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Abstract
Shared memory is widely believed to provide an easier

programming model than message passing for expressing
parallel algorithms. Distributed Shared Memory (DSM)
systems provide the illusion of shared memory on top of
standard message passing hardware at very low implemen-
tation cost, but provide acceptable performance for only a
limited class of applications. We argue that the principal
sources of overhead in DSM systems can be dramatically re-
duced with modest amounts of hardware support (substan-
tially less than is required for hardware cache coherence).
Specifically, we present and evaluate a family of protocols
designed to exploit hardware support for a global, but non-
coherent, physical address space. We consider systems
both with and without remote cache fills, fine-grain access
faults, “doubled” writes to local and remote memory, and
merging write buffers. We also consider varying levels of
latency and bandwidth. We evaluate our protocols using
execution driven simulation, comparing them to each other
and to a state-of-the-art protocol for traditional message-
based networks. For the programs in our application suite,
protocols taking advantage of the global address space im-
prove performance by a minimum of 50% and sometimes
by as much as an order of magnitude.

1 Introduction
Distributed Shared Memory systems (DSM) provide

programmers with the illusion of shared memory on top
of message passing hardware while maintaining coherence
in software [4, 14, 22, 35]. Unfortunately, the current state
of the art in software coherence for networks and multicom-
puters provides acceptable performance for only a limited
class of applications. We argue that this limitation is prin-
cipally the result of inadequate hardware support. To make
software coherence efficient we need to overcome several
fundamental problems:� DSM systems must interrupt the execution of remote
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Science and Technology program, ARPA Order no. 8930).

memory is required. Such data includes both applica-
tion and coherence protocol data structures. Synchro-
nization variables pose a particularly serious problem:
interrupt-processing overhead can make acquiring a
mutual exclusion lock on a DSM system several times
as expensive as it is on a cache-coherent (CC-NUMA)
machine.� Due to the high cost of messages, DSM systems try
to minimize the number of messages sent. They tend
to use centralized barriers (rather than more scalable
alternatives) in order to collect and re-distribute coher-
ence information with a minimal number of messages.
They also tend to copy entire pages from one pro-
cessor to another, not only to take advantage of VM
support, but also to amortize message-passing over-
head over as large a data transfer as possible. This of
course works well only for programs whose sharing
is coarse-grained. Finally, high message costs make
it prohibitively expensive to use directories at home
nodes to maintain caching information for pages. The
best DSM systems therefore maintain their informa-
tion in a distributed fashion using interval counters
and vector timestamps, which increase protocol pro-
cessing overhead.� In order to maximize concurrency in the face of false
sharing in page-size coherence blocks, the fastest
DSM systems permit multiple copies of a page to
be writable simultaneously. The resulting inconsis-
tencies force these systems to compute diffs with
older versions of a page in order to merge the
changes [4, 14]. Copying and diffing pages is ex-
pensive not only in terms of time, but also in terms
of storage overhead, cache pollution, and the need
to garbage-collect old page copies, write notices, and
records of diffs and intervals.

Revolutionary changes in network technology now make
it possible to address these problems, and to build software
coherent systems with performance approaching that of full
hardware implementations. Several new workstation net-
works, including the Princeton Shrimp [3], DEC Memory
Channel [8], and HP Hamlyn [33], allow a processor to
access the memory of other nodes (subject to VM protec-
tion) without trapping into the kernel or interrupting a re-
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mote processor. These Non-Cache-Coherent Non-Uniform
Memory Access (NCC-NUMA) systems effectively pro-
vide the protocol designer with a global physical address
space. In comparison to large-scale cache-coherent mul-
tiprocessors, NCC-NUMA systems are relatively easy to
build, and can follow improvements in microprocessors
and other hardware technology closely. As part of the
CASHMERe1 project we have shown that a lazy software
protocol on a tightly-coupled NCC-NUMA system can rival
the performance of traditional hardware coherence [15, 17].
In this paper we examine the other end of the architectural
spectrum, quantifying the performance advantage of soft-
ware coherence on NCC-NUMA hardware with respect to
more traditional DSM systems for message-passing hard-
ware.

Using detailed execution-driven simulation, we have
compared the performance of NCC-NUMA systems run-
ning our protocols to the version of lazy release consistency
used by TreadMarks [14], one of the best existing DSM
systems for workstations on a LAN.2 Assuming identical
processor nodes, and networks of equal latency and band-
width (but not identical interfaces), we see significant per-
formance improvements for the programs in our application
suite, ranging from as little as 50% to as much as an order
of magnitude.

We are currently in the process of building a 32-
processor Cashmere prototype in collaborationwith Digital
Equipment Corporation. The implementation is based on
eight 4-processor DEC 4/233 mulitprocessors and a Mem-
ory Channel network. The prototype will provide a bench-
mark against which to compare our current results, and will
allow us to address implementation details that are difficult
to examine in the context of simulation. We expect the pro-
totype to confirm that Cashmere protocols on NCC-NUMA
hardware lie at or near the knee of the price-performance
curve for shared-memory parallel systems.

The rest of the paper is organized as follows. Sec-
tion 2 discusses network and processor features as well as
protocol options that affect the performance of software
coherence on NCC-NUMA hardware. Section 3 describes
our experimental methodology and application suite. We
present performance results in section 4 and compare our
work to other approaches in section 5. We summarize our
findings and conclude in section 6.

2 Architectural and Protocol Issues on Mod-
ern Networks

In this section we describe a variety of software co-
herence protocols. For simplicity’s sake, we assume both
here and in the simulations that each node contains a single
processor (the protocols can easily be extended to accom-
modate multiprocessor nodes). We start in section 2.1 by
describing TreadMarks and Lazy Release Consistency, the
protocol of choice for message passing multicomputers.
We then proceed in section 2.2 to describe our protocol for

1CASHMERe stands for Coherence Algorithms for SHared MEmory
aRchitectures and is an ongoing effort to provide an efficient shared mem-
ory programming model on modest hardware. Other aspects of the project
are discussed in section 5.

2One might argue that an object-oriented system such as Midway [35]
or Log-Based DSM [7] could provide superior performance, but at the
cost of a restricted programming model.

NCC-NUMA machines. Finally in section 2.3 we discuss
several variants of NCC-NUMA hardware and how they
affect the design of our protocol.
2.1 TreadMarks and Lazy Release Consistency

Lazy release consistency [13, 14] is a variant of release
consistency [18]. It guarantees memory consistency only
at synchronization points and permits multiple writers per
coherence block. Lazy release consistency divides time
on each node into intervals. Each node maintains a vector
of such intervals, with entry i on processor j representing
the most recent interval on processor i that logically pre-
cedes the current interval on processor j. Every time a
node executes a synchronization operation it starts a new
interval and increments its own entry in its local vector of
timestamps. The protocol associates writes to shared pages
with the interval in which they occur. When a processor
takes a write protection fault, it creates a write notice for
the faulting page and appends the notice to a list of notices
associated with its current interval.

When a processor acquires a lock, it sends a copy of its
current vector timestamp to the previous lock owner. The
previous lock owner compares the received timestamp with
its own, and responds with a list of all intervals (and the
write notices associated with them) that the new owner has
not seen. The acquiring processor sets its vector timestamp
to be the pairwise maximum of its old vector and the vector
of the previous lock owner. It also incorporates in its local
data structures all intervals (and the associated write no-
tices) that the previous lock owner knew about, but which
the acquiring processor has not yet seen. Finally it inval-
idates all pages for which it receives a write notice, since
the receipt of a write notice indicates that there is a write to
that page in the processor’s logical past and the processor
needs to get an up-to-date copy of the page.

Pages are brought up-to-date by merging the writes of
remote processors in software. Before a processor writes
a page, it makes a copy of the page, also called a twin.
When a processor is asked to produce the set of changes it
has made to a page, it computes the set by comparing the
current version of the page to its twin. The result is a list
of modified addresses with the new contents, also called a
diff. There is one diff for every write notice in the system.
On an access fault to an invalid page, the faulting processor
asks for all the diffs it needs to bring the page up-to-date,
based on its list of write notices. It then applies the diffs
to its copy of the page in the causal order defined by the
timestamps of the write notices.

Barrier synchronization is dealt with somewhat differ-
ently. Upon arrival at a barrier, all processors send their
vector timestamps (and intervals and write notices), to a
barrier manager based on what values they think the man-
ager’s vector timestamp contains. The manager merges all
timestamps, intervals, and write notices into its local data
structures, and then sends to each processor its new updated
timestamp along with the intervals and write notices that
that processor has not seen.

Because it must guarantee the correctness of arbitrary fu-
ture references, the TreadMarks protocol must send notices
of all logically previous writes to synchronizing processors
even if the processors have no copy of the page to which the
write notice refers. If a processor is not going to acquire a
copy of the page in the future (something the protocol can-
not of course predict), then sending and processing these



notices may constitute a significant amount of unnecessary
work, especially during barrier synchronization, when all
processors need to be made aware of all other processors’
writes.

2.2 Basic Cashmere Protocol
Like most DSM systems, Cashmere uses virtual mem-

ory protection bits to enforce consistency at the granularity
of pages. Like TreadMarks, it minimizes the performance
impact of false sharing by allowing multiple processors to
write a page concurrently, and uses a variant of lazy re-
lease consistency to limit coherence operations to synchro-
nization points. The basic Cashmere data structures are a
distributed directory that maintains page state information,
and per-processor lists that contain notices for pages that
must be invalidated at lock acquisition points.

Each shared page in the system has a home node, which
maintains the master copy of the data, together with the
directory information. Pages are initially assigned to home
nodes in round-robin order, but are moved by the operating
system to the first processor to access the page after the
program has completed its initializationphase. This simple
placement policy has been shown to work quite well [20]; it
reduces the expected cost of a cache miss by guaranteeing
that no page is assigned to a node whose processor does not
use it. The directory information for a page includes a list
of the current readers and writers, and an indication of the
page’s global state, which may be one of the following:

Uncached – No processor is using the page. This is the
initial state for all pages.

Shared – One or more processors are using the page read-
only.

Dirty – A single processor is using the page read-write.
Weak – Two or more processors are using the page, and at

least one is using it read-write.

The state of a page is a property of the system as a
whole, not (as in most coherence protocols) the viewpoint
of a single processor or node.

Processors execute coherence protocol operations in re-
sponse to four events: read-protection page faults, write-
protection page faults, synchronization release operations,
and synchronization acquire operations. On protection
faults (both read and write), the faulting processor locates
the directory entry of the faulting page. It then acquires
the lock for that entry, fetches the entry into its local cache,
modifies it, writes it back, and releases the lock. Modify-
ing the entry involves computing the new state of the page,
and sending write notices to sharing processors if the page
made the transition to the weak state. The cost of fetching
a directory entry can can be minimized if lock operations
are properly designed.

If we employ a distributed queue-based lock [21], a
fetch of the directory entry can be initiated immediately af-
ter starting the fetch-and-store operation that retrieves the
lock’s tail pointer. If the fetch-and-store returns nil (indi-
cating that the lock was free), then the data will arrive right
away. The write that releases the lock can subsequently be
pipelined immediately after the write of the modified data,
and the processor can continue execution. If the lock is
held when first requested, then the original fetch-and-store
will return the address of the previous processor in line.
The queue-based lock algorithm will spin on a local flag,

after writing that flag’s address into a pointer in the prede-
cessor’s memory. When the predecessor finishes its update
of the directory entry, it can write the data directly into the
memory of the spinning processor, and can pipeline imme-
diately afterwards a write that ends the spin. The end result
of these optimizations is that the update of a directory entry
requires little more than three end-to-end message latencies
(two before the processor continues execution) in the case
of no contention. When contention occurs, little more than
one message latency is required to pass both the ownership
of the lock and the data the lock protects from one processor
to the next.

To post a write notice, a processor locks the write-notice
list of the remote node, appends a notice to the end of the
list, and releases the lock. The write notice simply names
the page to be invalidated. Our current implementation
uses a circular array to represent the list.

The last thing the page-fault handler does is to set up
a mapping to the remote page; data will be transferred to
the local cache in response to cache misses. Alternatively,
the handler can choose to copy the remote page to local
memory and map the local copy. This is appropriate for
applications and systems with high spatial locality and rel-
atively high remote memory latencies. We examine the
tradeoff between page copying and remote cache fills in
section 4.

On a synchronization acquire operation, the processor
examines its local write notice list and self-invalidates all
listed pages. To self-invalidate a page, the processor (a)
acquires the lock for the page’s directory entry; (b) removes
mappings for the page from its local TLB/page table; (c)
purges all lines belonging to the page from its cache; (d)
removes itself from the directory’s list of processors sharing
the page; (e) changes the state of the page to uncached if
the sharing list is now empty; and (f) releases the directory
entry lock.

The protocol uses a write-through policy to ensure that
the master copy of shared pages—located at the home
node—, has the most recent version of the data. Syn-
chronization release operations stall the processor until all
write-through operations have completed. This guarantees
that any processor that invalidates its mapping to a modi-
fied page as a result of a subsequent acquire operation will
see the releasing processor’s changes when it goes back to
main memory for the data.

We have applied two optimizations to this basic protocol.
The first optimization postpones sending write notices until
the processor reaches a synchronization release operation.
The processor treats all page faults as described above for
read faults, but creates both read and write mappings for
the page on which it faulted. When it reaches a release
operation, the processor examines the dirty bits for all pages
it shares. If it finds the dirty bit set it then proceeds to take
the same actions it would have taken on a write page fault.
It also sets a “processed bit” to ensure that it does not re-
process the same pages again on a subsequent release. The
“processed bit” is reset when a page is invalidated.

The second optimization tries to minimize the cost of
sending write notices to processors. It takes advantage of
the fact that page behavior tends to be relatively constant
over the execution of a program, or at least a large portion
of it. When the protocol notices that it has to send a large
number of write notices on behalf of a particular page, it



marks the page as unsafe. (The unsafe state is orthogo-
nal to the four other page states.) When an unsafe page
becomes weak due to a page fault, the faulting processor
does not send write notices to the sharing set. Instead it
only changes the page state to weak in the directory. An
acquiring processor, in addition to processing its local write
notice list, must now check the directory entry for all its
unsafe pages, and invalidate the weak ones. A processor
knows which of its pages are unsafe because it maintains
a local list of them (this list is never modified remotely).
Correctness is guaranteed by the fact that the transition to
the unsafe state is a side-effect of the transition to the weak
state. All processors in the sharing set at the point of the
transition will receive write notices. Processors joining the
sharing set after the transition will notice that the page is
unsafe and will know to check the directory entry on their
next acquire operation.

Experiments (not reported here) reveal that delayed write
notices significantly improve performance. The distinction
between safe and unsafe pages has a comparatively minor
effect.

2.3 Network Interface Variants
Current NCC-NUMA systems provide different

amounts of hardware support for the type of protocol out-
lined in the previous section. In this section we consider
three dimensions in the hardware design space together
with an initial, software dimension that affects the perfor-
mance of the others: (a) copying pages v. filling cache
lines remotely on demand, (b) servicing cache misses in
hardware v. software, (c) writing through to home nodes in
hardware v. via extra instructions, and (d) merging nearly-
contemporaneous writes in hardware v. sending them all
through the network individually. The choices affect per-
formance in several ways:� Copying a page to local memory on an initial miss

(detected by a page fault) can be advantageous if all
or most of the data will be used before the page is
invalidated again. If bandwidth is limited, however, or
if the locality exhibited by the application is poor, then
copying pages may result in unnecessary overhead.� If a process decides to not copy a page on an ini-
tial miss, the mechanism used to detect cache misses
to the remote memory can have a significant impact
on performance. Servicing cache misses to remote
memory in hardware requires that the network inter-
face snoop on the local memory bus in order to detect
both coherence and capacity/conflict misses. We as-
sume that mapping tables in the interface allow it to
determine the remote location that corresponds to a
given physical address on the local bus. If the inter-
face does not snoop on ordinary traffic, then we can
still service cache misses in software, provided that
we have a “hook” to gain control when a miss occurs.
We assume here that the hook, suggested by the Wind
Tunnel group at the University of Wisconsin [26], is to
map shared virtual addresses to local pages that have
been set up to generate ECC errors when accessed.
On an ECC “miss,” the interrupt handler can retrieve
the desired line, write it to local memory, and return
to the application. If evicted, the data will be written
back to local memory; ECC faults will not occur on
subsequent capacity/conflict misses.

� A network interface that snoops on the memory bus
can forward write-throughs to remote memory. If
the writes are also recognized by local memory, then
this forwarding constitutes automatic “doubling” of
writes, which is perfect for protocols that create local
copies of pages on initial access faults, or that cre-
ate them incrementally on cache fills, as described in
the preceding bullet. Writes can also be forwarded
in software by embedding extra instructions in the
program, either via compiler action or by editing the
object file [27, 35]. With software forwarding it is not
necessary to write through to local memory; the single
remote copy retains all of the written data, and capacity
or conflict misses will update the local copy via write-
back, so that re-loads will still be safe. The number
of instructions required to forward a write in software
varies from as little as three for a load/store interface
with straightforwardallocation of virtual addresses, to
more than ten for a message-based interface. The ex-
tra instructions must be embedded at every potentially
shared write in the program text, incurring both time
and space overhead. Note that if the hardware writes
through to remote memory and services cache misses
from remote memory, then doubling of writes is not
required: there is no local main-memory copy.� Merging write buffers [12] are a hardware mechanism
that reduces the amount of traffic seen by the mem-
ory and network interconnect. Merge buffers retain
the last few writes to the same cache line; they for-
ward a line back to memory only when it is displaced
by a line being added to the buffer. In order to suc-
cessfully merge lines to main memory, per word dirty
bits are required in the merge buffer. Apart from their
hardware cost, merge buffers may hurt performance in
some applications by prolonging synchronization re-
lease operations (which must flush the buffer through
to memory).

Not all combinations of the dimensions discussed above
make sense. It is harder to implement loads from remote
memory than it is to implement stores (loads stall the pro-
cessor, raising issues of fault tolerance, network deadlock,
and timing). It is therefore unlikely that a system would
service remote cache fills in hardware, but require software
intervention on writes. In a similar vein, a protocol that
copies pages to local memory will not need software in-
tervention to fetch data into the cache from local memory.
Finally, merge buffers only make sense on a system with
hardware writes.

We use four-letter acronyms to name the protocols,
based on the four dimensions. The first letter indicates
whether the protocol copies pages or not (C or N) respec-
tively. The second and third letters indicate whether caches
misses (reads) and forwarded writes, respectively, are han-
dled in hardware (H) or software (S). Finally the fourth
letter indicates the existence or absence of a merge buffer
(M and N respectively). The protocol and network interface
design space is then as follows:

NHHM: This system assumes hardware support for cache
misses, hardware support for write forwarding, and a
merge buffers. It transfers data a cache line at a time.

CHHM: This system assumes hardware support for write
forwarding. Cache misses are to local memory, and



thus are in hardware by definition. It copies data in
page-sized chunks.

NHHN: Identical to NHHM but without a merge buffer.
CHHN: Identical to CHHM but without a merge buffer.
CHSN: This system is similar to CHHM but in that it

forwards writes to remote pages in software and does
not have a merge buffer.

NSHM: This system is similar to NHHM. However the
mechanism used to detect a cache miss is ECC faults
as described earlier in the section.

NSHN: Identical to NSHM but without a merge buffer.
NSSN: This system transfers cache lines in software, for-

wards writes to remote memory in software, and does
not have a merge buffer. It employs the simplest NCC-
NUMA network interface.

The CHHM and NSHM systems could be implemented
on a machine similar to the Princeton Shrimp [3]. Shrimp
will double writes in hardware, but cannot fill cache lines
from remote locations. CHSN and NSSN resemble sys-
tems that could be implemented on top of the DEC Mem-
ory Channel [8] or HP Hamlyn [33] networks, neither of
which will double writes in hardware or fill cache lines
from remote locations. The Memory Channel and Hamlyn
interfaces differ in that the former can access remote loca-
tions with regular store instructions as opposed to special
instruction sequences; it is therefore able to double writes
in software with less overhead.

In our work we assume that all systems are capable of
reading remote locations, either with ordinary loads or via
special instruction sequences. As of this writing, Ham-
lyn and the Memory Channel provide this capability, but
Shrimp does not. None of the systems will fill cache lines
from remote memory in response to a cache miss but DEC
is considering this feature for future generations of the hard-
ware [9]. Shrimp is the only system that doubles writes in
hardware: both the Memory Channel and Hamlyn require
software intervention to achieve the same effect.

3 Experimental Methodology
We use execution-driven simulation to simulate a net-

work of 64 workstations connected with a dedicated,
memory-mapped network interface. Our simulator con-
sists of two parts: a front end, Mint [31], that simulates
the execution of the processors, and a back end that simu-
lates the memory system. The front end calls the back end
on every data reference (instruction fetches are assumed
to always be cache hits). The back end decides which
processors block waiting for memory and which continue
execution. Since the decision is made on-line, the back end
affects the timing of the front end, so that the interleaving
of instructions across processors depends on the behavior
of the memory system and control flow within a processor
can change as a result of the timing of memory references.

The front end is the same in all our experiments. It
implements the MIPS II instruction set. Multiple modules
in the back end allow us to explore the protocol design
space and to evaluate systems with different amounts of
hardware support and different architectural parameters.
The back end modules are quite detailed, with finite-size
caches, TLB behavior, full protocol emulation, network
transfer costs including contention for the bus and network
interface, and memory access costs including contention

System Constant Name Default Value
TLB size 128 entries
TLB fill service time 100 cycles
ECC interrupts 400 cycles
Page faults 400 cycles
Directory modification 160 cycles
Memory setup time 20 cycles
Memory bandwidth 2bytes/cycle
Page size 4K bytes
Total cache per processor 128K bytes
Cache line size 64 bytes
Network path width 16 bits (bi-dir)
Messaging software overhead 150 cycles
Switch latency 2 cycles
Wire latency 1 cycle
Page twinning 5 cycles/word
Diff application and creation 7 cycles/word
List processing overhead 7 cycles/write notice
SW write doubling (overhead) 3 cycles/write

Table 1: Default values for system parameters

for the bus and memory module. Table 1 summarizes the
default parameters used in our simulations. Contention
is captured by splitting each transaction into pieces at the
points of potential contention, and running each piece sep-
arately through the simulator’s discrete event queue. Local
requests receive priority over remote requeusts for access
to the bus.

ECC interrupt time is based on figures for the Wisconsin
Wind Tunnel, scaled to account for comparatively slower
memory access times on a higher clock rate processor [34].
The figure in the table does not include the time to fix the
bad ECC. That time is overlapped with the fetch of the data
from remote memory. Similarly, page twinning and diffing
overhead counts only the instruction overhead. Any mem-
ory stall time due to cache misses while twinning or diffing
is taken into account separately in the simulator. Most of
the transactions required by the Cashmere protocols require
a collection of the operations shown in table 1 and therefore
incur the aggregate cost of their constituents. For example
a page fault on a read to an unmapped page consists of the
following: (a) a TLB fill service, (b) a page fault caused
by the absence of read rights, (c) a directory entry lock
acquisition, and (d) a directory entry modification followed
by the lock release. Lock acquisition itself requires travers-
ing the network and accessing the memory module where
the lock is located. For a one �sec network latency and a
200Mhz processor the cost of accessing the lock (and the
data it protects) is approximately 450 cycles (200 cycles
each way plus 50 cycles for the memory to produce the
directory entry). The total cost for the above transaction
would then be 100+ 400+ 450+ 160 = 1110 cycles, plus
any additional time due to bus or network contention.

3.1 Workload
We report results for nine parallel programs. Five of the

programs are best described as application kernels: Gauss,
sor, sor l, mgrid, and fft. The remaining are larger
applications: mp3d, water, em3d, and appbt. The
kernels are local creations.



Gauss performs Gaussian elimination without pivot-
ing on a 640 � 640 matrix. Sor computes the steady
state temperature of a metal sheet using a banded par-
allelization of red-black successive over-relaxation on a
1024 � 1024 grid. Sor l is an alternative implementa-
tion of the sor program that uses locks instead of barriers
as its synchronization mechanism. Mgrid is a simplified
shared-memory version of the multigrid kernel from the
NAS Parallel Benchmarks [2]. It performs a more elabo-
rate over-relaxation using multi-grid techniques to compute
an approximate solution to the Poisson equation on the unit
cube. We simulated 2 iterations, with 5 relaxation steps on
each grid, and grid sizes of 64� 64� 32. Fft computes a
one-dimensional FFT on a 131072-element array of com-
plex numbers, using the algorithm described by Akl [1].
Mp3d and water are part of the SPLASH suite [29].

Mp3d is a wind-tunnel airflow simulation. We simulated
60000 particles for 10 steps in our studies. Water is a
molecular dynamics simulation computing inter- and intra-
molecule forces for a set of water molecules. We used
256 molecules and 3 times steps. Em3d [6] simulates elec-
tromagnetic wave propagation through 3D objects. We
simulate 65536 electric and magnetic nodes connected ran-
domly, with a 5% probability that neighboring nodes reside
in different processors. We simulate the interactions be-
tween nodes for 10 iterations. Finally appbt is from the
NASA parallel benchmarks suite [2]. It computes an ap-
proximation to Navier-Stokes equations. It was translated
to shared memory from the original message-based form
by Doug Burger and Sanjay Mehta at the University of
Wisconsin. We have modified some of the applications
in order to improve their locality properties and to ensure
that the large size of the coherence block does not create
excessive amounts of false sharing. Most of the changes
were mechanical and took no more than a few hours of
programming effort.

We ran each application on the largest input size that
could be simulated in a reasonable amount of time and that
provided good scalability for a 64-processor system These
sizes are smaller than would occur on a real machine, but
we have chosen similarly smaller caches in order to capture
the effect of capacity and conflict misses. Since we still
observe reasonable scalability for most of our applications,3
we believe that the data set sizes do not compromise our
results.

4 Results
In this section we evaluate the performance improve-

ment that can be achieved over more traditional DSM
systems, with the addition of a memory-mapped network
interface. We start by evaluating the tradeoffs between
different software protocols on machines with an “ideal”
NCC-NUMA interface. We then proceed in section 4.2 to
study systems with simpler interfaces, quantifying the per-
formance impact of hardware support for merging writes,
doubling writes, and filling cache lines remotely. Finally in
section 4.3 we look at the performance impact of network
latency and bandwidth.

3Mp3d does not scale to 64 processors; we use it as a stress test to
compare the performance stability of the various systems and protocols.

appbt
water

mp3d
em3d

fft
gauss

mgrid
sor

sor_l

0
1

2
3

4
5

6

No
rm

ali
ze

d e
xe

cu
tio

n t
im

e

DSM
NHHM
CHHM

6.1 8.4 12

Figure 1: Execution time of DSM and Cashmere systems,
normalized with respect to NHHM.

4.1 Protocol Alternatives
This section compares two versions of the Cashmere

protocol running on an “ideal” NCC-NUMA system to
a state-of-the-art DSM protocol—TreadMarks—designed
for message-passing hardware. The first version copies a
page to local memory on a page fault (CHHM), while the
second simply maps it and fetches data in response to cache
misses (NHHM). All simulations employ identical proces-
sors, write-through caches (except for the DSM protocol,
which does not need them), buses, and memories, and the
same network bandwidth and latency. The Cashmere pro-
tocols further assume (and exploit) the ability to double
write-throughs in hardware (with a write-merge buffer), to
fill cache lines remotely, and to perform uncached refer-
ences directly to remote memory. Results appear in fig-
ure 1. Running time is normalized with respect to that of
the no-page-copy (NHHM) protocol. For all programs in
our application suite, the Cashmere protocols outperform
the DSM system by at least 50% and in some cases by
as much as an order of magnitude. The choice between
copying a page on a page fault or simply mapping the page
remotely and allowing the cache to fetch lines is resolved
in favor of line transfers. Only sor favors page copying
and even in that case, the performance advantage is only
9%.

The greatest performance benefits for Cashmere with
respect to DSM are realized for the more complex appli-
cations: appbt, mp3d and water. This is to a certain
extent expected behavior. Large applications often have
more complex sharing patterns, and as a result the im-
portance of the reduced coherence overhead realized by
Cashmere is magnified. In addition, these applications ex-
hibit a high degree of synchronization, which increases the
frequency with which coherence information must be ex-
changed. Fetching cache lines on demand, as in NHHM, is
therefore significantly better than copying whole pages, as
in CHHM: page size transfers waste bandwidth, since the
high frequency of synchronization forces pages to be in-
validated before all of their contents have been used by the
local processor. Page transfers also occupy memory and
network resources for longer periods of time, increasing
the level of contention.
Sor and em3d have very regular sharing patterns.

Coherence information need only be exchanged between
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Figure 2: Overhead analysis for 64-processor DSM and
Cashmere systems.

neighbors when reaching a barrier. Unfortunately, the
natural implementation of barriers for a system such as
TreadMarks exchanges information much more widely. To
minimize barrier latency on modest numbers of processors
with high message-passing overhead, TreadMarks employs
a central barrier manager that gathers coherence informa-
tion from, and disseminates it to, all participating proces-
sors. This centralized implementation limits scalability. It
also forces each processor to examine the write notices of
every other processor—not just its neighbors—leading to
longer messages and greater list processing overhead than is
necessary based on the sharing pattern of the program. The
directory-based Cashmere protocols do not couple coher-
ence and synchronization as tightly; they make a processor
pay a coherence penalty only for the pages it cares about.

In order to assess the impact of barrier synchronization
on the relative performance of the protocols we wrote a
lock-based version of sor called sor l. Instead of using
a barrier, sor l protects its boundary rows with locks,
which processors must acquire before they can use the
rows in their computation. The lock-based version shows a
much smaller difference in performance across protocols.
The additional time for DSM comes from computing diffs
and twins for pages and servicing interprocessor interrupts.
The source code differences between sor and sor l are
non-trivial: a single line of code (the barrier) in the former
corresponds to 54 lines of lock acquisitions and releases in

Application Running Time ratio
8 processors 64 processors

appbt 1.51 6.16
water 1.94 8.43
mp3d 8.17 12.01
em3d 1.43 2.61
fft 1.15 2.58
gauss 2.24 5.80
mgrid 1.39 2.17
sor 1.13 2.53
sor l 1.14 1.51

Table 2: Running time ratio of traditional DSM to NHHM
system on 8 and 64 processors.
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Figure 3: Execution time of Cashmere systems without a
merge buffer, normalized with respect to NHHM.

the latter. For em3d, in which sharing occurs between in-
dividual electric or magnetic nodes, associating locks with
each node would be prohibitively expensive, and it is not
obvious how to combine nodes together so that they can be
covered by a single lock. Sor, and its lock-based version
work better with page copying (CHHM) than with remote
cache fills (NHHM). Rows are page aligned in sor, and
electromagnetic nodes that belong to a processor are page
aligned in em3d. Since both applications exhibit excellent
spatial locality, they benefit from the low local cache miss
penalty when pages are copied to local memory.
Mgrid also exhibits limited sharing and uses barrier

synchronization. The three-dimensional structure of the
grid however makes sharing more wide-spread than it is
in sor. As a result the centralized-manager barrier ap-
proach of TreadMarks does not incur as much additional
overhead and the Cashmere protocols reduce running time
by less than half. In a similar vein, fft exhibits limited
true sharing among different processors for every phase
(The distance between paired elements decreases for each
phase). The inefficiency of centralized barriers is slightly
greater than in fft, but the Cashmere protocols cut pro-
gram running time by only slightly more than half.

The last application, gauss, is another lock-based pro-
gram. Here running time under DSM is more than 3 times
as long as with the Cashmere protocols. The main rea-
son is that locks are used as flags to indicate when a row
is available to serve as the pivot row. Without directo-
ries, lock acquisitions and releases in gauss must induce
communication between processors. In Cashmere lock ac-
quisitions are almost free, since no write notices will be
present for any shared page (no shared page is ever written
by a remote processor in this application). Lock releases
are slightly more expensive since data has to be flushed to
main memory and directory information has to be updated,
but flushing is overlapped with computation due to write-
through, and directory update is cheap since no coherence
actions need to be taken.

Figure 2 presents a breakdown of protocol overhead into
its principal components: cache stall time, protocol pro-
cessing overhead, time spent computing diffs, time spent
processing interprocessor interrupts, and time spent copy-
ing pages. For the DSM system part of the cache stall time
is encompassed in protocol processing time: since caches
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Figure 4: Execution time for Cashmere systems with
software-mediated cache fills, normalized with respect to
NHHM.

are kept consistent by applying diffs, there is no easy way
to detect coherence related misses; applying a diff will
bring the new data into the cache immediately. As a conse-
quence the measured cache-stall time in DSM is solely due
to capacity, conflict, and cold-start misses. Also, the proto-
col processing overhead includes any time that processors
spend stalled waiting for a synchronization variable. Due to
the nature of the protocols it is hard to distinguish how much
synchronization stall time is due to protocol processing and
how much due to application-specific synchronization. As
can be seen from the figure, the coherence processing com-
ponent is greatly reduced for the Cashmere protocols. The
cost of servicing interprocessor interrupts and producing
diffs and twins is also significant for DSM in many cases.

We have also run experiments with smaller numbers of
processors in order to establish the impact of scalability on
the relative performance of the DSM and Cashmere proto-
cols. We discovered that for small numbers of processors
the Cashmere systems maintain only a modest performance
advantage over DSM. For smaller systems, protocol over-
head is significantly reduced; the Cashmere performance
advantage stems mainly from the elimination of diff man-
agement and interprocessor interrupt overhead. Table 2
shows the run time ratio of a Treadmarks-like DSM and
the NHHM Cashmere protocol on 8 and 64 processors for
our application suite. The 64-processor numbers are those
shown in graphs. They are repeated in the table for com-
parison purposes.
4.2 Relaxing the Hardware Requirements

Current network implementations do not provide all the
hardware support required to realize an ideal NCC-NUMA
system. This is presumably due to a difference between
the original goals of the network designers (fast user-level
messages) and the goals of a system such as Cashmere (ef-
ficient software-coherent shared memory). In this section
we consider the performance impact of the extra hardware.
In particular we consider:
Merge buffers. These reduce the bandwidth required of

memory and the network, and can improve perfor-
mance for applications that require large amounts of
bandwidth.

Write doubling. We compare hardware doubling to two
types of software doubling, both of which rely on the
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Figure 5: Execution time for Cashmere systems with soft-
ware doubling of writes and line transfers, normalized with
respect to NHHM.

ability to edit an executable and insert additional code
after each write instruction. Assuming a memory-
mapped interface (as on the DEC Memory Channel)
that allows access to remote memory with simple
write instructions, the minimal sequence for doubling
a write requires something on the order of three addi-
tional instructions (with the exact number depending
on instruction set details). If access to remote memory
is done via fast messages (as in HP’s Hamlyn) then the
minimal sequence requires something on the order of
twelve additional instructions. We have not attempted
to capture any effects due to increased register pressure
or re-scheduling of instructions in modified code.

Remote cache fills. In the absence of hardware support we
can still service cache misses in software, provided
that we have a “hook” such as ECC faults to gain
control when a miss occurs. The fault handler can
then retrieve the desired line, write it to local memory,
and return to the application. This approach has the
benefit that a cache miss does not stall the processor,
thus preserving the autonomy of each workstation in
the system. Should a remote node fail to produce an
answer we can use a software timeout mechanism to
gracefully end the computation and allow the work-
station to proceed with other jobs. Furthermore the
cost of the ECC fault has to be paid only for the initial
cache miss. Subsequent cache misses due to capac-
ity and conflict evictions can be serviced from local
memory, to which evicted lines are written back.

Figure 3 shows the performance impact of merge buffers
for protocols that either copy or do not copy pages (systems
NHHN and CHHN). The Cashmere systems shown in the
figure are identical to those of figure 1, except for the ab-
sence of the merge buffer. Running time is once again
normalized with respect to the NHHM system. For the ar-
chitecture we have simulated we find that there is enough
bandwidth to tolerate the increased traffic of plain write-
through for all but two applications. Gauss and mgrid
have writes to shared locations inside their inner loops.
Those writes are frequent and have excellent spatial local-
ity. The merge buffer is ideally suited to servicing such
writes and reduces main memory traffic significantly.
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Figure 6: Execution time for Cashmere systems with soft-
ware doubling of writes and page copying, normalized with
respect to NHHM.

Support for hardware reads is more important. When
cache misses to remote locations incur trap overhead the
NSHM and NSHN protocols suffer a significant perfor-
mance hit, with performance loss ranging from 14 to 84%.
As a matter of fact performance loss is high enough, that in
the absence of hardware support for remote cache fill, copy-
ing the page to local memory on a page fault becomes the
better choice. Normalized execution time for the systems
that do not assume hardware support for reads is shown in
figure 4.

The final dimension of interest is the mechanism used to
forward writes to a remote main-memory page. Figures 5
and 6 show the normalized running time on the Cashmere
systems when writes must be forwarded to the home node
in software. For the sake of clarity we have separated the
non-copying and page copying versions of the protocols
across the two graphs. We consider two cases of software
support for writes. A memory-mapped network interface
requires an additional three instructions in order to forward
the write to the home node, while a message-based interface
increases this overhead to twelve instructions per shared
write. For all applications, duplication of writes in software
adds a substantial amount to program running time. For the
message-passing interface, the overhead is high enough in
some cases to eliminate the performance advantage over
DSM. Both types of network interfaces are available on
the market. Our results indicate that the memory-mapped
interface is significantly better suited to efficient shared
memory emulations.

4.3 Impact of Latency and Bandwidth
Though not as important as the functional changes in

network interfaces that allow us to access remote mem-
ory directly, ongoing improvements in network bandwidth
and latency also play a significant role in the success of
the Cashmere systems. High bandwidth is important for
write-through; low latency is important for cheap direc-
tory access. We expect bandwidth to continue to increase
(bandwidth for next year’s version of the Memory Channel
is expected to be over 1Gbyte/sec [9]), but latency trends
are less clear. It may be possible to achieve improvements
in latency by further reducing the software overhead of

messages, but most of the trends seem to be going in the
opposite direction. As processors get faster, network la-
tency (in processor cycles) will increase. In this section we
evaluate the impact of changes in latency and bandwidth on
the performance of the DSM and Cashmere systems. For
the sake of clarity in the graphs, we present results for only
four applications: appbt, water, gauss, and sor l.
These applications represent important points in the appli-
cation spectrum. Two are large programs, with complex
sharing patterns and frequent synchronization, while the
remaining two are smaller kernels, with simpler sharing
patterns and lock-based synchronization. The kernels ex-
hibit less of a performance advantage over more traditional
DSM when run on the Cashmere protocols. The remaining
applications exhibit qualitatively similar behavior.

Figure 7 shows the performance impact of network la-
tency on the relative performance of the DSM, NHHM, and
CHHM systems. We kept bandwidth at 400Mbytes/sec and
varied message latency between 0.5 and 10 �sec. Running
times in the graph are normalized with respect to the run-
ning time of the NHHM protocol with 1 �sec latency. The
measures taken by TreadMarks to minimize the number of
messages exchanged make its performance largely insensi-
tive to changes in network latency. The Cashmere systems
are more affected by latency variations. The NHHM sys-
tem in particular suffers severe performance degradation
when forced to move cache lines at very high latency. For
a 200 MHz processor, a 10 �sec network delay implies
a minimum of 4,000 cycles to fetch a cache line. Such
high cache miss penalties severely limit the performance
of the system. The page copying system (CHHM) fares
better, since it pays the high transfer penalty only on page
fetches and satisfies cache misses from local memory. Both
systems however must still pay for write-throughs and di-
rectory access, and suffer when latency is high. Currently
an end-to-end 4-byte write takes about 3.5 �sec on the
Memory Channel; this number will decrease by almost a
factor of three in the next generation release.

We have also collected results (not shown) on the impact
of latency for systems with suboptimal hardware. We found
that the impact of doubling writes and of mediating cache
fills in software decreases as latency increases, and that
the performance gap between the ideal and sub-optimal
protocols narrows. This makes sense: for high latencies the
additional overhead of ECC faults for reads and the software
overhead for doubling writes is only a small fraction of the
total cost for the operation.

The impact of network bandwidth on the relative per-
formance of the systems is depicted in figure 8. For these
experiments we kept latency at 1�sec and varied bandwidth
between 100Mbytes/sec and 1Gbyte/sec. Running times in
the graph are normalized with respect to the running time
of the NHHM protocol with 400Mbytes/sec bandwidth.
Both the DSM and (to a lesser degree) CHHM systems
are sensitive to bandwidth variations and suffer significant
performance degradation when bandwidth is limited. The
reason for this sensitivity is the large size of some of the
messages. Large messages exacerbate contention effects
since they result in high occupancy times for network, bus,
and memory resources. As bandwidth increases, perfor-
mance for both systems improves markedly. CHHM ap-
proaches or surpasses the performance of NHHM, while
DSM tails off sooner; when enough bandwidth is available
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Figure 8: Execution time for DSM and Cashmere under different network bandwidths, normalized with respect to NHHM.

protocol processing overhead becomes the limiting factor.
The NHHM system, which transfers cache lines only, is
largely bandwidth-insensitive.

For systems with sub-optimal hardware we have found
that the absence of a write-merge buffer has a significant
impact on performance at low bandwidth levels. Increas-
ing the amount of bandwidth reduces the importance of
merge buffers. Software-mediated cache fills and software
doubling of writes cannot exploit the additional bandwidth;
performing these operations in software increases their la-
tency but leaves bandwidth requirements constant.

5 Related Work
Our work is closely related to that of Petersen and

Li [24, 25]; we both use the notion of weak pages, and
purge caches on acquire operations. The main difference is
scalability: we distribute the directory and weak list, distin-
guish between “safe” and “unsafe” pages, check the weak
list only for unsafe pages mapped by the local processor
(i.e., for those that appear in the local write notice list), and
multicast write notices only for safe pages that turn out to
be weak. Our work resembles Munin [4] and lazy release
consistency [13] in its use of delayed write notices, but we
take advantage of the globally-accessible physical address
space for cache fills (in the Nxxx systems) and for access

to the directory and the local write notice lists. We have
also presented protocol variants [17] suitable for a multi-
processor such as the BBN TC2000 or the Cray T3D, with a
globally-accessible physical memory but without hardware
coherence. In such systems the lower latency of memory
accesses allows the use of uncached remote references as
an alternative to caching and provides us with the ability to
tolerate small amounts of fine grain sharing.

On the hardware side our work bears a resemblance to
the Stanford Dash project [19] in the use of a relaxed consis-
tency model, and to the Georgia Tech Beehive project [28]
in the use of relaxed consistency and per-word dirty bits
for successful merging of inconsistent cache lines. Both
these systems use their extra hardware to allow coherence
messages to propagate in the background of computation
(possibly at the expense of extra coherence traffic) in order
to avoid a higher waiting penalty at synchronization opera-
tions. Recent work on the Shrimp project at Princeton [11]
has addressed the design of coherence protocols based on
write-through to remote locations. The Shrimp protocol
resembles what we call CHHN, with the added twist that
when only two processors have mappings to a page they
write through to each others’ copies, rather than to a single
master copy. Researchers at the University of Colorado
also propose the use of NCC-NUMA hardware for efficient



shared memory emulations [10]. In their approach how-
ever, the coherence protocol is simplified to invalidate all
shared pages on lock acquisition operations.

Thekkath et al. have proposed using a network that pro-
vides remote memory access to better structure distributed
and RPC-based systems [30]. The Blizzard system [27]
at the University of Wisconsin uses ECC faults to provide
fine-grain coherence with a sequential consistency mem-
ory model. In contrast we use standard address translation
hardware to provide coherence support and use ECC faults
to trigger data transfers (in the NSxx systems) only. For the
programs in our application suite, the coarse coherence
granularity does not affect performance adversely [15].
Furthermore we have adopted a lazy protocol that allows
multiple writers. In past work we have shown that very
small coherence blocks for such protocols can be detrimen-
tal to performance [16].

The software-doubled writes and software-mediated
reads of the xSxx and xxSx protocols are reminiscent of the
put and get operations of active message systems [6, 32].
The use of object editing tools to insert coherence related
code that maintains dirty bits or checks for write permission
to a coherence block has also been proposed by the Bliz-
zard [27] and Midway [35] systems. Our use is different
in that we simply need to duplicate writes. As a conse-
quence we need as few as three additional instructions for
each shared memory write. Maintaining coherence related
information increases this overhead to about eleven instruc-
tions per shared-memory write.

Coherence for distributed memory with per-processor
caches can also be maintained entirely by a compiler [5].
Under this approach the compiler inserts the appropriate
cache flush and invalidation instructions in the code, to en-
force data consistency. The static nature of the approach,
however, and the difficulty of determining access patterns
for arbitrary programs, often dictates conservative deci-
sions that result in higher miss rates and reduced perfor-
mance.

6 Conclusions
In this paper we have shown that recent changes in net-

work technology make it possible to achieve dramatic per-
formance improvements in software-based shared memory
emulations. We have described a set of software coher-
ence protocols (known as Cashmere) that take advantage
of NCC-NUMA hardware to improve performance over
traditional DSM systems by as much as an order of mag-
nitude. The key hardware innovation is a memory-mapped
network interface, with which processors can access re-
mote locations without trapping into the operating system
or interrupting other processors. This type of interface
allows remote data accesses (cache fills or page copies)
to be serviced in hardware, permits protocol operations to
access remote directory information with relatively little
overhead, and eliminates the need to compute diffs in order
to merge inconsistent writable copies of a page; ordinary
write-through merges updates into a single main memory
copy.

Recent commercial experience suggests that the com-
plexity and cost of NCC-NUMA hardware is much closer
to that of message-based (e.g. ATM style) network inter-
faces than it is to that of hardware cache coherence. At the
same time, previous work has shown the performance of

Cashmere protocols to be within a few percent of the all-
hardware approach [15, 17]. Together, these findings raise
the prospect of practical, shared-memory supercomputing
on networks of commodity workstations.

We are currently building a 32-processor NCC-NUMA
prototype based on DEC’s Memory Channel and 4-
processor AlphaServer 2100 multiprocessors. We are con-
tinuing research on protocol issues, including the design
of a protocol variant that chooses dynamically between
cache line and page transfers based on the access patterns
of the application, and another that automatically invali-
dates “unsafe” pages without consulting the corresponding
directory entry. We are also actively pursuing the design of
annotations that a compiler can use to provide hints to the
coherence system, allowing it to customize its actions to
the sharing patterns of individual data structures. Finally
we are looking into whether it makes sense to dedicate one
processor from a multiprocessor node to protocol process-
ing tasks. Such a processor could be used to fill unused
pages with “bad” ECC bits, in anticipation of using them
for on-demand remote cache fills; track remote references
in the manner of a hardware stream buffer [23] in order to
prefetch data being accessed at a regular stride; or process
write faults on behalf of the other processors, allowing them
to overlap computation with coherence management.
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