likely, with two-level on-chip caches and the possibility of a third level off chip. Locality

will become even more important as faster superscalar processors increase the cost of com-

munication relative to computation. Current compiler research focuses on techniques that

can improve the temporal and spatial locality of programs by restructuring the code that

accesses data. The advent of programmable cache controllers may allow us to customize
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protocols and models to the needs of the program at hand, rather than imposing a system-

wide decision. Finally, as the relative cost of memory systems and processors tilts farther

toward expensive memory, it may make sense to change our processor-centric view of the

world. Processor utilization may become a secondary performance metric and memory

(cache) utilization may start to dominate performance studies. If program execution time

depends primarily on memory response time, then peak performance will be achieved when

the memory system is fully utilized regardless of the processor utilization.
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