
High Performance Software Coherence for Current and
Future Architectures1

LEONIDAS I. KONTOTHANASSIS AND MICHAEL L. SCOTT^
Department of Computer Science, University o f Rochester, Rochester, New York 14627-0226

Shared memory provides an attractive and intuitive pro-
gramming model for large-scale parallel computing, but re-
quires a coherence mechanism to allow caching for performance
while ensuring that processors do not use stale data in their
computation. Implementation options range from distributed
shared memory emulations on networks of workstations to
tightly coupled fully cache-coherent distributed shared memory
multiprocessors. Previous work indicates that performance var-
ies dramatically from one end of this spectrum to the other.
Hardware cache coherence is fast, but also costly and time-
consuming to design and implement, while DSM systems pro-
vide acceptable performance on only a limit class of applica-
tions. We claim that an intermediate hardware option-
memory-mapped network interfaces that support a global
physical address space, without cache coherence-can provide
most of the performance benefits of fully cache-coherent hard-
ware, at a fraction of the cost. To support this claim we present
a software coherence protocol that runs on this class of ma-
chines, and use simulation to conduct a performance study.
We look at both programming and architectural issues in the
context of software and hardware coherence protocols. Our
results suggest that software coherence on NCC-NUMA ma-
chines in a more cost-effective approach to large-scale shared-
memory multiprocessing than either pure distributed shared
memory or hardware cache coherence. a 1995 Academic press, I ~ C .

1. INTRODUCTION

It is widely accepted that the shared memory program-
ming model is easier to use than the message passing
model. This belief is supported by the dominance of (small-
scale) shared memory multiprocessors in the market and
by the efforts of compiler and operating system developers
to provide programmers with a shared memory program-
ming model on machines with message-passing hardware.
In the high-end market, however, shared memory ma-
chines have been scarce, and with few exceptions limited
to research projects in academic institutions; implementing

This work was supported in part by NSF Institutional Infrastructure
Grant CDA-8822724 and ONR Research Grant N00014-92-J-1801 (in
conjunction with the DARPA Research in Information Science and Tech-
nology-High Performance Computing, Software Science and Technol-
ogy Program, ARPA Order 8930.

E-mail: {kthanasi,scott}@cs.rochester.edu.

shared memory efficiently on a very large machine is an
extremely difficult task. By far the most challenging part
of the problem is maintaining cache coherence.

Coherence is easy to achieve on small, bus-based ma-
chines, where every processor can see the memory traffic
of the others [2, 121. Coherence is substantially harder to
achieve on large-scale multiprocessors [I, 15, 19, 231; it
increases both the cost of the machine and the time and
intellectual effort required to bring it to market. Given
the speed of advances in microprocessor technology, long
development times generally lead to machines with out-
of-date processors. If coherence could be maintained effi-
ciently in software, the resulting reduction in design and
development times could lead to a highly attractive alterna-
tive for high-end parallel computing. Moreover, the combi-
nation of efficient software coherence with fast (e.g., ATM)
networks would make parallel programming on networks
of workstations a practical reality [ll].

Unfortunately, the current state of the art in software
coherence for message-passing machines provides perfor-
mance nowhere close to that of hardware cache coherence.
To make software coherence efficient, one would need
to overcome several fundamental problems with existing
distributed shared memory (DSM) emulations [6, 18, 351.
First, because they are based on messages, DSM systems
must interrupt the execution of remote processors in order
to perform any time-critical interprocessor operations. Sec-
ond, because they are based on virtual memory, most DSM
systems copy entire pages from one processor to another,
regardless of the true granularity of sharing. Third, in order
to maximize concurrency in the face of false sharing in
page-size blocks, the fastest DSM systems permit multiple
writable copies of a page, forcing them to compute diffs
with older versions in order to merge the changes [6,18].
Hardware cache coherence avoids these problems by work-
ing at the granularity of cache lines and by allowing in-
ternode communication without interrupting normal pro-
cessor execution.

Our contribution is to demonstrate that most of the
benefits of hardware cache coherence can be obtained on
large machines simply by providing a global physical ad-
dress space, with per-processor caches but without hard-
ware cache coherence. Machines in this non-cache-coher-
ent, non-uniform memory access (NCC-NUMA) class

0743-7315195 $12.00
Copyright 0 1995 by Academic Press, Inc.

All rights of reproduction in any form reserved.

180 KONTOTHANASSIS AND SCOTT

include the Cray Research T3D and the Princeton Shrimp
[4]. In comparison to hardware-coherent machines, NCC-
NUMAs can more easily be built from commodity parts,
with only a small incremental cost per processor for large
systems and can follow improvements in microprocessors
and other hardware technologies closely. In another paper
[20], we show that NCC-NUMAs provide performance
advantages over DSM systems ranging from 50% to as
much as an order of magnitude. On the downside, our
NCC-NUMA protocols require the ability to control a
processor's cache explicitly, a capability provided by many
but not all current microprocessors.

In this paper, we present a software coherence protocol
for NCC-NUMA machines that scales well to large num-
bers of processors. To achieve the best possible perfor-
mance, we exploit the global address space in three specific
ways. First, we maintain directory information for the co-
herence protocol in nonreplicated shared locations, and
access it with ordinary loads and stores, avoiding the need
to interrupt remote processors in almost all circumstances.
Second, while using virtual memory to maintain coherence
at the granularity of pages, we never copy pages. Instead,
we map them remotely and allow the hardware to fetch
cache lines on demand. Third, while allowing multiple writ-
ers for concurrency, we avoid the need to keep old copies
and compute diffs by using ordinary hardware write-
through or write-back to the unique main-memory copy
of each page.

For the purposes of this paper we define a system to be
hardware coherent if coherence transactions are handled
by a system component other than the main processor.
Under this definition hardware coherence retains two prin-
cipal advantages over our protocol. It is less susceptible
to false sharing because it maintains coherence at the gran-
ularity of cache lines instead of pages, and it is faster be-
cause it executes protocol operations in a cache controller
that operates concurrently with the processor. Current
trends, however, are reducing the importance of each of
these advantages. Relaxed consistency models mitigate the
impact of false sharing by limiting spurious coherence oper-
ations to synchronization points, and programmers and
compilers are becoming better at avoiding false sharing as
well [9, 141.

While any operation implemented in hardware is likely
to be faster than equivalent software, particularly complex
operations cannot always be implemented in hardware at
reasonable cost. Software coherence therefore enjoys the
potential advantage of being able to employ techniques
that are too complicated to implement reliably in hardware
at acceptable cost. It also offers the possibility of adapting
protocols to individual programs or data regions with a
level of flexibility that is difficult to duplicate in h a r d ~ a r e . ~
We exploit this advantage in part in our work by employing

T h e advent of protocol processors [21, 281 can make it possible to
combine the flexibility of software with the speed and parallelism provided
by hardware.

a relatively complicated eight-state protocol, by using un-
cached references for application-level data structures that
are accessed at a very fine grain, and by introducing user-
level annotations that can impact the behavior of the coher-
ence protocol. We are exploring additional protocol
enhancements (not reported here) that should further
improve the performance of software coherence.

The rest of the paper is organized as follows. We present
our software protocol in Section 2. We then describe our
experimental methodology and application suite in Section
3 and present results in Section 4. We compare our protocol
to a variety of existing alternatives, including release-con-
sistent hardware, straightforward sequentially-consistent
software, and a coherence scheme for small-scale NCC-
NUMAs due to Petersen and Li [26]. We show that certain
simple program modifications can improve the perfor-
mance of software coherence substantially. Specifically, we
identify the need to mark reader-writer locks, to avoid
certain interations between program synchronization and
the coherence protocol, to align data structures with page
boundaries whenever possible, and to use uncached refer-
ences for certain fine grained shared data structures. With
these modifications in place, our protocol performs sub-
stantially better than the other software schemes, enough
in most cases to bring software coherence within sight of
the hardware alternatives-for three applications slightly
better, usually only slightly worse, and never more than
55% worse.

In Section 5, we examine the impact of several architec-
tural alternatives on the effectiveness of software coher-
ence. We study the choice of write policy (write-through,
write-back, write-through with a write-merge buffer) for
the cache and examine the impact of architectural parame-
ters on the performance of software and hardware coher-
ence. We look at page and cache line sizes, overall cache
size, cache line invalidate and flush costs, TLB manage-
ment and interrupt handling costs, and networklmemory
latency and bandwidth. Our experiments document the
effectiveness of software coherence for a wide range of
hardware parameters. Based on current trends, we predict
that software coherence can provide an even more cost-
effective alternative to hardware-based cache coherence
on future generations of machines. The final two sections
of the paper discuss related work and summarize our con-
clusions.

2. A SCALABLE SOFTWARE CACHE
COHERENCEPROTOCOL

In this section, we present a protocol for software cache
coherence on large-scale NCC-NUMA machines. As in
most software coherence systems, we use virtual memory
protection bits to enforce consistency at the granularity of
pages. As in Munin [6], Treadmarks [IS], and the work of
Petersen and Li [26], we allow more than one processor
to write a page concurrently, and we use a variant of release
consistency [23] to limit coherence operations to synchro-

HIGH PERFORMANCE SOFTWARE COHERENCE 181

nization points. (Between these points, processors can con-
tinue to use stale data in their caches.) As in the work of
Petersen and Li, we exploit the global physical address
space to move data at the granularity of cache lines: instead
of copying pages we map them remotely, and allow the
hardware to fetch cache lines on demand.

The novelty of our protocol lies in the mechanism used
to maintain and propagate directory information. Most of
the information about each page is located at the (unique)
processor in whose memory the page can be found (this
is the page's home node). The information includes a list
of the current readers and writers of the page, and an
indication of the page's state, which may be one of the
following: Uncached-No processor has a mapping to the
page. This is the initial state for all pages. Shared-One
or more processors have read-only mappings to the page.
Dirty-A single processor has both read and write map-
pings to the page. Weak-Two or more processors have
mappings to the page and at least one has both read and
write mappings to it. A page leaves the weak state and
becomes uncached when no processor has a mapping to
the page anymore.

The state of a page is a property of the system as a
whole, not (as in most procotols) the viewpoint of a single
processor. Borrowing terminology from Platinum [lo], the
distributed data structure consisting of this information
stored at home nodes is called the coherent map.

In addition to its portion of the coherent map, each
processor also holds a local weak list that indicates which
of the pages for which there are local mappings are cur-
rently in the weak state. When a processor takes a page
fault it locks the coherent map entry representing the page
on which the fault was taken. It then changes the entry to
reflect the new state of the page. If necessary (i.e., if the
page has made the transition from shared or dirty to weak),
the processor updates the weak lists of all processors that
have mappings for the page. It then unlocks the entry in
the coherent map. On an acquire operation, a processor
must remove all mappings and purge from its cache all
lines of all pages found in its local weak list. It must also
update the coherent map entries of the pages it invalidates
to reflect the fact that it no longer caches these pages.

At first glance, one might think that modifying the coher-
ent map with uncached memory references would be sub-
stantially more expensive than performing a directory op-
eration on a machine with hardware cache coherence. In
reality, however, we can fetch the data for a directory entry
into a processor's cache and then flush it back before the
lock is released. If lock operations are properly designed
we can also hide the latency for the data transfers behind
the latency for the lock operations themselves. If we em-
ploy a distributed queue-based lock [25], a read of the
coherent map entry can be initiated immediately after
starting the fetch-and-store operation that retrieves the
lock's tail pointer. If the fetch-and-store returns nil (indi-
cating that the lock was free), then the data will arrive right
away. The write that releases the lock can subsequently be

pipelined immediately after the write of the modified data,
and the processor can continue execution. If the lock is
held when first requested, then the original fetch-and-store
will return the address of the previous processor in line.
The queue-based lock algorithm will spin on a local flag,
after writing that flag's address into a pointer in the prede-
cessor's memory. When the predecessor finishes its update
of the coherent map entry, it can write the data directly into
the memory of the spinning processor, and can pipeline
immediately afterward a write that ends the spin. The end
result of these optimizations is that the update of a coher-
ent map entry requires little more than three end-to-end
message latencies (two before the processor continues exe-
cution) in the case of no contention. When contention
occurs, little more than one message latency is required to
pass both the ownership of the lock and the data the lock
protects from one processor to the next. Inexpensive up-
date of remote weak lists is accomplished in the same
manner.

Additional optimizations are possible. When a processor
takes a page fault on a write to a shared (nonweak) page,
we could choose to make the transition to weak and post
appropriate write notices immediately or, alternatively, we
could wait until the processor's next release operation: the
semantics of release consistency do not require us to make
writes visible before then. Similarly, a page fault on a write
to an unmapped page could take the page to the dirty state
immediately, or at the time of the subsequent release. The
advantage of delayed transitions is that any processor that
executes an acquire operation before the writing proces-
sor's next release will not have to invalidate the page. This
serves to reduce the overall number of invalidations. The
disadvantage is that delayed transitions may lengthen the
critical path of the computation by introducing contention,
especially for programs with barriers, in which many pro-
cessors may attempt to post notices for the same page at
roughly the same time, and will therefore serialize on the
lock of the coherent map entry. Delayed write notices were
shown to improve performance in the Munin distributed
shared memory system [6], which runs on networks of
workstations and communicates solely via messages.
Though the relative costs of operations are quite different,
experiments indicate (see section 4) that delayed transi-
tions are generally beneficial in our environment as well.

As described thus far, our protocol incurs at each release
point the cost of updating the coherent map and (possibly)
posting write notices for each page that has been modified
by the processor performing the release. At each acquire
point the protocol incurs the cost of invalidating (unmap-
ping and flushing from the cache) any locally accessible
pages that have been modified recently by other proces-
sors. Whenever an invalidated page is used again, the pro-
tocol incurs the cost of fielding a page fault, modifying the
coherent map, and reloading any accessed lines. (It also
incurs the cost of flushing the write-merge buffer at re-
leases, but this is comparatively minor.) In the aggregate,
each processor pays overhead proportional to the number

182 KONTOTHANASSIS AND SCOTT

of pages it is actively sharing. By comparison, a protocol
based on a centralized weak list requires a processor to
scan the entire list at a lock acquisition point, incurring
overhead proportional to the number of pages being
shared by any processors.

In reality, most pages are shared by a modest number
of processors for the applications we have examined, and
so local weak lists make sense when the number of proces-
sors is large. Distributing the coherent map and weak list
eliminates both the problem of centralization (i.e., memory
contention) and the need for processors to do unnecessary
work at acquire points (scanning weak list entries in which
they have no interest). For poorly structured programs, or
for the occasional widely shared page in a well-structured
program, a central weak list would make sense: it would
replace the serialized posting of many write notices at a
release operation with individual checks of the weak list
on the part of many processors at acquire operations. To
accommodate these cases, we modify our protocol to adopt
the better strategy, dynamically, for each individual page.

Our modification takes advantage of the fact that page
behavior tends to be relatively constant over the execution
of a program, or at least a large portion of it. Pages that
are weak at one acquire point are likely to be weak at
another. We therefore introduce an additional pair of
states, called safe and unsafe. These new states, which are
orthogonal to the others (for a total of eight distinct states),
reflect the past behavior of the page. A page that has made
the transition to weak several times and is about to be
marked weak again is also marked as unsafe. Future transi-
tions to the weak state will no longer require the sending
of write notices. Instead the processor that causes the tran-
sition to the weak state changes only the entry in the
coherent map, and then continues. The acquire part of the
protocol now requires that the acquiring processor check
the coherent map entry for all its unsafe pages and invali-
date the ones that are also marked as weak. A processor
knows which of its pages are unsafe because it maintains
a local list of them (this list is never modified remotely).
A page changes from unsafe back to safe if it has been
checked at several acquire operations and found not to be
weak. In practice, we find that the distinction between safe
and unsafe pages makes a modest, though not dramatic,
contribution to performance in programs with low degrees
of sharing (up to 5% improvement in our application suite).
It is more effective for programs with pages shared across
a large number of processors (up to 35% for earlier versions
of our programs), for which it provides a "safety net,"
allowing their performance to be merely poor, instead of
really bad.4

In future work, we intend to investigate protocol in which processors
always invalidate unsafe pages at an acquire operation, without checking
the coherent map. This protocol may incur less overhead for coherent
map operations, but will perform some unnecessary invalidations, and
provides no obvious mechanism by which an unsafe page could be reclassi-
fied as safe.

One final question that has to be addressed is the mecha-
nism whereby written data makes its way back into main
memory. Petersen and Li found a write-through cache to
work best on small machines, but this could lead to a
potentially unacceptable amount of memory traffic in
large-scale systems. Assuming a write-back cache either
requires that no two processors write to the same cache
line of a weak page-an unreasonable assumption-or a
mechanism to keep track of which individual words are
dirty. We ran our experiments under three different as-
sumptions: write-through caches where each individual
write is immediately sent to memory, write-back caches
with per-word hardware dirty bits in the cache, and write-
through caches with a write-merge buffer [7] that hangs
onto recently written lines and coalesces any writes that
are directed to the same line. The write-merge buffer also
requires per-word dirty bits to make sure that falsely shared
lines are merged correctly. Depending on the write policy,
the coherence protocol at a release operation must force
a write-back of all dirty lines, purge the write-merge buffer,
or wait for acknowledgements of write-throughs. Our ex-
periments (see Section 5.1) indicate that performance is
generally best with write-back for private data and write-
through with write-merge for shared data.

The state diagram for a page in our protocol appears in
Fig. 1. The transactions represent read, write, and acquire
accesses on the part of any processor. Count is the number
of processors having mappings to the page; n o t i c e s is
the number of notices that have been sent on behalf of a
safe page; and checks is the number of times that a proces-
sor has checked the coherent map regarding an unsafe
page and found it not to be weak.

3. METHODOLOGY

We use execution-driven simulation to simulate a mesh-
connected multiprocessor with up to 64 nodes. Our simula-
tor consists of two parts: a front end, Mint [34], that simu-
lates the execution of the processors, and a back end that
simulates the memory system. The front end is the same
in all our experiments. It implements the MIPS I1 instruc-
tion set. Interchangeable modules in the back end allow
us to explore the design space of software and hardware
coherence. Our hardware-coherent modules are quite de-
tailed, with finite-size caches, full protocol emulation, dis-
tance-dependent network delays, and memory access costs
(including memory contention). Our simulator is capable
of capturing contention within the network, but only at a
substantial cost in execution time; the results reported here
model network contention at the sending and receiving
nodes of a message, but not at the nodes in-between. Our
software-coherent modules add a detailed simulation of
TLB behavior, since it is the protection mechanism used
for coherence and can be crucial to performance. To avoid
the complexities of instruction-level simulation of interrupt
handlers, we assume a constant overhead for page faults.
For the software-coherent systems we assume that all data

HIGH PERFORMANCE SOFTWARE COHERENCE 183

Acquire & Checks <=Limit

UNCACHED Write

ReadNrite
&Count > 1

& Notices <=Limit

WEAK

All non-acquire accesses
All non-acquire accesses

Acquire & Count != 0

Write & Count > 1

&Notices >Limit
Acquire & Checks > Limit

FIG. 1. Scalable software cache coherence state diagram.

transfers are completed without software intervention. The
only software operations are modifying coherent map en-
tries and updating remote weak lists. Table I summarizes
the default parameters used in our simulations. For these
parameters remote cache miss latencies are approximately
100 cycles, while misses to local memory are significantly
cheaper (20 cycles).

Some of the transactions required by our coherence pro-
tocols require a collection of the operations shown in Table
I and therefore incur the aggregate cost of their constit-
uents. For example a page fault on a read to an unmapped
page consists of the following: (a) a TLB fault service (24
cycles), (b) a processor interrupt caused by the absence of
read rights (140 cycles), (c) a coherent map entry lock
acquisition, and (d) a coherent map entry modification

ration, which is the largest machine we simulate. Of our
applications, three are best described as computational
kernels: gauss, sor, and fft. Three are complete ap-
plications: mp3d, water, and appbt. The kernels are
local creations.
Gauss performs Gaussian elimination without pivoting

on a 448 X 448 matrix. Sor computes the steady-state
temperature of a metal sheet using a banded parallelization
of red-black successive overrelaxation on a 640 X 640 grid.
~ f t computes a one-dimensional FFT on a 65,536-element

TABLE I
Default Values for System Parameters

followed by the lock release (160 cycles). Lock acquisition System constant name Default value
itself requires traversing the network and accessing the
memory module where the lock is located. Assuming that
accessing the lock requires traversing 10 intermediate
nodes, that there is no contention in the network, and that
the lock is found to be free, the cost for lock acquisition
is the roundtrip latency of the network plus the memory
access cost, or (2 + 1) * 10 * 2 + 12 + 1 = 73 cycles. The
total cost for the above transaction would then be 24 +
140 + 73 + 160 = 398 cycles.

We report results for six parallel programs. We have
run each application on the largest input size that could
be simulated in a reasonable amount of time and that
provided good load-balancing for a 64-processor configu-

TLB size
TLB fault service time
Interrupt cost
Coherent map modification
Memory setup time
Memory bandwidth
Page size
Total cache per processor
Cache line size
Network path width
Switch latency
Wire latency
Directory lookup cost
Cache purge time

128 entries
24 cycles
140 cycles
160 cycles
12 cycles
4 byteslcycle
4K bytes
128K bytes
32 bytes
16 bits (bidirectional)
2 cycles
1 cycle
10 cycles
1 cyclelline

184 KONTOTHANASSIS AND SCOTT

array of complex numbers. Mp3d and water are part of
the SPLASH suite [33]. Mp3d is a wind-tunnel airflow
simulation. We simulated 40,000 particles for 10 steps in
our studies. Water is a molecular dynamics simulation
computing inter- and intramolecule forces for a set of water
molecules. We used 256 molecules and 3 time steps. Finally
appbt is from the NASA parallel benchmarks suite [3].
It computes an approximation to Navier-Stokes equations.
It was translated to shared memory from the original mes-
sage-based form by Doug Burger and Sanjay Mehta at the
University of Wisconsin. Due to simulation constraints,
our input data sizes for all programs are smaller than what
would be run on a real machine. We have also chosen
smaller caches than are common on real machines, in order
to capture the effect of capacity and conflict misses. Our
caches are still large enough to hold the working set of
our applications, with capacity and conflict misses being
the exception rather than the rule. The main reason for
this choice is the desire to evaluate the impact of protocol
performance on the applications rather than just remote
memory latency. Section 5.4 studies the impact of cache
size on the relative performance of our protocols. Since
we still observe reasonable scalability for most of our appli-
cations, we believe that the data set sizes do not compro-
mise our results.'

4. PERFORMANCE RESULTS

Our principal goal is to determine whether one can ap-
proach the performance of hardware cache coherence
without the special hardware. To that end, we begin in
Section 4.1 by presenting our applications and the changes
we made to improve their performance on a software co-
herence protocol. We continue in Section 4.2 by evaluating
the trade-offs between different software protocols. Fi-
nally, in Section 4.3, we compare the best of the software
results to the corresponding results on release-consistent
hardware.

4.1. Program Modifications to Support Software
Cache Coherence

In this section, we show that programming for software-
coherent systems requires paying attention to the same
issues that are important for hardware-coherent environ-
ments, and that simple program changes can greatly im-
prove program performance. Most of the applications in
our suite were written with a small coherence block in
mind, which could unfairly penalize software-coherent sys-
tems. These applications could easily be modified, how-
ever, to work well with large coherence blocks. Further-
more we show that the flexibility of software coherence
can allow for optimization that may be too hard to imple-
ment in a hardware-coherent system and that can further
improve performance.

Mp3d does not scale to 64 processors, but we use it as a stress test
to compare the performance of different coherence mechanisms.

Our program modifications are also beneficial for hard-
ware-coherent systems; several are advocated in the litera-
ture [16]. Our contribution lies in quantifying their impact
on performance in the context of a software coherent sys-
tem and attributing the performance loss observed in the
unmodified applications to specific interactions between
the application and the coherence protocol. The remaining
optimizations take advantage of program semantics to give
hints to the coherence protocol on how to reduce coher-
ence management costs and are applicable only in the
context of the software protocols. Our four modifica-
tions are:

Separation of synchronization variables from other
writable program data (Sync-fix).

Data structure alignment and padding at page or sub-
page boundaries (pad).

Identification of reader-writer locks and avoidance of
coherence overhead when releasing a reader lock (RW-
locks).

Identification of fine grained shared data structures
and use of uncached references for their access, to avoid
coherence management (R-ref).

All our changes produced dramatic improvements on
the runtime of one or more applications, with some show-
ing improvements of well over 50% under our software
coherence protocols. Results for hardware-based systems
(not shown here) also reveal benefits from these program
changes, but to a lesser degree, with mp3d showing the
largest improvement, at 22%.

Colocation of application data and locks on software
coherent systems severely degrades performance due to
an adverse interaction between the application locks and
the locks protecting coherent map entries at the OS level.
A processor that attempts to access an application lock
for the first time will take a page fault and will attempt
to map the page containing the lock. This requires the
acquisition of the OS lock protecting the coherent map
entry for that page. The processor that attempts to release
the application lock must also acquire the lock for the
coherent map entry representing the page that contains
the lock and the data it protects, in order to update the page
state to reflect the fact that the page has been modified. In
cases of contention the lock protecting the coherent map
entry is unavailable: it is owned by the processor(s) at-
tempting to map the page for access.

Data structure alignment and padding are well-known
methods of reducing false sharing [16]. Since coherence
blocks in software coherent systems are large (4K bytes
in our case), it is unreasonable to require padding of data
structures to that size. However we can often pad data
structures to subpage boundaries so that a collection of
them will fit exactly in a page. This approach coupled with
a careful distribution of work, ensuring that processor data
is contiguous in memory, can greatly improve the locality
properties of the application. Water and appbt already
had good contiguity, so padding was sufficient to achieve

HIGH PERFORMANCE SOFTWARE COHERENCE 185

aPPbt water

FIG. 2. Normalized runtime of appbt and water with different
levels of restructuring.

good performance. Mp3d, on the other hand, starts by
assigning molecules to random coordinates in the three-
dimensional space. As a result, interacting particles are
seldom contiguous in memory, and generate large amounts
of sharing. We fixed this problem by sorting the particles
according to their slow-moving ̂ -coordinate and assigned
each processor a contiguous set of particles. Interacting
particles are now likely to belong to the same page and
processor, reducing the amount of sharing (see the sort
bar in Fig. 3 below).

We were motivated to give special treatment to reader-
writer locks after studying the Gaussian elimination pro-
gram. Gauss uses locks to test for the readiness of pivot
rows. In the process of eliminating a given row, a processor
acquires (and immediately releases) the locks on the previ-
ous rows one by one. With regular exclusive locks, the
processor is forced on each release to notify other proces-
sors of its most recent (single-element) change to its own
row, even though no other processor will attempt to use
that element until the entire row is finished. Our change
is to observe that the critical section protected by the pivot
row lock does not modify any data (it is in fact empty!),
so no coherence operations are needed at the time of the
release. We communicate this information to the coher-
ence protocol by identifying the critical section as being
protected by a reader's lock. A "skip coherence operations
on release" annotation could be applied even to critical
sections that modify data, if the programmer or compiler
is sure that the data will not be used by any other processor
until after some subsequent release. This style of annota-
tion is reminiscent of entry consistency [35], but with a
critical difference: Entry consistency requires the program-
mer to identify the data protected by particular locks-in

effect, to identify all situations in which the protocol must
not skip coherence operations. Errors of omission affect
the correctness of the program. In our case correctness is
affected only by an error of commission (i.e., marking a
critical section as protected by a reader's lock when this
is not the case).

Even with the changes just described, there may be pro-
gram data structures that are shared at a very fine grain
(both spatial and temporal), and that can therefore cause
performance degradations. It can be beneficial to disallow
caching for such data structures, and to access the memory
module in which they reside directly. We term this kind
of access uncached reference. We expect this annotation
to be effective only when used on a very small percentage
of a program's references to shared data.

The performance improvements for our four modified
applications when running under the protocol described
in Section 2 can be seen in Figs. 2 and 3. The performance
impact of each modification is not independent of previous
changes; the graphs show the aggregate performance im-
provement for each successive optimization.

As can be seen from the graphs, Gauss improves mark-
edly when relocating synchronization variables to fix the
lock interference problem and also benefits from the identi-
fication of reader-writer locks. Uncached reference helps
only a little. Water gains most of its performance improve-
ment by padding the molecule data structures to subpage
boundaries and relocating synchronization variables. Mp3d
benefits from relocating synchronization variables and pad-
ding the molecule data structure to subpage boundaries. It
benefits even more from improving the locality of particle
interactions via sorting, and uncached reference shaves off
another 50%. Finally, appbt sees dramatic improvements
after relocating one of its data structures to achieve good

Plain
Sync-fix,pad
Sort
RW-locks
R-ref

mp3d gauss

FIG. 3. Normalized runtime of gauss and mp3d with different levels
of restructuring.

186 KONTOTHANASSIS AND SCOTT

page alignment and benefits nicely from the use of un-
cached references as well. The performance of the re-
maining two programs in our application suite was insensi-
tive to the changes described here.

Our program changes were simple: identifying and fixing
the problems was a mechanical process that consumed at
most a few hours. The process was aided by simulation
results that identified pages with particularly high coher-
ence overhead. In practice, similar assistance could be ob-
tained from performance monitoring tools. The most diffi-
cult application was mp3d which, apart from the
mechanical changes, required an understanding of pro-
gram semantics for the sorting of particles. Even in that
case identifying the problem was an effort of less than a
day; fixing it was even simpler: a call to a sorting routine.
We believe that such modest forms of tuning represent a
reasonable demand on the programmer. We are also hope-
ful that smarter compilers will be able to make many of
the changes automatically.

4.2. Software Coherence Protocol Alternatives

This section compares our software protocol (presented
in Section 2) to the protocol devised by Petersen and Li
[26] (modified to distribute the centralized weak list among
the memories of the machine), and to a sequentially consis-
tent page-based cache coherence protocol. For each of the
first two protocols, we present two variants: one that delays
write-driven state transitions until the subsequent release
operation, and one that performs them immediately. The
comparisons assume a write-back cache. Coherence mes-
sages (if needed) can be overlapped with the flush opera-
tions, once the writes have entered the network. The proto-
cols are named as follows:

re1 . distr . del : The delayed version of our distrib-
uted protocol, with safe and unsafe pages. Write notices
are posted at the time of a release and invalidations are
done at the time of an acquire. At release time, the protocol
scans the TLBIpage table dirty bits to determine which
pages have been written. Pages can therefore be mapped
readlwrite on the first miss, eliminating the need for a
second trap if a read to an unmapped page is followed
by a write. This protocol has slightly higher bookkeeping
overhead than re1 . distr . node1 below, but reduces
trap costs and possible coherence overhead by delaying
transitions to the dirty or weak state (and posting of associ-
ated write notices) for as long as possible. It provides the
unit of comparison (normalized running time of 1) in
our graphs.
re1 . distr .nodel : Same as re1 . distr . del, ex-

cept that write notices are posted as soon as an inconsis-
tency occurs. The TLBIpage table dirty bits do not suffice
to drive the protocol here, since we want to take action
the moment an inconsistency occurs. We must use the
write-protect bits to generate page faults.
re1 . centr. node1 : Same as re1 . distr . nodel, ex-

cept that write notices are propagated by inserting weak

pages in a global list which is traversed on acquires. This
is the protocol of Petersen and Li [26], with the exception
that while the weak list is conceptually centralized, its en-
tries are distributed physically among the nodes of the
machine.
re1 . centr . del : Same as re1 . distr . del, except

that write notices are propagated by inserting weak pages
in a global list which is traversed on acquires.
seq : A sequentially consistent software protocol that

allows only a single writer for every page at any given
point in time. Interprocessor interrupts are used to enforce
coherence when an access fault occurs. Interprocessor in-
terrupts present several problems for our simulation envi-
ronment (fortunately this is the only protocol that needs
them) and the level of detail at which they are simulated
is significantly lower than that of other system aspects.
Results for this protocol underestimate the cost of coher-
ence management but since it is the worst protocol in most
cases, the inaccuracy has no effect on our conclusions.

Figure 4 presents the normalized execution time of the
different software protocols on our set of partially modified
applications. We have used the versions of the applications
whose data structures are aligned and padded, and whose
synchronization variables are decoupled from the data they
protect (see Section 4.1). We have not used the versions
that require annotations: the identification of reader locks
or of variables that should be accessed with uncached refer-
ences. The distributed protocols outperform the central-
ized implementations, often by a significant margin. The
largest improvements (almost threefold) are realized on
water and mp3d, the two applications for which software
coherence lags the most behind hardware coherence (see
Section 4.3). This is predictable behavior: applications in

gauss sor water mp3d appbt fft

FIG. 4. Comparative performance of different software protocols on
64 processors.

HIGH PERFORMANCE SOFTWARE COHERENCE 187

~ P C m sync
protocol

f l cache
cpu

gauss sor water mp3d appbt fft

FIG. 5. Overhead analysis of different software protocols on 64 pro-
cessors.

which the impact of coherence is important are expected
to show the greatest variance with different coherence
algorithms. However, it is important to note the difference
in the scales of Figs. 4 and 6. While the distributed protocols
improve performance over the centralized ones by a factor
of three for water and mp3d, they are only 38 and 55%
worse than their hardware competitors. In programs in
which coherence is less important, the decentralized proto-
cols still provide reasonable performance improvements
over the centralized ones, ranging from 2 to 35%.

It is surprising to see the sequentially consistent protocol
outperform the relaxed alternatives on gauss. The expla-
nation lies in the use of locks as flags, as described in
Section 4.1. It is also surprising to see the sequentially
consistent protocol outperform the centralized relaxed
protocols on water. The main reason is that restructuring
has reduced the amount of false sharing in the program,
negating the main advantage of relaxed consistency, and
the sharing patterns in the program force all shared pages
into the weak list, making processors pay very high penal-
ties at lock-acquisition points.

While run time is the most important metric for applica-
tion performance it does not capture the full impact of a
coherence algorithm. Figure 5 shows the breakdown of
overhead into its major components for the five software
protocols on our six applications. These components are:
interrupt handling overhead (ipc) (sequentially consistent
protocol only), time spent waiting for application locks
(sync), coherence protocol overhead (including waiting for
system locks and flushing and purging cache lines) (proto-
col), time spent waiting for cache misses (cache), and useful
processing cycles (cpu). Coherence protocol overhead has
an impact on the time spent waiting for application locks-

the two are not easily separable. The relative heights of
the bars are slightly off in Figs. 4 and 5, because the former
pertains to the parallel part of the computation, while the
latter includes initialization overheads as well. Since initial-
ization overheads were small the differences between the
relative heights of bars in the graphs are minor. As can be
seen from the graph, cache wait time is virtually identical
for the relaxed consistency protocol. This is consistent with
the fact that the protocols use the same rules for identifying
which pages are weak and therefore invalidate the same
pages. The performance advantage of the distributed pro-
tocols stems from reduced protocol and synchronization
overhead.

4.3. Hardware us Software Coherence

Figure 6 shows the normalized execution times of our
best software protocol and that of a relaxed-consistency
DASH-like hardware protocol [23] on 64 processors. Time
is normalized with respect to the software protocol. The
hardware protocol assumes single-processor nodes, and
the consistency model allows reads to bypass writes in the
write-buffers. Only one write-miss request can be outstand-
ing at any point time; subsequent writes queue in the write
buffer. If the write buffer capacity is exceeded the proces-
sor stalls. The software protocol is the one described in
Section 2, with a distributed coherence map and weak list,
safelunsafe states, delayed transitions to the weak state,
and write-through caches with a write-merge buffer. The
applications include all the program modifications de-
scribed in Section 4.1, though uncached reference is used
only in the context of software coherence; it does not make
sense in the hardware-coherent case.

gauss sor water mp3d appbt fft

FIG. 6. Comparative software and hardware system performance on
64 processors.

KONTOTHANASSIS AND SCOTT

stall
sync
protocol

' cache
cpu

gauss sor water mp3d appbt fft

FIG. 7. Overhead analysis of software and hardware protocols on
64 processors.

In all cases, with the exception of m p 3 d , the performance
of the software protocol is within 40% of the relaxed consis-
tency hardware protocol (termed hw-best in our graphs).
For three of the applications, the software protocol is actu-
ally slightly faster. The write-through mode eliminates
three-hop transaction on cache misses reducing the miss
overhead. One can argue that the hardware protocol could
also use a write-through cache, but that would be detrimen-
tal to the performance of other applications. The software-
based protocol also does not need to get write-access rights
for each cache line. As a result writes retire immediately
if the cache line is present, and write-buffer stall time
is reduced.

On the other hand m p 3 d and water demonstrate cases
in which software coherence has disadvantages over a
hardware implementation. For water the main problem
is the extremely high frequency of synchronization, while
for m p 3 d the presence of both fine-grained sharing and
frequent synchronization affects performance. Still the per-
formance of water is within 38% of the hardware imple-

mentation. M p 3 d on 64 processors is actually 55% worse
under software coherence, but this program is known for
its poor scalability. We regard its execution on 64 proces-
sors as more of a "stress test" for the protocols than a
realistic example. On 16 processors (a point at which rea-
sonable speedups for m p 3 d may still be attainable), the
performance of the software protocol is only 33% worse
than that of the hardware protocol. The 16-processor
graphs are not shown here due to lack of space.

Figure 7 shows the breakdown of overhead for the two
protocols into its major components. These components
are: write-buffer stall time (stall), synchronization over-
head (sync), protocol processing overheads (protocol),
cache miss latency (cache) which for the software protocol
also includes time spent in uncached references, and useful
cpu cycles (cpu). Results indicate that the coherence over-
head induced by our protocol is minimal, and in most cases
the larger coherence block size does not cause any increase
in the miss rate and consequently the miss latency experi-
enced by the programs. Table I1 shows the miss rates and
other categories of overhead for the programs in our appli-
cation suite. The left number in the "Miss rate" column
corresponds to the miss rate for the hardware-coherent
system, while the right number corresponds to the soft-
ware-coherent system. For the applications that exhibit a
higher miss rate for the hardware system the additional
misses come mainly from the introduction of exclusive
requests and from a slight increase in conflict misses (use
of uncached reference reduced the working set size for
the software protocol). The results in the table correlate
directly with the results shown in Fig. 7. Higher miss rates
result in higher miss penalties, while the low page miss
rate is in accordance with the low protocol overhead expe-
rienced by the applications.

5. THE IMPACT OF ARCHITECTURE ON
COHERENCE PROTOCOLS

Our second goal in this work is to study the relative
performance of hardware and software coherence across
a wide variety of architectural settings. We start in Section
5.1 by examining the impact of the write policy on the
performance of software coherence. We then proceed to
examine a variety of architectural parameters that affect
the performance of parallel applications. These include

TABLE I1
Application Behavior under Software and Hardware Protocols

Application Refs X lo6 Miss rate (HW, SW) Page miss rate Uncached refs

gauss 91.5 6.3%, 5.7% 0.03% -0%
sor 20.6 3.6%, 2.7% 0.02% 0%
water 249.9 0.34%, 0.33% 0.05% -0%
mp3d 73.1 3.2%, 1.8% 0.01% 3.3%
appbt 281.5 0.35%, 0.71% 0.04% 0.25%
fft 209.2 0.87%, 0.65% 0.01 % 0%

HIGH PERFORMANCE SOFTWARE COHERENCE 189

page and cache line granularity, cache size, cache line inval-
idate and flush costs, TLB management and interrupt han-
dling costs, and networklmemory latency and bandwidth.
The results of this study suggest that software coherence
on NCC-NUMA machines may become an even more
attractive alternative to hardware cache coherence for fu-
ture multiprocessors.

5.1. Write Policies

In this section, we consider the choice of write policy
for the cache. Specifically, we compare the performance
obtained with a write-through cache, a write-back cache,
and a write-through cache with a buffer for merging writes
[7]. The policy is applied on only shared data. Private data
uses by default a write-back policy.

Write-back caches impose the minimum load on the
memory and network, since they write blocks back only on
eviction, or when explicitly flushed. In a software-coherent
system, however, write-back caches have two undesirable
qualities. The first of these is that they delay the execution
of synchronization operations, since dirty lines must be
flushed at the time of a release. Write-through caches have
the potential to overlap memory accesses with useful com-
putation. The second problem is more serious, because it
affects program correctness in addition to performance.
Because a software-coherent system allows multiple writ-
ers for the same page, it is possible for different portions
of a cache line to be written by different processors. When
those lines are flushed back to memory we must make sure
that changes are correctly merged so no data modifications
are lost. The best way to achieve this is to have the hard-
ware maintain per-word dirty bits, and then to write back
only those words in the cache that have actually been mod-
ified.

Write-through caches can potentially benefit relaxed
consistency protocols by reducing the amount of time spent
at release points. They also eliminate the need for per-
word dirty bits. Unfortunately, they may cause a large
amount of traffic, delaying the service of cache misses and
in general degrading performance. In fact, if the memory
subsystem is not able to keep up with all the traffic, write-
through caches are unlikely to actually speed up releases,
because at a release point we have to make sure that all
writes have been globally performed before allowing the
processor to continue. With a large amount of write traffic
we may have simply replaced waiting for the write-back
with waiting for missing acknowledgments.

Write-through caches with a write-merge buffer [7] em-
ploy a small fully associative buffer between the cache and
the interconnection network. The buffer merges writes to
the same cache line, and allocates a new entry for a write
to a nonresident cache line. When it runs out of entries it
randomly chooses a line for eviction and writes it back
to memory. The write-merge buffer reduces memory and
network traffic when compared to a plain write-through
cache and has a shorter latency at release points when

compared to a write-back cache. Per-word dirty bits are
required at the buffer to allow successful merging of cache
lines into memory. In our experiments, we have used a 16-
entry write-merge buffer.

Figure 8 presents the relative performance of the differ-
ent cache architectures when using the best relaxed proto-
col on our best version of the applications. For almost all
programs the write-through cache with the write-merge
buffer outperforms the others. The exceptions are mp3d,
in which a simple write-through cache is better, and gauss,
in which a write-back cache provides the best performance.
In both cases however the performance of the write-
through cache with the write-merge buffer is within 5% of
the better alternative.

We also looked at the impact of the write policy on main
memory system performance. Both write-through policies
generate more traffic and thus have the potential to deteri-
orate memory response times for other memory opera-
tions. Figure 9 presents the average cache miss latency
under different cache policies. As can be seen the write-
through cache with the write-merge is only marginally
worse in this metric than the write-back cache. The plain
write-through cache creates significantly more traffic, thus
causing a much larger number of cache misses to be de-
layed and increasing miss latency.

Finally, we ran experiments using a single policy for both
private and shared data. These experiments capture the
behavior of an architecture in which write policies cannot
be varied among pages. If a single policy has to be used
for both shared and private data, a write-back cache pro-
vides the best performance. As a matter of fact, the write-
through policies degrade significantly, with plain write-
through being as much as 50 times worse in w a t e r .

gauss sor water mp3d appbt fft

FIG. 8. Comparative performance of different cache architectures
on 64 processors.

KONTOTHANASSIS AND SCOTT 190

FIG. 9.

Gauss 112.1

Mp3d 62.8

88.3

Average read miss latency in cycles for different cache types.

5.2. Page Size

The choice of page size primarily affects the performance
of software coherence, since pages are the unit of coher-
ence. Hardware coherence may also be affected, due to
the placement of pages in memory modules, but this is a
secondary effect we have chosen to ignore in our study.
Previous studies on the impact of page size on the perfor-
mance of Software DSM systems [5] indicate that the
smaller pages can provide significant performance im-
provements. The main reason for this result is the reduction
in false sharing achieved by smaller coherence units. Mov-
ing to relaxed consistency, however, and to an architecture
that uses pages for the unit of coherence but cache lines
for the data fetch unit, reverses the decision in favor of
large pages [26]. Relaxed consistency mitigates the impact
of false sharing, and the larger page size reduces the length
of the weak list that needs to be traversed on an acquire op-
eration.

In our protocol, the absence of a centralized weak list
removes one of the factors (length of the weak list) that
favors larger pages. Furthermore the choice among mecha-
nisms for data access (caching vs uncached reference) can
only be made at page granularity. Smaller pages can make
for more accurate decisions. On the other hand smaller
pages will require a larger number of coherence transac-
tions to maintain the same amount of shared data. When
true sharing is the reason for coherence transactions,
smaller pages will induce unnecessary overhead.

To evaluate the relative impact of these effects, we have
run a series of experiments, varying the page size from as
small as 256 bytes to as large as 16K bytes. Figure 10
shows the normalized running time of our applications as
a function of page size. The normalization is with respect
to the running time of the relaxed consistency hardware
system using 4K-byte pages. We observe that performance
improves as the page size increases for all applications.
For four of our applications a 4K-byte page size provides
the best performance; for the other two performance con-
tinues to improve marginally as the page size increases
even further. The applications that degrade after the 4K-
byte point have been restructured to work well under soft-
ware coherence, with data structures aligned on 4K-byte
boundaries. It is reasonable to assume that for larger data-

set sizes (for which alignment to large page sizes is feasible)
performance would keep improving with an increase in
page size. For the unmodified versions of the programs (not
shown) smaller page sizes provided a small performance
advantage over larger ones, but the overall performance
of software coherence was not in par with that of hard-
ware coherence.

5.3. Cache Line Size

The choice of cache line size affects hardware and soft-
ware coherence in similar ways. Increases in cache line
size reduce the miss rate, by taking advantage of the spatial
locality in programs. However when the cache line size
gets too large it has the potential to introduce false sharing
in hardware coherent systems, and unnecessary data trans-
fers in software coherent systems. Furthermore, larger lines
cause higher degrees of contention for memory modules
and the network interconnect since they have longer occu-
pancy times for those resources.

We have run experiments in which the cache line size
varies between 16 and 256 bytes for both release-consistent
hardware and our software coherence protocol. Figure 11
shows the normalized running times of our applications as

Page size (bytes)

l' 0.6
256 512 1024 2048 4096 8192 16384

Page size (bytes)

FIG. 10. Normalized execution time for our applications using differ-
ent page sizes.

HIGH PERFORMANCE SOFTWARE COHERENCE 191

Appbt-HW -
Appbt-sw - .

Fft-HW -
Fft-SW ..+.....

Gauss- HW -

0.6

16 32 64. 128 256
Cache line size (bytes)

16 32 64. 128 256
Cache line size (bytes)

FIG. 11. Normalized execution time for our applications using differ-
ent cache line sizes.

a function of cache line size. (Running time is normalized
with respect to the hardware system with 16-byte cache
lines.) Performance initially improves for both systems as
the cache line size increases, with the optimal point oc-
curring at either 64- or 128-byte lines. We believe that the
degradation seen at larger sizes is due to a lack of band-
width in our system. We note that the performance im-
provements seen by increasing the line size are progres-
sively smaller for each increase. The exception to the above
observations is mp3d under software coherence, where
increases in line size hurt performance. The reason for
this anomalous behavior is the interaction between cache
accesses and uncached references. Longer cache lines have
higher memory occupancy and therefore block uncached
references for a longer period of time. The uncached refer-
ences in the software-coherent version of the program end
up waiting behind the large line accesses, degrading over-
all performance.

5.4. Cache Size

Varying the cache size allows us to capture how the
different protocols handle conflictlcapacity misses. Smaller
caches increase the number of evictions, while large caches

reduce misses to the intrinsic rate (that which is due to
sharing and coherence) of the program in question. While
there is no universal agreement on the appropriate cache
size for simulations with a given data set size, recent work
confirms that the relative sizes of per-processor caches and
working sets are a crucial factor in performance [29]. All
the results in previous sections were obtained with caches
sufficiently large to hold the working set, in order to sepa-
rate the performance of the coherence protocols from the
effect of conflictlcapacity misses. Experience suggests,
however, that programmers write applications that exploit
the amount of available memory as opposed to the amount
of available cache. When the working set exceeds the cache
size, the handling of conflictlcapacity misses may have a
significant impact on performance.

To assess this impact we have run experiments in which
the cache size varies between 8K and 128K bytes for both
the hardware and software coherent systems. While these
numbers are all small by modern standards, they span the
border between "too small" and "large enough" for our
experiments. Figure 12 shows the normalized running time
of our applications as a function of cache size. Running
time is normalized with respect to the hardware system

I
8 16 32 64 128

Cache size (Kbytes)

8 16 32 64 128
Cache size (Kbytes)

FIG. 12. Normalized execution time for our applications using differ-
ent cache sizes.

192 KONTOTHANASSIS AND SCOTT

with an 8K-byte cache size. The results show the perfor-
mance of hardware coherence improving more quickly
than that of software coherence with increases in cache
size. This is to be expected, since the hardware system was
shown in previous sections to handle coherence-related
communication more efficiently than the software system.
For smaller caches, where conflictlcapacity misses consti-
tute a larger fraction of the total miss rate, the more compli-
cated directory structure of the hardware system (with
ownership and forwarding) imposes a higher penalty on
refills than is suffered by the software system. As the cache
size increases the elimination of conflictlcapacity misses
improves the performance of both systems, with the hard-
ware system enjoying the largest benefits.

5.5. Processor Constants

The performance of software coherent systems is also
dependent on the cost of cache management instructions,
interrupt handling, and TLB management. We evaluated
the performance of our application suite under a variety of
assumptions for these costs, but found very little variation.
Specifically, we ran experiments with the following range
of values:

Cache purge: 1, 2, 4, or 6 cycles to purge a line from
the cache.

Interrupt handling: 40,140, or 500 cycles between inter-
rupt occurrence and start of execution of the interrupt
handler. These values represent the expected cost of an
interrupt for a very fast interrupt mechanism (e.g., Sparcle
[I], a normal one, and a particularly slow one.

T L B Management: 24, 48, or 120 cycles for tlb service
fault. These values represent the expected cost of a tlb fill
when done in fast hardware, somewhat slower hardware,
or entirely in software.

Across this range, the largest performance variation dis-
played by any application was less than 3% (for w a t e r) .
Statistics gathered by the simulator confirm that the cache,
interrupt, and TLB operations are simply not very fre-
quent. As a result, their individual cost, within reason,
has a negligible effect on performance. (We have omitted
graphs for these results; they are essentially flat lines.)

5.6. Latency and Bandwidth

The final dimension of our architectural study is memory
and interconnect latency and bandwidth. Latency and
bandwidth directly affect the cost of memory references
and coherence protocol transactions. Current technologi-
cal trends indicate that memory (DRAM) latencies and
bandwidth will continue to increase in comparison to proc-
essor speeds. Network bandwidths will also continue to
increase, with network latencies keeping pace with proces-
sors speeds.

We have run experiments varying the memory startup
cost between 12 and 30 cycles. Given a cache line size of

8 words and memory bandwidth of 1 word per cycle, the
latency for a local cache miss ranges between 20 and 38
cycles. For these experiments, we have kept the network
bandwidth at 4 bytelcycle. The results show that the impact
of latency variation on the performance of the hardware
and software coherence protocols is application depen-
dent. In general, the steepness of the curves is directly
related to the miss rates of the applications under each
protocol: the higher the miss rate the more sensitive the
application is to an increase in latency. The exception to
the observation is mp3d. Although the software protocol
has a lower miss rate than the hardware alternative, it
performs more uncached references, and these are also
susceptible to the increase in memory latency. Figure 13
shows the normalized execution time of our applications
under hardware and software coherence for different mem-
ory latencies. Running time is normalized with respect to
the hardware system with a 12-cycle memory startup cost.

Bandwidth increases have the opposite effect of in-
creases in latency on the performance of hardware and
software coherence. Where an increase in latency tends
to exaggerate the performance discrepancies between the

0 . 8 ~ '
20 22 24 26 28 30 32 34 36 38

Memory Latency (cycles)

20 22 24 26 28 30 32 34 36 38
Memory Latency (cycles)

FIG. 13. Normalized execution time for our applications under differ-
ent memory latencies.

HIGH PERFORMANCE SOFTWARE COHERENCE 193

I I
8 16 32

Network Bandwidth (bitslcycle)

8 16 32
Network Bandwidth (bitslcycle)

FIG. 14. Normalized execution time for our applications for different
network bandwidths.

protocols, an increase in bandwidth softens them. We have
run experiments varying network (point-to-point) and
memory bandwidth between 1 and 4 bytes per cycle-
varying them together to maintain a balanced system.
Startup cost for memory access was set to 30 cycles. Figure
14 shows the normalized execution times of the applica-
tions under different bandwidth values. Running time is
normalized with respect to the hardware system with a
1 bytelcycle memorylnetwork bandwidth. Once again, in
general, the steepness of the curve is directly related to
the miss rates of the applications under each protocol.
Higher miss rates imply a need for communication, which
can best be met when a lot of bandwidth is available.
Water, which has a very low communication to computa-
tion ratio, exhibits a relatively flat line; consistent with
what we saw in almost all of the graphs, it has little use
for long cache lines, low latency, or high bandwidth. Mp3d
under software coherence once again fails to make efficient
use of extra available bandwidth. The program suffers
more from the cost of initiating uncached references than
from a lack of bandwidth: its performance improves only
moderately as bandwidth increases.

6. RELATED WORK

Our work is most closely related to that of Petersen and
Li [26]: we both use the notion of weak pages, and purge
caches on acquire operations. The difference is scalability:
we distribute the coherent map and weak list, distinguish
between safe and unsafe pages, check the weak list only
for unsafe pages mapped by the current processor, and
multicast write notices for safe pages that turn out to be
weak. We have also examined architectural alternatives
and program-structuring issues that were not addressed by
Petersen and Li. Our work resembles Munin [6] and lazy
release consistency [17] in its use of delayed write notices,
but we take advantage of the globally accessible physical
address space for cache fills and for access to the coherent
map and the local weak lists.

Our use of uncached references to reduce the overhead
of coherence management can also be found in systems
for NUMA memory management [5, 10, 221. Designed
for machines without caches, these systems migrate and
replicate pages in the manner of distributed shared mem-
ory systems, but also make on-line decisions between page
movement and uncached reference. We have experi-
mented with dynamic page movement in conjunction with
software coherence on NCC-NUMA machines [24], and
have found that while appropriate placement of a unique
page copy reduces the average cache fill cost appreciably,
replication of pages provides no significant benefit in the
presence of hardware caches. Moreover, we have found
that relaxed consistency greatly reduces the opportunities
for profitable uncached data access. In fact, early experi-
ments we have conducted with on-line NUMA policies
and relaxed consistency have failed badly in their attempt
to determine when to use uncached references.

On the hardware side, our work bears a resemblance to
the Stanford Dash project [23] in the use of a relaxed
consistency model and to the Georgia Tech Beehive proj-
ect [32] in the use of relaxed consistency and per-word
dirty bits for successful merging of inconsistent cache lines.
Both these systems use their extra hardware to overlap
coherence processing and computation (possibly at the
expense of extra coherence traffic) in order to avoid a
higher waiting penalty at synchronization operations.

Coherence for distributed memory with per-processor
caches can also be maintained entirely by a compiler [8].
Under this approach the compiler inserts the appropriate
cache flush and invalidation instructions in the code, to
enforce data consistency. The static nature of the approach,
however, and the difficulty of determining access patterns
for arbitrary programs, often dictates conservative deci-
sions that result in higher miss rates and reduced perfor-
mance. Alternatively, coherence can be maintained in
object-oriented systems by tracking method calls or by
identifying the specific data structures protected by particu-
lar synchronization operations [13, 30, 351. Such an ap-
proach can make it substantially easier for the compiler
to implement consistency, but only for restricted program-
ming models.

194 KONTOTHANASSIS AND SCOTT

7. CONCLUSIONS

We have shown that supporting a shared memory pro-
gramming model while maintaining high performance does
not necessarily require expensive hardware. Similar results
can be achieved by maintaining coherence in software on
a machine that provides a non-coherent global physical
address space. We have introduced a new protocol for
software cache coherence on such machines and have
shown that it outperforms existing software approaches,
and it is fact comparable in performance to typical schemes
for hardware coherence. To improve our confidence in this
conclusion, we have explored a wide range of issues that
affect the performance of hardware and software co-
herence.

Our experiments indicate that simple program modifi-
cations can significantly improve performance on a soft-
ware-coherent system, while providing moderate perfor-
mance improvements for hardware-coherent systems as
well. The experiments also show that write-through caches
with a write-merge buffer provide the best performance
for shared data on a software-coherent system. Most sig-
nificantly, software coherence on NCC-NUMA machines
remains competitive with hardware coherence under a
large variety of architectural settings.

Several factors account for these facts. Software coher-
ence admits a level of flexibility and complexity that is
difficult to duplicate in hardware. In our experiments, it
allows us to use multiple-writer lazy release consistency,
to use different protocols for different pages (the safe1
unsafe distinction), to forego data migration in favor of
uncached references for data shared at a very fine grain,
and to skip coherence operations for reader locks. In a
more elaborate system, one could image combining multi-
ple protocols such as update-based and migratory. Hard-
ware protocols have the advantage of concurrent protocol
and program execution, but this advantage is being eroded
by technological trends that are increasing relative data
transfer costs. Hardware protocols also have the advantage
of smaller block sizes, and therefore less false sharing, but
improvements in program structuring techniques, and the
use of relaxed consistency, are eroding this advantage too.
Recent work also suggests [31,35] that software-coherent
systems may be able to enforce consistency on small blocks
efficiently by using binary editing techniques to embed
coherence operations in the program text.

The best performance, clearly, will be obtained by sys-
tems that combine the speed and concurrency of existing
hardware coherence mechanisms with the flexibility of soft-
ware coherence. This goal may be achieved by a new gener-
ation of machines with programmable network controllers
[21, 281. It is not yet clear whether the additional perfor-
mance of such machines will justify their design time and
cost. Our suspicion, based on our results, is that less elabo-
rate hardware will be more cost effective.

We have found the provision of a single physical address

allows cache fills to be serviced in hardware, permits proto-
col operations to access remote directory information with
very little overhead, and eliminates the need to compute
diffs in order to merge inconsistent writable copies of a
page. Moreover, experience with machines such as the
IBM RP3, the BBN Butterfly series, and the current Cray
Research T3D suggests that a memory-mapped interface
to the network (without coherence) is not much more
expensive than a message-passing interface. Memory-
mapped interfaces for ATM networks are likely to be avail-
able soon [4]; we see our work as ideally suited to machines
equipped with such an interface.

We are currently pursuing software protocol optimiza-
tions that should improve performance for important
classes of programs. For example, we are considering poli-
cies in which flushes of modified lines and purges of invali-
dated pages are allowed to take place "in the back-
groundu-during synchronization waits or idle time, or on
a communication coprocessor. We also believe strongly
that software coherence can benefit greatly from compiler
support. We are actively pursuing the design of annotations
that a compiler can use to provide hints to the coherence
system, allowing it to customize its actions to the sharing
patterns of individual data structures.

ACKNOWLEDGMENTS

We thank Ricardo Bianchini and Jack Veenstra for their help and
support with this work. Our thanks also to the anonymous referees for
their detailed and insightful comments.

REFERENCES

1. A. Agarwal, R. Bianchini, D. Chaiken, K. Johnson, D. Kranz,
J. Kubiatowicz, B. Lim, K. Mackenzie, and D. Yeung, The MIT
alewife machine: Architecture and performance. Proceedings of the
Twenty-Second International Symposium on Computer Architecture,
Santa Margherita Ligure, Italy, June 1995.

2. J. Archibald and J. Baer, Cache coherence protocols: Evaluation
using a multiprocessor simulation model. ACM Trans. Comput. Sys-
tems 4(4), 273-298 (Nov. 1986).

3. D. Bailey, J. Barton, T. Lasinski, and H. Simon, The NAS parallel
benchmarks. Report RNR-91-002, NASA Ames Research Center,
Jan. 1991.

4. M. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. Felten, and J. Sand-
berg, Virtual memory mapped network interface for the SHRIMP
multicomputer. Proceedings of the Twenty-First International Sym-
posium on Computer Architecture, Chicago, IL, Apr. 1994, pp.
142-153.

5. W. J. Bolosky, M. L. Scott, R. P. Fitzgerald, R. J. Fowler, and
A. L. Cox, NUMA policies and their relation to memory architecture.
Proceedings of the Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, Santa
Clara, CA, Apr. 1991, pp. 212-221.

6. J. B. Carter, J. K. Bennett, and W. Zwaenepoel, Implementation and
performance of Munin. Proceedings of the Thirteenth ACM Sympo-
sium on Operating Systems Principles, Pacific Grove, CA, Oct. 1991,
pp. 152-164.

7. Y. Chen and A. Veidenbaum, An effective write policy for software
coherence schemes. Proceedings Supercomputing '92, Minneapolis, - - -

space to be crucial for efficient software coherence: it MN, Nov. 1992.

HIGH PERFORMANCE SOFTWARE COHERENCE 195

H. Cheong and A. V. Veidenbaum, Compiler-directed cache manage-
ment in multiprocessors. Computer 23(6), 39-47 (June 1990).

M. Cierniak and W. Li, Unifying data and control transformations
for distributed shared-memory machines. Proceedings of the SIG-
PLAN '95 Conference on Programming Language Design and Imple-
mentation, June 1995, La Jolla, CA.

A. L. Cox and R. J. Fowler, The implementation of a coherent
memory abstraction on a NUMA multiprocessor: Experiences with
PLATINUM. Proceedings of the Twelfth ACM Symposium on Op-
erating Systems Principles, Litchfield Park, AZ, Dec. 1989, pp. 32-44.

A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, and W.
Zwaenepoel, Software versus hardware shared-memory implementa-
tion: A case study. Proceedings of the Twenty-First International Sym-
posium on Computer Architecture, Chicago, IL, Apr. 1994.

S. J. Eggers and R. H. Katz, Evaluation of the performance of four
snooping cache coherency protocols. Proceedings of the Sixteenth
International Symposium on Computer Architecture, May 1989, pp.
2-15.

M. J. Feeley, J. S. Chase, V. R. Narasayya, and H. M. Levy, Log-
based distributed shared memory. Proceedings of the First Symposium
on Operating Systems Design and Implementation, Monterey, CA,
Nov. 1994.

E. Granston, Toward a Compile-Time Methodology for Reducing
False Sharing and Communication Traffic in Share Virtual Memory
System. In U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua
(Eds.). Languages and Compilers for Parallel Computing. Lecture
Notes in Computer Science. Springer-Verlag, BerlinINew York, Aug.
1993, pp. 273-289.

D. B. Gustavson, The scalable coherent interface and related stan-
dards projects. IEEE Micro 12(2), 10-22 (Feb. 1992).

M. D. Hill and J. R. Larus, Cache considerations for multiprocessor
programmers. Comm. ACM 33(8), 97-102 (Aug. 1990).

P. Keleher, A. L. Cox, and W. Zwaenepoel, Lazy release consistency
for software distributed shared memory. Proceedings of the Nine-
teenth International Symposium on Computer Architecture, Gold
Coast, Australia, May 1992, pp. 13-21.

P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel, ParaNet:
Distributed shared memory on standard workstations and operating
systems. Proceedings of the USENIX Winter '94 Technical Conference,
San Francisco, CA, Jan. 1994.

Kendall Square Research, KSR1 principles of operation. Waltham,
MA, 1992.

M. Marchetti, L. Kontothanassis, R. Bianchini, and M. L. Scott, Using
simple page placement policies to reduce the cost of cache fills in
coherent shared-memory systems. Proceedings of the Ninth Interna-
tional Parallel Processing Symposium, Santa Barbara, CA, Apr. 1995.

J. M. Mellor-Crummey and M. L. Scott, Algorithms for scalable
synchronization on shared-memory .multiprocessors. ACM Trans.
Comput. Systems 9(1), 21-65 (Feb. 1991).

K. Petersen and K. Li, Cache coherence for shared memory multi-
processors based on virtual memory support. Proceedings of the Sew-
enth International Parallel Processing Symposium, Newport Beach,
CA, Apr. 1993.

Deleted in proof.

S. K. Reinhardt, J. R. Larus, and D. A. Wood, Tempest and Typhoon:
User-level shared-memory. Proceedings of the Twenty-First Interna-
tional Symposium on Computer Architecture, Chicago, IL, Apr. 1994,
pp. 325-336.

E. Rothberg, J. P. Singh, and A. Gupta, Working sets, cache sizes, and
node granularity issues for large-scale multiprocessors. Proceedings of
the Twentieth International Symposium on Computer Architecture,
San Diego, CA, May 1993.

H. S. Sandhu, Algorithms for dynamic software cache coherence.
J. Parallel Distrib. Comput., to appear.

I. Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt, J. R. Larus,
and D. A. Wood, Fine-grain access control for distributed shared
memory. Proceedings of the Sixth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
San Jose, CA, Oct. 1994, pp. 297-306.

G. Shah and U. Ramachandran, Towards exploiting the architectural
features of Beehive. GIT-CC-91/51, College of Computing, Georgia
Institute of Technology, Nov. 1991.

J. P. Singh, W. Weber, and A. Gupta, SPLASH: Stanford parallel
applications for shared-memory. ACM SIGARCH Comput. Archit.
News 20(1), 5-44 (Mar. 1992).

J. E. Veenstra and R. J. Fowler, MINT: A front end for efficient
simulation of shared-memory multiprocessors. Proceedings of the
Second International Workshop on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS 94). Dur-
ham, NC, Jan.-Feb. 1994, pp. 201-207.

M. J. Zekauskas, W. A. Sawdon, and B. N. Bershad, Software write
detection for distributed shared memory. Proceedings of the First
Symposium on Operating Systems Design and Implementation, Mon-
terey, CA, Nov. 1994.

L. I. Kontothanassis and M. L,. Scott, Distributed shared memory for
new generation networks. TR578, Computer Science Department.
Univ. of Rochester, Mar. 1995.

J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Ghara-
chorloo, J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta,
M. Roscnblum, and J. Hennessy, The FLASH multiprocessor. Pro-
ceedings of the Twenty-First International Symposium on Computer
Architecture, Chicago, IL, Apr. 1994, pp. 302-313.

. R. P. LaRowe Jr. and C. S. Ellis, Experimental comparison of memory
management policies for NUMA multiprocessors. A CM Trans. Com-
put. Systems 9(4), 319-363 (Nov. 1991).

23. D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy,
The directory-based cache coherence protocol for the DASH multi-
processor. Proceedings of the Seventeenth International Symposium
on Computer Architecture, Seattle, WA, May 1990, pp. 148-159.

Received November 1,1994; revised April 27,1995; accepted May 8,1995

LEONIDAS KONTOTHANASSIS is a Ph.D. candidate in computer
science at the University of Rochester, expected to complete his degree
in 1995. His research interests include operating systems and runtime
environments and their interaction with computer architecture. His thesis
research is exploring the design space of shared memory architectures
with an emphasis on flexible coherence mechanisms. He is a member of
the ACM and IEEE computer societies.

MICHAEL SCOTT is an associate professor of computer science at
the University of Rochester. He received his Ph.D. in computer science
from the University of Wisconsin at Madison in 1985. His research focuses
on systems software for parallel computing, with an emphasis on shared
memory programming models. He is the designer of the Lynx program-
ming language and a co-designer of the Psyche parallel operating system.
He received an IBM Faculty Development Award in 1986.

