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Shared memory provides an attractive and intuitive pro- 
gramming model for large-scale parallel computing, but re- 
quires a coherence mechanism to allow caching for performance 
while ensuring that processors do not use stale data in their 
computation. Implementation options range from distributed 
shared memory emulations on networks of workstations to 
tightly coupled fully cache-coherent distributed shared memory 
multiprocessors. Previous work indicates that performance var- 
ies dramatically from one end of this spectrum to the other. 
Hardware cache coherence is fast, but also costly and time- 
consuming to design and implement, while DSM systems pro- 
vide acceptable performance on only a limit class of applica- 
tions. We claim that an intermediate hardware option- 
memory-mapped network interfaces that support a global 
physical address space, without cache coherence-can provide 
most of the performance benefits of fully cache-coherent hard- 
ware, at a fraction of the cost. To support this claim we present 
a software coherence protocol that runs on this class of ma- 
chines, and use simulation to conduct a performance study. 
We look at both programming and architectural issues in the 
context of software and hardware coherence protocols. Our 
results suggest that software coherence on NCC-NUMA ma- 
chines in a more cost-effective approach to large-scale shared- 
memory multiprocessing than either pure distributed shared 
memory or hardware cache coherence. a 1995 Academic press, I ~ C .  

1. INTRODUCTION 

It is widely accepted that the shared memory program- 
ming model is easier to use than the message passing 
model. This belief is supported by the dominance of (small- 
scale) shared memory multiprocessors in the market and 
by the efforts of compiler and operating system developers 
to provide programmers with a shared memory program- 
ming model on machines with message-passing hardware. 
In the high-end market, however, shared memory ma- 
chines have been scarce, and with few exceptions limited 
to research projects in academic institutions; implementing 
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shared memory efficiently on a very large machine is an 
extremely difficult task. By far the most challenging part 
of the problem is maintaining cache coherence. 

Coherence is easy to achieve on small, bus-based ma- 
chines, where every processor can see the memory traffic 
of the others [2, 121. Coherence is substantially harder to 
achieve on large-scale multiprocessors [I, 15, 19, 231; it 
increases both the cost of the machine and the time and 
intellectual effort required to bring it to market. Given 
the speed of advances in microprocessor technology, long 
development times generally lead to machines with out- 
of-date processors. If coherence could be maintained effi- 
ciently in software, the resulting reduction in design and 
development times could lead to a highly attractive alterna- 
tive for high-end parallel computing. Moreover, the combi- 
nation of efficient software coherence with fast (e.g., ATM) 
networks would make parallel programming on networks 
of workstations a practical reality [ll]. 

Unfortunately, the current state of the art in software 
coherence for message-passing machines provides perfor- 
mance nowhere close to that of hardware cache coherence. 
To make software coherence efficient, one would need 
to overcome several fundamental problems with existing 
distributed shared memory (DSM) emulations [6, 18, 351. 
First, because they are based on messages, DSM systems 
must interrupt the execution of remote processors in order 
to perform any time-critical interprocessor operations. Sec- 
ond, because they are based on virtual memory, most DSM 
systems copy entire pages from one processor to another, 
regardless of the true granularity of sharing. Third, in order 
to maximize concurrency in the face of false sharing in 
page-size blocks, the fastest DSM systems permit multiple 
writable copies of a page, forcing them to compute diffs 
with older versions in order to merge the changes [6,18]. 
Hardware cache coherence avoids these problems by work- 
ing at the granularity of cache lines and by allowing in- 
ternode communication without interrupting normal pro- 
cessor execution. 

Our contribution is to demonstrate that most of the 
benefits of hardware cache coherence can be obtained on 
large machines simply by providing a global physical ad- 
dress space, with per-processor caches but without hard- 
ware cache coherence. Machines in this non-cache-coher- 
ent, non-uniform memory access (NCC-NUMA) class 
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include the Cray Research T3D and the Princeton Shrimp 
[4]. In comparison to hardware-coherent machines, NCC- 
NUMAs can more easily be built from commodity parts, 
with only a small incremental cost per processor for large 
systems and can follow improvements in microprocessors 
and other hardware technologies closely. In another paper 
[20], we show that NCC-NUMAs provide performance 
advantages over DSM systems ranging from 50% to as 
much as an order of magnitude. On the downside, our 
NCC-NUMA protocols require the ability to control a 
processor's cache explicitly, a capability provided by many 
but not all current microprocessors. 

In this paper, we present a software coherence protocol 
for NCC-NUMA machines that scales well to large num- 
bers of processors. To achieve the best possible perfor- 
mance, we exploit the global address space in three specific 
ways. First, we maintain directory information for the co- 
herence protocol in nonreplicated shared locations, and 
access it with ordinary loads and stores, avoiding the need 
to interrupt remote processors in almost all circumstances. 
Second, while using virtual memory to maintain coherence 
at the granularity of pages, we never copy pages. Instead, 
we map them remotely and allow the hardware to fetch 
cache lines on demand. Third, while allowing multiple writ- 
ers for concurrency, we avoid the need to keep old copies 
and compute diffs by using ordinary hardware write- 
through or write-back to the unique main-memory copy 
of each page. 

For the purposes of this paper we define a system to be 
hardware coherent if coherence transactions are handled 
by a system component other than the main processor. 
Under this definition hardware coherence retains two prin- 
cipal advantages over our protocol. It is less susceptible 
to false sharing because it maintains coherence at the gran- 
ularity of cache lines instead of pages, and it is faster be- 
cause it executes protocol operations in a cache controller 
that operates concurrently with the processor. Current 
trends, however, are reducing the importance of each of 
these advantages. Relaxed consistency models mitigate the 
impact of false sharing by limiting spurious coherence oper- 
ations to synchronization points, and programmers and 
compilers are becoming better at avoiding false sharing as 
well [9, 141. 

While any operation implemented in hardware is likely 
to be faster than equivalent software, particularly complex 
operations cannot always be implemented in hardware at 
reasonable cost. Software coherence therefore enjoys the 
potential advantage of being able to employ techniques 
that are too complicated to implement reliably in hardware 
at acceptable cost. It also offers the possibility of adapting 
protocols to individual programs or data regions with a 
level of flexibility that is difficult to duplicate in h a r d ~ a r e . ~  
We exploit this advantage in part in our work by employing 

T h e  advent of protocol processors [21, 281 can make it possible to 
combine the flexibility of software with the speed and parallelism provided 
by hardware. 

a relatively complicated eight-state protocol, by using un- 
cached references for application-level data structures that 
are accessed at a very fine grain, and by introducing user- 
level annotations that can impact the behavior of the coher- 
ence protocol. We are exploring additional protocol 
enhancements (not reported here) that should further 
improve the performance of software coherence. 

The rest of the paper is organized as follows. We present 
our software protocol in Section 2. We then describe our 
experimental methodology and application suite in Section 
3 and present results in Section 4. We compare our protocol 
to a variety of existing alternatives, including release-con- 
sistent hardware, straightforward sequentially-consistent 
software, and a coherence scheme for small-scale NCC- 
NUMAs due to Petersen and Li [26]. We show that certain 
simple program modifications can improve the perfor- 
mance of software coherence substantially. Specifically, we 
identify the need to mark reader-writer locks, to avoid 
certain interations between program synchronization and 
the coherence protocol, to align data structures with page 
boundaries whenever possible, and to use uncached refer- 
ences for certain fine grained shared data structures. With 
these modifications in place, our protocol performs sub- 
stantially better than the other software schemes, enough 
in most cases to bring software coherence within sight of 
the hardware alternatives-for three applications slightly 
better, usually only slightly worse, and never more than 
55% worse. 

In Section 5, we examine the impact of several architec- 
tural alternatives on the effectiveness of software coher- 
ence. We study the choice of write policy (write-through, 
write-back, write-through with a write-merge buffer) for 
the cache and examine the impact of architectural parame- 
ters on the performance of software and hardware coher- 
ence. We look at page and cache line sizes, overall cache 
size, cache line invalidate and flush costs, TLB manage- 
ment and interrupt handling costs, and networklmemory 
latency and bandwidth. Our experiments document the 
effectiveness of software coherence for a wide range of 
hardware parameters. Based on current trends, we predict 
that software coherence can provide an even more cost- 
effective alternative to hardware-based cache coherence 
on future generations of machines. The final two sections 
of the paper discuss related work and summarize our con- 
clusions. 

2. A SCALABLE SOFTWARE CACHE 
COHERENCEPROTOCOL 

In this section, we present a protocol for software cache 
coherence on large-scale NCC-NUMA machines. As in 
most software coherence systems, we use virtual memory 
protection bits to enforce consistency at the granularity of 
pages. As in Munin [6], Treadmarks [IS], and the work of 
Petersen and Li [26], we allow more than one processor 
to write a page concurrently, and we use a variant of release 
consistency [23] to limit coherence operations to synchro- 
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nization points. (Between these points, processors can con- 
tinue to use stale data in their caches.) As in the work of 
Petersen and Li, we exploit the global physical address 
space to move data at the granularity of cache lines: instead 
of copying pages we map them remotely, and allow the 
hardware to fetch cache lines on demand. 

The novelty of our protocol lies in the mechanism used 
to maintain and propagate directory information. Most of 
the information about each page is located at the (unique) 
processor in whose memory the page can be found (this 
is the page's home node). The information includes a list 
of the current readers and writers of the page, and an 
indication of the page's state, which may be one of the 
following: Uncached-No processor has a mapping to the 
page. This is the initial state for all pages. Shared-One 
or more processors have read-only mappings to the page. 
Dirty-A single processor has both read and write map- 
pings to the page. Weak-Two or more processors have 
mappings to the page and at least one has both read and 
write mappings to it. A page leaves the weak state and 
becomes uncached when no processor has a mapping to 
the page anymore. 

The state of a page is a property of the system as a 
whole, not (as in most procotols) the viewpoint of a single 
processor. Borrowing terminology from Platinum [lo], the 
distributed data structure consisting of this information 
stored at home nodes is called the coherent map. 

In addition to its portion of the coherent map, each 
processor also holds a local weak list that indicates which 
of the pages for which there are local mappings are cur- 
rently in the weak state. When a processor takes a page 
fault it locks the coherent map entry representing the page 
on which the fault was taken. It then changes the entry to 
reflect the new state of the page. If necessary (i.e., if the 
page has made the transition from shared or dirty to weak), 
the processor updates the weak lists of all processors that 
have mappings for the page. It then unlocks the entry in 
the coherent map. On an acquire operation, a processor 
must remove all mappings and purge from its cache all 
lines of all pages found in its local weak list. It must also 
update the coherent map entries of the pages it invalidates 
to reflect the fact that it no longer caches these pages. 

At first glance, one might think that modifying the coher- 
ent map with uncached memory references would be sub- 
stantially more expensive than performing a directory op- 
eration on a machine with hardware cache coherence. In 
reality, however, we can fetch the data for a directory entry 
into a processor's cache and then flush it back before the 
lock is released. If lock operations are properly designed 
we can also hide the latency for the data transfers behind 
the latency for the lock operations themselves. If we em- 
ploy a distributed queue-based lock [25], a read of the 
coherent map entry can be initiated immediately after 
starting the fetch-and-store operation that retrieves the 
lock's tail pointer. If the fetch-and-store returns nil (indi- 
cating that the lock was free), then the data will arrive right 
away. The write that releases the lock can subsequently be 

pipelined immediately after the write of the modified data, 
and the processor can continue execution. If the lock is 
held when first requested, then the original fetch-and-store 
will return the address of the previous processor in line. 
The queue-based lock algorithm will spin on a local flag, 
after writing that flag's address into a pointer in the prede- 
cessor's memory. When the predecessor finishes its update 
of the coherent map entry, it can write the data directly into 
the memory of the spinning processor, and can pipeline 
immediately afterward a write that ends the spin. The end 
result of these optimizations is that the update of a coher- 
ent map entry requires little more than three end-to-end 
message latencies (two before the processor continues exe- 
cution) in the case of no contention. When contention 
occurs, little more than one message latency is required to 
pass both the ownership of the lock and the data the lock 
protects from one processor to the next. Inexpensive up- 
date of remote weak lists is accomplished in the same 
manner. 

Additional optimizations are possible. When a processor 
takes a page fault on a write to a shared (nonweak) page, 
we could choose to make the transition to weak and post 
appropriate write notices immediately or, alternatively, we 
could wait until the processor's next release operation: the 
semantics of release consistency do not require us to make 
writes visible before then. Similarly, a page fault on a write 
to an unmapped page could take the page to the dirty state 
immediately, or at the time of the subsequent release. The 
advantage of delayed transitions is that any processor that 
executes an acquire operation before the writing proces- 
sor's next release will not have to invalidate the page. This 
serves to reduce the overall number of invalidations. The 
disadvantage is that delayed transitions may lengthen the 
critical path of the computation by introducing contention, 
especially for programs with barriers, in which many pro- 
cessors may attempt to post notices for the same page at 
roughly the same time, and will therefore serialize on the 
lock of the coherent map entry. Delayed write notices were 
shown to improve performance in the Munin distributed 
shared memory system [6], which runs on networks of 
workstations and communicates solely via messages. 
Though the relative costs of operations are quite different, 
experiments indicate (see section 4) that delayed transi- 
tions are generally beneficial in our environment as well. 

As described thus far, our protocol incurs at each release 
point the cost of updating the coherent map and (possibly) 
posting write notices for each page that has been modified 
by the processor performing the release. At each acquire 
point the protocol incurs the cost of invalidating (unmap- 
ping and flushing from the cache) any locally accessible 
pages that have been modified recently by other proces- 
sors. Whenever an invalidated page is used again, the pro- 
tocol incurs the cost of fielding a page fault, modifying the 
coherent map, and reloading any accessed lines. (It also 
incurs the cost of flushing the write-merge buffer at re- 
leases, but this is comparatively minor.) In the aggregate, 
each processor pays overhead proportional to the number 
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of pages it is actively sharing. By comparison, a protocol 
based on a centralized weak list requires a processor to 
scan the entire list at a lock acquisition point, incurring 
overhead proportional to the number of pages being 
shared by any processors. 

In reality, most pages are shared by a modest number 
of processors for the applications we have examined, and 
so local weak lists make sense when the number of proces- 
sors is large. Distributing the coherent map and weak list 
eliminates both the problem of centralization (i.e., memory 
contention) and the need for processors to do unnecessary 
work at acquire points (scanning weak list entries in which 
they have no interest). For poorly structured programs, or 
for the occasional widely shared page in a well-structured 
program, a central weak list would make sense: it would 
replace the serialized posting of many write notices at a 
release operation with individual checks of the weak list 
on the part of many processors at acquire operations. To 
accommodate these cases, we modify our protocol to adopt 
the better strategy, dynamically, for each individual page. 

Our modification takes advantage of the fact that page 
behavior tends to be relatively constant over the execution 
of a program, or at least a large portion of it. Pages that 
are weak at one acquire point are likely to be weak at 
another. We therefore introduce an additional pair of 
states, called safe and unsafe. These new states, which are 
orthogonal to the others (for a total of eight distinct states), 
reflect the past behavior of the page. A page that has made 
the transition to weak several times and is about to be 
marked weak again is also marked as unsafe. Future transi- 
tions to the weak state will no longer require the sending 
of write notices. Instead the processor that causes the tran- 
sition to the weak state changes only the entry in the 
coherent map, and then continues. The acquire part of the 
protocol now requires that the acquiring processor check 
the coherent map entry for all its unsafe pages and invali- 
date the ones that are also marked as weak. A processor 
knows which of its pages are unsafe because it maintains 
a local list of them (this list is never modified remotely). 
A page changes from unsafe back to safe if it has been 
checked at several acquire operations and found not to be 
weak. In practice, we find that the distinction between safe 
and unsafe pages makes a modest, though not dramatic, 
contribution to performance in programs with low degrees 
of sharing (up to 5% improvement in our application suite). 
It is more effective for programs with pages shared across 
a large number of processors (up to 35% for earlier versions 
of our programs), for which it provides a "safety net," 
allowing their performance to be merely poor, instead of 
really bad.4 

In future work, we intend to investigate protocol in which processors 
always invalidate unsafe pages at an acquire operation, without checking 
the coherent map. This protocol may incur less overhead for coherent 
map operations, but will perform some unnecessary invalidations, and 
provides no obvious mechanism by which an unsafe page could be reclassi- 
fied as safe. 

One final question that has to be addressed is the mecha- 
nism whereby written data makes its way back into main 
memory. Petersen and Li found a write-through cache to 
work best on small machines, but this could lead to a 
potentially unacceptable amount of memory traffic in 
large-scale systems. Assuming a write-back cache either 
requires that no two processors write to the same cache 
line of a weak page-an unreasonable assumption-or a 
mechanism to keep track of which individual words are 
dirty. We ran our experiments under three different as- 
sumptions: write-through caches where each individual 
write is immediately sent to memory, write-back caches 
with per-word hardware dirty bits in the cache, and write- 
through caches with a write-merge buffer [7] that hangs 
onto recently written lines and coalesces any writes that 
are directed to the same line. The write-merge buffer also 
requires per-word dirty bits to make sure that falsely shared 
lines are merged correctly. Depending on the write policy, 
the coherence protocol at a release operation must force 
a write-back of all dirty lines, purge the write-merge buffer, 
or wait for acknowledgements of write-throughs. Our ex- 
periments (see Section 5.1) indicate that performance is 
generally best with write-back for private data and write- 
through with write-merge for shared data. 

The state diagram for a page in our protocol appears in 
Fig. 1. The transactions represent read, write, and acquire 
accesses on the part of any processor. Count is the number 
of processors having mappings to the page; n o t i c e s  is 
the number of notices that have been sent on behalf of a 
safe page; and checks is the number of times that a proces- 
sor has checked the coherent map regarding an unsafe 
page and found it not to be weak. 

3. METHODOLOGY 

We use execution-driven simulation to simulate a mesh- 
connected multiprocessor with up to 64 nodes. Our simula- 
tor consists of two parts: a front end, Mint [34], that simu- 
lates the execution of the processors, and a back end that 
simulates the memory system. The front end is the same 
in all our experiments. It implements the MIPS I1 instruc- 
tion set. Interchangeable modules in the back end allow 
us to explore the design space of software and hardware 
coherence. Our hardware-coherent modules are quite de- 
tailed, with finite-size caches, full protocol emulation, dis- 
tance-dependent network delays, and memory access costs 
(including memory contention). Our simulator is capable 
of capturing contention within the network, but only at a 
substantial cost in execution time; the results reported here 
model network contention at the sending and receiving 
nodes of a message, but not at the nodes in-between. Our 
software-coherent modules add a detailed simulation of 
TLB behavior, since it is the protection mechanism used 
for coherence and can be crucial to performance. To avoid 
the complexities of instruction-level simulation of interrupt 
handlers, we assume a constant overhead for page faults. 
For the software-coherent systems we assume that all data 
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FIG. 1. Scalable software cache coherence state diagram. 

transfers are completed without software intervention. The 
only software operations are modifying coherent map en- 
tries and updating remote weak lists. Table I summarizes 
the default parameters used in our simulations. For these 
parameters remote cache miss latencies are approximately 
100 cycles, while misses to local memory are significantly 
cheaper (20 cycles). 

Some of the transactions required by our coherence pro- 
tocols require a collection of the operations shown in Table 
I and therefore incur the aggregate cost of their constit- 
uents. For example a page fault on a read to an unmapped 
page consists of the following: (a) a TLB fault service (24 
cycles), (b) a processor interrupt caused by the absence of 
read rights (140 cycles), (c) a coherent map entry lock 
acquisition, and (d) a coherent map entry modification 

ration, which is the largest machine we simulate. Of our 
applications, three are best described as computational 
kernels: gauss, sor, and fft. Three are complete ap- 
plications: mp3d, water, and appbt. The kernels are 
local creations. 
Gauss performs Gaussian elimination without pivoting 

on a 448 X 448 matrix. Sor computes the steady-state 
temperature of a metal sheet using a banded parallelization 
of red-black successive overrelaxation on a 640 X 640 grid. 
~ f t  computes a one-dimensional FFT on a 65,536-element 

TABLE I 
Default Values for System Parameters 

followed by the lock release (160 cycles). Lock acquisition System constant name Default value 
itself requires traversing the network and accessing the 
memory module where the lock is located. Assuming that 
accessing the lock requires traversing 10 intermediate 
nodes, that there is no contention in the network, and that 
the lock is found to be free, the cost for lock acquisition 
is the roundtrip latency of the network plus the memory 
access cost, or (2 + 1) * 10 * 2 + 12 + 1 = 73 cycles. The 
total cost for the above transaction would then be 24 + 
140 + 73 + 160 = 398 cycles. 

We report results for six parallel programs. We have 
run each application on the largest input size that could 
be simulated in a reasonable amount of time and that 
provided good load-balancing for a 64-processor configu- 

TLB size 
TLB fault service time 
Interrupt cost 
Coherent map modification 
Memory setup time 
Memory bandwidth 
Page size 
Total cache per processor 
Cache line size 
Network path width 
Switch latency 
Wire latency 
Directory lookup cost 
Cache purge time 

128 entries 
24 cycles 
140 cycles 
160 cycles 
12 cycles 
4 byteslcycle 
4K bytes 
128K bytes 
32 bytes 
16 bits (bidirectional) 
2 cycles 
1 cycle 
10 cycles 
1 cyclelline 
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array of complex numbers. Mp3d and water are part of 
the SPLASH suite [33]. Mp3d is a wind-tunnel airflow 
simulation. We simulated 40,000 particles for 10 steps in 
our studies. Water is a molecular dynamics simulation 
computing inter- and intramolecule forces for a set of water 
molecules. We used 256 molecules and 3 time steps. Finally 
appbt is from the NASA parallel benchmarks suite [3]. 
It computes an approximation to Navier-Stokes equations. 
It was translated to shared memory from the original mes- 
sage-based form by Doug Burger and Sanjay Mehta at the 
University of Wisconsin. Due to simulation constraints, 
our input data sizes for all programs are smaller than what 
would be run on a real machine. We have also chosen 
smaller caches than are common on real machines, in order 
to capture the effect of capacity and conflict misses. Our 
caches are still large enough to hold the working set of 
our applications, with capacity and conflict misses being 
the exception rather than the rule. The main reason for 
this choice is the desire to evaluate the impact of protocol 
performance on the applications rather than just remote 
memory latency. Section 5.4 studies the impact of cache 
size on the relative performance of our protocols. Since 
we still observe reasonable scalability for most of our appli- 
cations, we believe that the data set sizes do not compro- 
mise our results.' 

4. PERFORMANCE RESULTS 

Our principal goal is to determine whether one can ap- 
proach the performance of hardware cache coherence 
without the special hardware. To that end, we begin in 
Section 4.1 by presenting our applications and the changes 
we made to improve their performance on a software co- 
herence protocol. We continue in Section 4.2 by evaluating 
the trade-offs between different software protocols. Fi- 
nally, in Section 4.3, we compare the best of the software 
results to the corresponding results on release-consistent 
hardware. 

4.1. Program Modifications to Support Software 
Cache Coherence 

In this section, we show that programming for software- 
coherent systems requires paying attention to the same 
issues that are important for hardware-coherent environ- 
ments, and that simple program changes can greatly im- 
prove program performance. Most of the applications in 
our suite were written with a small coherence block in 
mind, which could unfairly penalize software-coherent sys- 
tems. These applications could easily be modified, how- 
ever, to work well with large coherence blocks. Further- 
more we show that the flexibility of software coherence 
can allow for optimization that may be too hard to imple- 
ment in a hardware-coherent system and that can further 
improve performance. 

Mp3d does not scale to 64 processors, but we use it as a stress test 
to compare the performance of different coherence mechanisms. 

Our program modifications are also beneficial for hard- 
ware-coherent systems; several are advocated in the litera- 
ture [16]. Our contribution lies in quantifying their impact 
on performance in the context of a software coherent sys- 
tem and attributing the performance loss observed in the 
unmodified applications to specific interactions between 
the application and the coherence protocol. The remaining 
optimizations take advantage of program semantics to give 
hints to the coherence protocol on how to reduce coher- 
ence management costs and are applicable only in the 
context of the software protocols. Our four modifica- 
tions are: 

Separation of synchronization variables from other 
writable program data (Sync-fix). 

Data structure alignment and padding at page or sub- 
page boundaries (pad). 

Identification of reader-writer locks and avoidance of 
coherence overhead when releasing a reader lock (RW- 
locks). 

Identification of fine grained shared data structures 
and use of uncached references for their access, to avoid 
coherence management (R-ref). 

All our changes produced dramatic improvements on 
the runtime of one or more applications, with some show- 
ing improvements of well over 50% under our software 
coherence protocols. Results for hardware-based systems 
(not shown here) also reveal benefits from these program 
changes, but to a lesser degree, with mp3d showing the 
largest improvement, at 22%. 

Colocation of application data and locks on software 
coherent systems severely degrades performance due to 
an adverse interaction between the application locks and 
the locks protecting coherent map entries at the OS level. 
A processor that attempts to access an application lock 
for the first time will take a page fault and will attempt 
to map the page containing the lock. This requires the 
acquisition of the OS lock protecting the coherent map 
entry for that page. The processor that attempts to release 
the application lock must also acquire the lock for the 
coherent map entry representing the page that contains 
the lock and the data it protects, in order to update the page 
state to reflect the fact that the page has been modified. In 
cases of contention the lock protecting the coherent map 
entry is unavailable: it is owned by the processor(s) at- 
tempting to map the page for access. 

Data structure alignment and padding are well-known 
methods of reducing false sharing [16]. Since coherence 
blocks in software coherent systems are large (4K bytes 
in our case), it is unreasonable to require padding of data 
structures to that size. However we can often pad data 
structures to subpage boundaries so that a collection of 
them will fit exactly in a page. This approach coupled with 
a careful distribution of work, ensuring that processor data 
is contiguous in memory, can greatly improve the locality 
properties of the application. Water and appbt already 
had good contiguity, so padding was sufficient to achieve 
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aPPbt water 

FIG. 2. Normalized runtime of appbt and water with different 
levels of restructuring. 

good performance. Mp3d, on the other hand, starts by 
assigning molecules to random coordinates in the three- 
dimensional space. As a result, interacting particles are 
seldom contiguous in memory, and generate large amounts 
of sharing. We fixed this problem by sorting the particles 
according to their slow-moving ̂ -coordinate and assigned 
each processor a contiguous set of particles. Interacting 
particles are now likely to belong to the same page and 
processor, reducing the amount of sharing (see the sort 
bar in Fig. 3 below). 

We were motivated to give special treatment to reader- 
writer locks after studying the Gaussian elimination pro- 
gram. Gauss uses locks to test for the readiness of pivot 
rows. In the process of eliminating a given row, a processor 
acquires (and immediately releases) the locks on the previ- 
ous rows one by one. With regular exclusive locks, the 
processor is forced on each release to notify other proces- 
sors of its most recent (single-element) change to its own 
row, even though no other processor will attempt to use 
that element until the entire row is finished. Our change 
is to observe that the critical section protected by the pivot 
row lock does not modify any data (it is in fact empty!), 
so no coherence operations are needed at the time of the 
release. We communicate this information to the coher- 
ence protocol by identifying the critical section as being 
protected by a reader's lock. A "skip coherence operations 
on release" annotation could be applied even to critical 
sections that modify data, if the programmer or compiler 
is sure that the data will not be used by any other processor 
until after some subsequent release. This style of annota- 
tion is reminiscent of entry consistency [35], but with a 
critical difference: Entry consistency requires the program- 
mer to identify the data protected by particular locks-in 

effect, to identify all situations in which the protocol must 
not skip coherence operations. Errors of omission affect 
the correctness of the program. In our case correctness is 
affected only by an error of commission (i.e., marking a 
critical section as protected by a reader's lock when this 
is not the case). 

Even with the changes just described, there may be pro- 
gram data structures that are shared at a very fine grain 
(both spatial and temporal), and that can therefore cause 
performance degradations. It can be beneficial to disallow 
caching for such data structures, and to access the memory 
module in which they reside directly. We term this kind 
of access uncached reference. We expect this annotation 
to be effective only when used on a very small percentage 
of a program's references to shared data. 

The performance improvements for our four modified 
applications when running under the protocol described 
in Section 2 can be seen in Figs. 2 and 3. The performance 
impact of each modification is not independent of previous 
changes; the graphs show the aggregate performance im- 
provement for each successive optimization. 

As can be seen from the graphs, Gauss improves mark- 
edly when relocating synchronization variables to fix the 
lock interference problem and also benefits from the identi- 
fication of reader-writer locks. Uncached reference helps 
only a little. Water gains most of its performance improve- 
ment by padding the molecule data structures to subpage 
boundaries and relocating synchronization variables. Mp3d 
benefits from relocating synchronization variables and pad- 
ding the molecule data structure to subpage boundaries. It 
benefits even more from improving the locality of particle 
interactions via sorting, and uncached reference shaves off 
another 50%. Finally, appbt sees dramatic improvements 
after relocating one of its data structures to achieve good 

Plain 
Sync-fix,pad 
Sort 
RW-locks 
R-ref 

mp3d gauss 

FIG. 3. Normalized runtime of gauss  and mp3d with different levels 
of restructuring. 
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page alignment and benefits nicely from the use of un- 
cached references as well. The performance of the re- 
maining two programs in our application suite was insensi- 
tive to the changes described here. 

Our program changes were simple: identifying and fixing 
the problems was a mechanical process that consumed at 
most a few hours. The process was aided by simulation 
results that identified pages with particularly high coher- 
ence overhead. In practice, similar assistance could be ob- 
tained from performance monitoring tools. The most diffi- 
cult application was mp3d which, apart from the 
mechanical changes, required an understanding of pro- 
gram semantics for the sorting of particles. Even in that 
case identifying the problem was an effort of less than a 
day; fixing it was even simpler: a call to a sorting routine. 
We believe that such modest forms of tuning represent a 
reasonable demand on the programmer. We are also hope- 
ful that smarter compilers will be able to make many of 
the changes automatically. 

4.2. Software Coherence Protocol Alternatives 

This section compares our software protocol (presented 
in Section 2) to the protocol devised by Petersen and Li 
[26] (modified to distribute the centralized weak list among 
the memories of the machine), and to a sequentially consis- 
tent page-based cache coherence protocol. For each of the 
first two protocols, we present two variants: one that delays 
write-driven state transitions until the subsequent release 
operation, and one that performs them immediately. The 
comparisons assume a write-back cache. Coherence mes- 
sages (if needed) can be overlapped with the flush opera- 
tions, once the writes have entered the network. The proto- 
cols are named as follows: 

re1 . distr . del : The delayed version of our distrib- 
uted protocol, with safe and unsafe pages. Write notices 
are posted at the time of a release and invalidations are 
done at the time of an acquire. At release time, the protocol 
scans the TLBIpage table dirty bits to determine which 
pages have been written. Pages can therefore be mapped 
readlwrite on the first miss, eliminating the need for a 
second trap if a read to an unmapped page is followed 
by a write. This protocol has slightly higher bookkeeping 
overhead than re1 . distr . node1 below, but reduces 
trap costs and possible coherence overhead by delaying 
transitions to the dirty or weak state (and posting of associ- 
ated write notices) for as long as possible. It provides the 
unit of comparison (normalized running time of 1) in 
our graphs. 
re1 . distr .nodel : Same as re1 . distr . del, ex- 

cept that write notices are posted as soon as an inconsis- 
tency occurs. The TLBIpage table dirty bits do not suffice 
to drive the protocol here, since we want to take action 
the moment an inconsistency occurs. We must use the 
write-protect bits to generate page faults. 
re1 . centr. node1 : Same as re1 . distr . nodel, ex- 

cept that write notices are propagated by inserting weak 

pages in a global list which is traversed on acquires. This 
is the protocol of Petersen and Li [26], with the exception 
that while the weak list is conceptually centralized, its en- 
tries are distributed physically among the nodes of the 
machine. 
re1 . centr . del : Same as re1 . distr . del, except 

that write notices are propagated by inserting weak pages 
in a global list which is traversed on acquires. 
seq : A sequentially consistent software protocol that 

allows only a single writer for every page at any given 
point in time. Interprocessor interrupts are used to enforce 
coherence when an access fault occurs. Interprocessor in- 
terrupts present several problems for our simulation envi- 
ronment (fortunately this is the only protocol that needs 
them) and the level of detail at which they are simulated 
is significantly lower than that of other system aspects. 
Results for this protocol underestimate the cost of coher- 
ence management but since it is the worst protocol in most 
cases, the inaccuracy has no effect on our conclusions. 

Figure 4 presents the normalized execution time of the 
different software protocols on our set of partially modified 
applications. We have used the versions of the applications 
whose data structures are aligned and padded, and whose 
synchronization variables are decoupled from the data they 
protect (see Section 4.1). We have not used the versions 
that require annotations: the identification of reader locks 
or of variables that should be accessed with uncached refer- 
ences. The distributed protocols outperform the central- 
ized implementations, often by a significant margin. The 
largest improvements (almost threefold) are realized on 
water and mp3d, the two applications for which software 
coherence lags the most behind hardware coherence (see 
Section 4.3). This is predictable behavior: applications in 

gauss sor water mp3d appbt fft 

FIG. 4. Comparative performance of different software protocols on 
64 processors. 
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FIG. 5. Overhead analysis of different software protocols on 64 pro- 
cessors. 

which the impact of coherence is important are expected 
to show the greatest variance with different coherence 
algorithms. However, it is important to note the difference 
in the scales of Figs. 4 and 6. While the distributed protocols 
improve performance over the centralized ones by a factor 
of three for water and mp3d, they are only 38 and 55% 
worse than their hardware competitors. In programs in 
which coherence is less important, the decentralized proto- 
cols still provide reasonable performance improvements 
over the centralized ones, ranging from 2 to 35%. 

It is surprising to see the sequentially consistent protocol 
outperform the relaxed alternatives on gauss. The expla- 
nation lies in the use of locks as flags, as described in 
Section 4.1. It is also surprising to see the sequentially 
consistent protocol outperform the centralized relaxed 
protocols on water. The main reason is that restructuring 
has reduced the amount of false sharing in the program, 
negating the main advantage of relaxed consistency, and 
the sharing patterns in the program force all shared pages 
into the weak list, making processors pay very high penal- 
ties at lock-acquisition points. 

While run time is the most important metric for applica- 
tion performance it does not capture the full impact of a 
coherence algorithm. Figure 5 shows the breakdown of 
overhead into its major components for the five software 
protocols on our six applications. These components are: 
interrupt handling overhead (ipc) (sequentially consistent 
protocol only), time spent waiting for application locks 
(sync), coherence protocol overhead (including waiting for 
system locks and flushing and purging cache lines) (proto- 
col), time spent waiting for cache misses (cache), and useful 
processing cycles (cpu). Coherence protocol overhead has 
an impact on the time spent waiting for application locks- 

the two are not easily separable. The relative heights of 
the bars are slightly off in Figs. 4 and 5, because the former 
pertains to the parallel part of the computation, while the 
latter includes initialization overheads as well. Since initial- 
ization overheads were small the differences between the 
relative heights of bars in the graphs are minor. As can be 
seen from the graph, cache wait time is virtually identical 
for the relaxed consistency protocol. This is consistent with 
the fact that the protocols use the same rules for identifying 
which pages are weak and therefore invalidate the same 
pages. The performance advantage of the distributed pro- 
tocols stems from reduced protocol and synchronization 
overhead. 

4.3. Hardware us Software Coherence 

Figure 6 shows the normalized execution times of our 
best software protocol and that of a relaxed-consistency 
DASH-like hardware protocol [23] on 64 processors. Time 
is normalized with respect to the software protocol. The 
hardware protocol assumes single-processor nodes, and 
the consistency model allows reads to bypass writes in the 
write-buffers. Only one write-miss request can be outstand- 
ing at any point time; subsequent writes queue in the write 
buffer. If the write buffer capacity is exceeded the proces- 
sor stalls. The software protocol is the one described in 
Section 2, with a distributed coherence map and weak list, 
safelunsafe states, delayed transitions to the weak state, 
and write-through caches with a write-merge buffer. The 
applications include all the program modifications de- 
scribed in Section 4.1, though uncached reference is used 
only in the context of software coherence; it does not make 
sense in the hardware-coherent case. 

gauss sor water mp3d appbt fft 

FIG. 6. Comparative software and hardware system performance on 
64 processors. 
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FIG. 7. Overhead analysis of software and hardware protocols on 
64 processors. 

In all cases, with the exception of m p 3 d ,  the performance 
of the software protocol is within 40% of the relaxed consis- 
tency hardware protocol (termed hw-best in our graphs). 
For three of the applications, the software protocol is actu- 
ally slightly faster. The write-through mode eliminates 
three-hop transaction on cache misses reducing the miss 
overhead. One can argue that the hardware protocol could 
also use a write-through cache, but that would be detrimen- 
tal to the performance of other applications. The software- 
based protocol also does not need to get write-access rights 
for each cache line. As a result writes retire immediately 
if the cache line is present, and write-buffer stall time 
is reduced. 

On the other hand m p 3 d  and water demonstrate cases 
in which software coherence has disadvantages over a 
hardware implementation. For water the main problem 
is the extremely high frequency of synchronization, while 
for m p 3 d  the presence of both fine-grained sharing and 
frequent synchronization affects performance. Still the per- 
formance of water is within 38% of the hardware imple- 

mentation. M p 3 d  on 64 processors is actually 55% worse 
under software coherence, but this program is known for 
its poor scalability. We regard its execution on 64 proces- 
sors as more of a "stress test" for the protocols than a 
realistic example. On 16 processors (a point at which rea- 
sonable speedups for m p 3 d  may still be attainable), the 
performance of the software protocol is only 33% worse 
than that of the hardware protocol. The 16-processor 
graphs are not shown here due to lack of space. 

Figure 7 shows the breakdown of overhead for the two 
protocols into its major components. These components 
are: write-buffer stall time (stall), synchronization over- 
head (sync), protocol processing overheads (protocol), 
cache miss latency (cache) which for the software protocol 
also includes time spent in uncached references, and useful 
cpu cycles (cpu). Results indicate that the coherence over- 
head induced by our protocol is minimal, and in most cases 
the larger coherence block size does not cause any increase 
in the miss rate and consequently the miss latency experi- 
enced by the programs. Table I1 shows the miss rates and 
other categories of overhead for the programs in our appli- 
cation suite. The left number in the "Miss rate" column 
corresponds to the miss rate for the hardware-coherent 
system, while the right number corresponds to the soft- 
ware-coherent system. For the applications that exhibit a 
higher miss rate for the hardware system the additional 
misses come mainly from the introduction of exclusive 
requests and from a slight increase in conflict misses (use 
of uncached reference reduced the working set size for 
the software protocol). The results in the table correlate 
directly with the results shown in Fig. 7. Higher miss rates 
result in higher miss penalties, while the low page miss 
rate is in accordance with the low protocol overhead expe- 
rienced by the applications. 

5. THE IMPACT OF ARCHITECTURE ON 
COHERENCE PROTOCOLS 

Our second goal in this work is to study the relative 
performance of hardware and software coherence across 
a wide variety of architectural settings. We start in Section 
5.1 by examining the impact of the write policy on the 
performance of software coherence. We then proceed to 
examine a variety of architectural parameters that affect 
the performance of parallel applications. These include 

TABLE I1 
Application Behavior under Software and Hardware Protocols 

Application Refs X lo6 Miss rate (HW, SW) Page miss rate Uncached refs 

gauss 91.5 6.3%, 5.7% 0.03% -0% 
sor 20.6 3.6%, 2.7% 0.02% 0% 
water 249.9 0.34%, 0.33% 0.05% -0% 
mp3d 73.1 3.2%, 1.8% 0.01% 3.3% 
appbt 281.5 0.35%, 0.71% 0.04% 0.25% 
fft 209.2 0.87%, 0.65% 0.01 % 0% 
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page and cache line granularity, cache size, cache line inval- 
idate and flush costs, TLB management and interrupt han- 
dling costs, and networklmemory latency and bandwidth. 
The results of this study suggest that software coherence 
on NCC-NUMA machines may become an even more 
attractive alternative to hardware cache coherence for fu- 
ture multiprocessors. 

5.1. Write Policies 

In this section, we consider the choice of write policy 
for the cache. Specifically, we compare the performance 
obtained with a write-through cache, a write-back cache, 
and a write-through cache with a buffer for merging writes 
[7]. The policy is applied on only shared data. Private data 
uses by default a write-back policy. 

Write-back caches impose the minimum load on the 
memory and network, since they write blocks back only on 
eviction, or when explicitly flushed. In a software-coherent 
system, however, write-back caches have two undesirable 
qualities. The first of these is that they delay the execution 
of synchronization operations, since dirty lines must be 
flushed at the time of a release. Write-through caches have 
the potential to overlap memory accesses with useful com- 
putation. The second problem is more serious, because it 
affects program correctness in addition to performance. 
Because a software-coherent system allows multiple writ- 
ers for the same page, it is possible for different portions 
of a cache line to be written by different processors. When 
those lines are flushed back to memory we must make sure 
that changes are correctly merged so no data modifications 
are lost. The best way to achieve this is to have the hard- 
ware maintain per-word dirty bits, and then to write back 
only those words in the cache that have actually been mod- 
ified. 

Write-through caches can potentially benefit relaxed 
consistency protocols by reducing the amount of time spent 
at release points. They also eliminate the need for per- 
word dirty bits. Unfortunately, they may cause a large 
amount of traffic, delaying the service of cache misses and 
in general degrading performance. In fact, if the memory 
subsystem is not able to keep up with all the traffic, write- 
through caches are unlikely to actually speed up releases, 
because at a release point we have to make sure that all 
writes have been globally performed before allowing the 
processor to continue. With a large amount of write traffic 
we may have simply replaced waiting for the write-back 
with waiting for missing acknowledgments. 

Write-through caches with a write-merge buffer [7] em- 
ploy a small fully associative buffer between the cache and 
the interconnection network. The buffer merges writes to 
the same cache line, and allocates a new entry for a write 
to a nonresident cache line. When it runs out of entries it 
randomly chooses a line for eviction and writes it back 
to memory. The write-merge buffer reduces memory and 
network traffic when compared to a plain write-through 
cache and has a shorter latency at release points when 

compared to a write-back cache. Per-word dirty bits are 
required at the buffer to allow successful merging of cache 
lines into memory. In our experiments, we have used a 16- 
entry write-merge buffer. 

Figure 8 presents the relative performance of the differ- 
ent cache architectures when using the best relaxed proto- 
col on our best version of the applications. For almost all 
programs the write-through cache with the write-merge 
buffer outperforms the others. The exceptions are mp3d, 
in which a simple write-through cache is better, and gauss, 
in which a write-back cache provides the best performance. 
In both cases however the performance of the write- 
through cache with the write-merge buffer is within 5% of 
the better alternative. 

We also looked at the impact of the write policy on main 
memory system performance. Both write-through policies 
generate more traffic and thus have the potential to deteri- 
orate memory response times for other memory opera- 
tions. Figure 9 presents the average cache miss latency 
under different cache policies. As can be seen the write- 
through cache with the write-merge is only marginally 
worse in this metric than the write-back cache. The plain 
write-through cache creates significantly more traffic, thus 
causing a much larger number of cache misses to be de- 
layed and increasing miss latency. 

Finally, we ran experiments using a single policy for both 
private and shared data. These experiments capture the 
behavior of an architecture in which write policies cannot 
be varied among pages. If a single policy has to be used 
for both shared and private data, a write-back cache pro- 
vides the best performance. As a matter of fact, the write- 
through policies degrade significantly, with plain write- 
through being as much as 50 times worse in w a t e r .  

gauss sor water mp3d appbt fft 

FIG. 8. Comparative performance of different cache architectures 
on 64 processors. 
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5.2. Page Size 

The choice of page size primarily affects the performance 
of software coherence, since pages are the unit of coher- 
ence. Hardware coherence may also be affected, due to 
the placement of pages in memory modules, but this is a 
secondary effect we have chosen to ignore in our study. 
Previous studies on the impact of page size on the perfor- 
mance of Software DSM systems [5] indicate that the 
smaller pages can provide significant performance im- 
provements. The main reason for this result is the reduction 
in false sharing achieved by smaller coherence units. Mov- 
ing to relaxed consistency, however, and to an architecture 
that uses pages for the unit of coherence but cache lines 
for the data fetch unit, reverses the decision in favor of 
large pages [26]. Relaxed consistency mitigates the impact 
of false sharing, and the larger page size reduces the length 
of the weak list that needs to be traversed on an acquire op- 
eration. 

In our protocol, the absence of a centralized weak list 
removes one of the factors (length of the weak list) that 
favors larger pages. Furthermore the choice among mecha- 
nisms for data access (caching vs uncached reference) can 
only be made at page granularity. Smaller pages can make 
for more accurate decisions. On the other hand smaller 
pages will require a larger number of coherence transac- 
tions to maintain the same amount of shared data. When 
true sharing is the reason for coherence transactions, 
smaller pages will induce unnecessary overhead. 

To evaluate the relative impact of these effects, we have 
run a series of experiments, varying the page size from as 
small as 256 bytes to as large as 16K bytes. Figure 10 
shows the normalized running time of our applications as 
a function of page size. The normalization is with respect 
to the running time of the relaxed consistency hardware 
system using 4K-byte pages. We observe that performance 
improves as the page size increases for all applications. 
For four of our applications a 4K-byte page size provides 
the best performance; for the other two performance con- 
tinues to improve marginally as the page size increases 
even further. The applications that degrade after the 4K- 
byte point have been restructured to work well under soft- 
ware coherence, with data structures aligned on 4K-byte 
boundaries. It is reasonable to assume that for larger data- 

set sizes (for which alignment to large page sizes is feasible) 
performance would keep improving with an increase in 
page size. For the unmodified versions of the programs (not 
shown) smaller page sizes provided a small performance 
advantage over larger ones, but the overall performance 
of software coherence was not in par with that of hard- 
ware coherence. 

5.3. Cache Line Size 

The choice of cache line size affects hardware and soft- 
ware coherence in similar ways. Increases in cache line 
size reduce the miss rate, by taking advantage of the spatial 
locality in programs. However when the cache line size 
gets too large it has the potential to introduce false sharing 
in hardware coherent systems, and unnecessary data trans- 
fers in software coherent systems. Furthermore, larger lines 
cause higher degrees of contention for memory modules 
and the network interconnect since they have longer occu- 
pancy times for those resources. 

We have run experiments in which the cache line size 
varies between 16 and 256 bytes for both release-consistent 
hardware and our software coherence protocol. Figure 11 
shows the normalized running times of our applications as 

Page size (bytes) 
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FIG. 10. Normalized execution time for our applications using differ- 
ent page sizes. 
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FIG. 11. Normalized execution time for our applications using differ- 
ent cache line sizes. 

a function of cache line size. (Running time is normalized 
with respect to the hardware system with 16-byte cache 
lines.) Performance initially improves for both systems as 
the cache line size increases, with the optimal point oc- 
curring at either 64- or 128-byte lines. We believe that the 
degradation seen at larger sizes is due to a lack of band- 
width in our system. We note that the performance im- 
provements seen by increasing the line size are progres- 
sively smaller for each increase. The exception to the above 
observations is mp3d under software coherence, where 
increases in line size hurt performance. The reason for 
this anomalous behavior is the interaction between cache 
accesses and uncached references. Longer cache lines have 
higher memory occupancy and therefore block uncached 
references for a longer period of time. The uncached refer- 
ences in the software-coherent version of the program end 
up waiting behind the large line accesses, degrading over- 
all performance. 

5.4. Cache Size 

Varying the cache size allows us to capture how the 
different protocols handle conflictlcapacity misses. Smaller 
caches increase the number of evictions, while large caches 

reduce misses to the intrinsic rate (that which is due to 
sharing and coherence) of the program in question. While 
there is no universal agreement on the appropriate cache 
size for simulations with a given data set size, recent work 
confirms that the relative sizes of per-processor caches and 
working sets are a crucial factor in performance [29]. All 
the results in previous sections were obtained with caches 
sufficiently large to hold the working set, in order to sepa- 
rate the performance of the coherence protocols from the 
effect of conflictlcapacity misses. Experience suggests, 
however, that programmers write applications that exploit 
the amount of available memory as opposed to the amount 
of available cache. When the working set exceeds the cache 
size, the handling of conflictlcapacity misses may have a 
significant impact on performance. 

To assess this impact we have run experiments in which 
the cache size varies between 8K and 128K bytes for both 
the hardware and software coherent systems. While these 
numbers are all small by modern standards, they span the 
border between "too small" and "large enough" for our 
experiments. Figure 12 shows the normalized running time 
of our applications as a function of cache size. Running 
time is normalized with respect to the hardware system 
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FIG. 12. Normalized execution time for our applications using differ- 
ent cache sizes. 
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with an 8K-byte cache size. The results show the perfor- 
mance of hardware coherence improving more quickly 
than that of software coherence with increases in cache 
size. This is to be expected, since the hardware system was 
shown in previous sections to handle coherence-related 
communication more efficiently than the software system. 
For smaller caches, where conflictlcapacity misses consti- 
tute a larger fraction of the total miss rate, the more compli- 
cated directory structure of the hardware system (with 
ownership and forwarding) imposes a higher penalty on 
refills than is suffered by the software system. As the cache 
size increases the elimination of conflictlcapacity misses 
improves the performance of both systems, with the hard- 
ware system enjoying the largest benefits. 

5.5. Processor Constants 

The performance of software coherent systems is also 
dependent on the cost of cache management instructions, 
interrupt handling, and TLB management. We evaluated 
the performance of our application suite under a variety of 
assumptions for these costs, but found very little variation. 
Specifically, we ran experiments with the following range 
of values: 

Cache purge: 1, 2, 4, or 6 cycles to purge a line from 
the cache. 

Interrupt handling: 40,140, or 500 cycles between inter- 
rupt occurrence and start of execution of the interrupt 
handler. These values represent the expected cost of an 
interrupt for a very fast interrupt mechanism (e.g., Sparcle 
[I], a normal one, and a particularly slow one. 

T L B  Management: 24, 48, or 120 cycles for tlb service 
fault. These values represent the expected cost of a tlb fill 
when done in fast hardware, somewhat slower hardware, 
or entirely in software. 

Across this range, the largest performance variation dis- 
played by any application was less than 3% (for w a t e r ) .  
Statistics gathered by the simulator confirm that the cache, 
interrupt, and TLB operations are simply not very fre- 
quent. As a result, their individual cost, within reason, 
has a negligible effect on performance. (We have omitted 
graphs for these results; they are essentially flat lines.) 

5.6. Latency and Bandwidth 

The final dimension of our architectural study is memory 
and interconnect latency and bandwidth. Latency and 
bandwidth directly affect the cost of memory references 
and coherence protocol transactions. Current technologi- 
cal trends indicate that memory (DRAM) latencies and 
bandwidth will continue to increase in comparison to proc- 
essor speeds. Network bandwidths will also continue to 
increase, with network latencies keeping pace with proces- 
sors speeds. 

We have run experiments varying the memory startup 
cost between 12 and 30 cycles. Given a cache line size of 

8 words and memory bandwidth of 1 word per cycle, the 
latency for a local cache miss ranges between 20 and 38 
cycles. For these experiments, we have kept the network 
bandwidth at 4 bytelcycle. The results show that the impact 
of latency variation on the performance of the hardware 
and software coherence protocols is application depen- 
dent. In general, the steepness of the curves is directly 
related to the miss rates of the applications under each 
protocol: the higher the miss rate the more sensitive the 
application is to an increase in latency. The exception to 
the observation is mp3d. Although the software protocol 
has a lower miss rate than the hardware alternative, it 
performs more uncached references, and these are also 
susceptible to the increase in memory latency. Figure 13 
shows the normalized execution time of our applications 
under hardware and software coherence for different mem- 
ory latencies. Running time is normalized with respect to 
the hardware system with a 12-cycle memory startup cost. 

Bandwidth increases have the opposite effect of in- 
creases in latency on the performance of hardware and 
software coherence. Where an increase in latency tends 
to exaggerate the performance discrepancies between the 
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FIG. 13. Normalized execution time for our applications under differ- 
ent memory latencies. 
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FIG. 14. Normalized execution time for our applications for different 
network bandwidths. 

protocols, an increase in bandwidth softens them. We have 
run experiments varying network (point-to-point) and 
memory bandwidth between 1 and 4 bytes per cycle- 
varying them together to maintain a balanced system. 
Startup cost for memory access was set to 30 cycles. Figure 
14 shows the normalized execution times of the applica- 
tions under different bandwidth values. Running time is 
normalized with respect to the hardware system with a 
1 bytelcycle memorylnetwork bandwidth. Once again, in 
general, the steepness of the curve is directly related to 
the miss rates of the applications under each protocol. 
Higher miss rates imply a need for communication, which 
can best be met when a lot of bandwidth is available. 
Water, which has a very low communication to computa- 
tion ratio, exhibits a relatively flat line; consistent with 
what we saw in almost all of the graphs, it has little use 
for long cache lines, low latency, or high bandwidth. Mp3d 
under software coherence once again fails to make efficient 
use of extra available bandwidth. The program suffers 
more from the cost of initiating uncached references than 
from a lack of bandwidth: its performance improves only 
moderately as bandwidth increases. 

6. RELATED WORK 

Our work is most closely related to that of Petersen and 
Li [26]: we both use the notion of weak pages, and purge 
caches on acquire operations. The difference is scalability: 
we distribute the coherent map and weak list, distinguish 
between safe and unsafe pages, check the weak list only 
for unsafe pages mapped by the current processor, and 
multicast write notices for safe pages that turn out to be 
weak. We have also examined architectural alternatives 
and program-structuring issues that were not addressed by 
Petersen and Li. Our work resembles Munin [6] and lazy 
release consistency [17] in its use of delayed write notices, 
but we take advantage of the globally accessible physical 
address space for cache fills and for access to the coherent 
map and the local weak lists. 

Our use of uncached references to reduce the overhead 
of coherence management can also be found in systems 
for NUMA memory management [5, 10, 221. Designed 
for machines without caches, these systems migrate and 
replicate pages in the manner of distributed shared mem- 
ory systems, but also make on-line decisions between page 
movement and uncached reference. We have experi- 
mented with dynamic page movement in conjunction with 
software coherence on NCC-NUMA machines [24], and 
have found that while appropriate placement of a unique 
page copy reduces the average cache fill cost appreciably, 
replication of pages provides no significant benefit in the 
presence of hardware caches. Moreover, we have found 
that relaxed consistency greatly reduces the opportunities 
for profitable uncached data access. In fact, early experi- 
ments we have conducted with on-line NUMA policies 
and relaxed consistency have failed badly in their attempt 
to determine when to use uncached references. 

On the hardware side, our work bears a resemblance to 
the Stanford Dash project [23] in the use of a relaxed 
consistency model and to the Georgia Tech Beehive proj- 
ect [32] in the use of relaxed consistency and per-word 
dirty bits for successful merging of inconsistent cache lines. 
Both these systems use their extra hardware to overlap 
coherence processing and computation (possibly at the 
expense of extra coherence traffic) in order to avoid a 
higher waiting penalty at synchronization operations. 

Coherence for distributed memory with per-processor 
caches can also be maintained entirely by a compiler [8]. 
Under this approach the compiler inserts the appropriate 
cache flush and invalidation instructions in the code, to 
enforce data consistency. The static nature of the approach, 
however, and the difficulty of determining access patterns 
for arbitrary programs, often dictates conservative deci- 
sions that result in higher miss rates and reduced perfor- 
mance. Alternatively, coherence can be maintained in 
object-oriented systems by tracking method calls or by 
identifying the specific data structures protected by particu- 
lar synchronization operations [13, 30, 351. Such an ap- 
proach can make it substantially easier for the compiler 
to implement consistency, but only for restricted program- 
ming models. 



194 KONTOTHANASSIS AND SCOTT 

7. CONCLUSIONS 

We have shown that supporting a shared memory pro- 
gramming model while maintaining high performance does 
not necessarily require expensive hardware. Similar results 
can be achieved by maintaining coherence in software on 
a machine that provides a non-coherent global physical 
address space. We have introduced a new protocol for 
software cache coherence on such machines and have 
shown that it outperforms existing software approaches, 
and it is fact comparable in performance to typical schemes 
for hardware coherence. To improve our confidence in this 
conclusion, we have explored a wide range of issues that 
affect the performance of hardware and software co- 
herence. 

Our experiments indicate that simple program modifi- 
cations can significantly improve performance on a soft- 
ware-coherent system, while providing moderate perfor- 
mance improvements for hardware-coherent systems as 
well. The experiments also show that write-through caches 
with a write-merge buffer provide the best performance 
for shared data on a software-coherent system. Most sig- 
nificantly, software coherence on NCC-NUMA machines 
remains competitive with hardware coherence under a 
large variety of architectural settings. 

Several factors account for these facts. Software coher- 
ence admits a level of flexibility and complexity that is 
difficult to duplicate in hardware. In our experiments, it 
allows us to use multiple-writer lazy release consistency, 
to use different protocols for different pages (the safe1 
unsafe distinction), to forego data migration in favor of 
uncached references for data shared at a very fine grain, 
and to skip coherence operations for reader locks. In a 
more elaborate system, one could image combining multi- 
ple protocols such as update-based and migratory. Hard- 
ware protocols have the advantage of concurrent protocol 
and program execution, but this advantage is being eroded 
by technological trends that are increasing relative data 
transfer costs. Hardware protocols also have the advantage 
of smaller block sizes, and therefore less false sharing, but 
improvements in program structuring techniques, and the 
use of relaxed consistency, are eroding this advantage too. 
Recent work also suggests [31,35] that software-coherent 
systems may be able to enforce consistency on small blocks 
efficiently by using binary editing techniques to embed 
coherence operations in the program text. 

The best performance, clearly, will be obtained by sys- 
tems that combine the speed and concurrency of existing 
hardware coherence mechanisms with the flexibility of soft- 
ware coherence. This goal may be achieved by a new gener- 
ation of machines with programmable network controllers 
[21, 281. It is not yet clear whether the additional perfor- 
mance of such machines will justify their design time and 
cost. Our suspicion, based on our results, is that less elabo- 
rate hardware will be more cost effective. 

We have found the provision of a single physical address 

allows cache fills to be serviced in hardware, permits proto- 
col operations to access remote directory information with 
very little overhead, and eliminates the need to compute 
diffs in order to merge inconsistent writable copies of a 
page. Moreover, experience with machines such as the 
IBM RP3, the BBN Butterfly series, and the current Cray 
Research T3D suggests that a memory-mapped interface 
to the network (without coherence) is not much more 
expensive than a message-passing interface. Memory- 
mapped interfaces for ATM networks are likely to be avail- 
able soon [4]; we see our work as ideally suited to machines 
equipped with such an interface. 

We are currently pursuing software protocol optimiza- 
tions that should improve performance for important 
classes of programs. For example, we are considering poli- 
cies in which flushes of modified lines and purges of invali- 
dated pages are allowed to take place "in the back- 
groundu-during synchronization waits or idle time, or on 
a communication coprocessor. We also believe strongly 
that software coherence can benefit greatly from compiler 
support. We are actively pursuing the design of annotations 
that a compiler can use to provide hints to the coherence 
system, allowing it to customize its actions to the sharing 
patterns of individual data structures. 
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