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Abstract

In this paper we consider several hardware im-
plementations of the general-purpose atomic primi-
tives fetch and Φ, compare and swap, load linked,
and store conditionalon large-scale shared-memory
multiprocessors. These primitives have proven popu-
lar on small-scale bus-based machines, but have yet
to become widely available on large-scale, distributed
shared memory machines. We propose several alter-
native hardware implementations of these primitives,
and then analyze the performance of these implemen-
tations for various data sharing patterns. Our results
indicate that good overall performance can be obtained
by implementing compare and swap in the cache con-
trollers, and by providing an additional instruction to
load an exclusive copy of a cache line.

1 Introduction
Distributed shared memory combines the scalabil-

ity of network-based architectures and the intuitive
programming model provided by shared memory. To
ensure the consistency of shared objects, processors
perform synchronization operations using hardware-
supported primitives. Synchronization overhead (es-
pecially atomic update) is one of the obstacles to scal-
able performance on shared memory multiprocessors.

Several atomic primitives have been proposed and
implemented on DSM architectures. Most of them are
special-purpose primitives that are designed to sup-
port particular synchronization operations. Examples
include test and set with special semantics on the
DASH multiprocessor [18], the QOLB primitives on
the Wisconsin Multicube [7] and the IEEE Scalable
Coherent Interface standard [24], the full/empty bits
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on the MIT Alewife [1] and Tera machines [3], and the
primitives for locking and unlocking cache lines on the
Kendall Square KSR1 [16].

While it is possible to implement arbitrary syn-
chronization mechanisms on top of special-purpose
locks, greater concurrency, efficiency, and fault-
tolerance may be achieved by using more general-
purpose primitives. General-purpose primitives such
as fetch and Φ, compare and swap, and the pair
load linked/store conditional can easily and ef-
ficiently implement a wide variety of styles of syn-
chronization (e.g. operations on wait-free and lock-
free objects, read-write locks, priority locks, etc.).
These primitives are easy to implement in the snoop-
ing protocols of bus-based multiprocessors, but there
are many tradeoffs to be considered when developing
implementations for a DSM machine. Compare and -

swap and load linked/store conditional are not
provided by any of the major DSM multiprocessors,
and the various fetch and Φ primitives are provided
by only a few.

We propose and evaluate several implementa-
tions of these general-purpose atomic primitives on
directory-based cache coherent DSM multiprocessors,
in an attempt to answer the question: which atomic
primitives should be provided on future DSM multi-
processors and how should they be implemented?

Our analysis and experimental results suggest
that good overall performance will be achieved by
compare and swap, with comparators in the caches,
a write-invalidate coherence policy, and an auxiliary
load exclusive instruction.

In section 2 we discuss the differences in functional-
ity and expressive power among the primitives under
consideration. In section 3 we present several imple-
mentation options for the primitives under study on
DSM multiprocessors. Then we present our experi-
mental results and discuss their implications in sec-
tion 4, and conclude with recommendations in sec-
tion 5.
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2 Atomic Primitives

2.1 Functionality

A fetch and Φ primitive [8] takes (conceptually)
two parameters: the address of the destination
operand, and a value parameter. It atomically reads
the original value of the destination operand, com-
putes the new value as a function Φ of the original
value and the value parameter, stores this new value,
and returns the original value. Examples of fetch -

and Φ primitives include test and set, fetch and -

store, fetch and add, and fetch and or.

The compare and swap primitive was first provided
on the IBM System/370 [4]. Compare and swap takes
three parameters: the address of the destination
operand, an expected value, and a new value. If the
original value of the destination operand is equal to
the expected value, the former is replaced by the new
value (atomically) and the return value indicates suc-
cess, otherwise the return value indicates failure.

The pair load linked/store conditional, pro-
posed by Jensen et al. [14], are implemented on
the MIPS II [15] and the DEC Alpha [2] architec-
tures. They must be used together to read, modify,
and write a shared location. Load linked returns the
value stored at the shared location and sets a reser-
vation associated with the location and the processor.
Store conditional checks the reservation. If it is
valid a new value is written to the location and the
operation returns success, otherwise it returns failure.
Conceptually, for each shared memory location there
is a reservation bit associated with each processor.
Reservations for a shared memory location are invali-
dated when that location is written by any processor.
Load linked and store conditional have not been
implemented on network-based multiprocessors. On
bus-based multiprocessors they can easily be embed-
ded in a snooping cache coherence protocol, in such
a way that should store conditional fail, it fails lo-
cally without causing any bus traffic.

In practice, processors are generally limited to one
outstanding reservation, and reservations may be in-
validated even if the variable is not written. On the
MIPS R4000 [22], for example, reservations are in-
validated on context switches and TLB exceptions.
We can ignore these spurious invalidations with re-
spect to lock-freedom, so long as we always try again
when a store conditional fails, and so long as we
never put anything between load linked and store -

conditional that may invalidate reservations deter-
ministically. Depending on the processor, these things
may include loads, stores, and incorrectly-predicted
branches.

2.2 Expressive Power

Herlihy introduced an impossibility and universal-
ity hierarchy [10] that ranks atomic operations accord-
ing to their relative power. The hierarchy is based
on the concepts of lock-freedom and wait-freedom. A
concurrent object implementation is lock-free if it al-
ways guarantees that some processor will complete an
operation in a finite number of steps, and it is wait-
free if it guarantees that each process will complete
an operation in a finite number of steps. Lock-based
operations are neither lock-free nor wait-free. In Her-
lihy’s hierarchy, it is impossible for an atomic oper-
ation at a lower level of the hierarchy to provide a
lock-free implementation of an atomic operation in
a higher level. Atomic load and store are at level
1. The primitives fetch and store, fetch and add,
and test and set are at level 2. Compare and swap

is a universal primitive—it is at level ∞ of the hierar-
chy [12]. Load linked/store conditional can also
be shown to be universal if we assume that reserva-
tions are invalidated if and only if the corresponding
shared location is written to.

Thus, according to Herlihy’s hierarchy, compare -

and swap and load linked/store conditional can
provide lock-free simulations of fetch and Φ primi-
tives, and it is impossible for a fetch and Φ primitive
to provide a lock-free simulation of compare and swap

or load linked/store conditional. It should also
be noted that although fetch and store and fetch -

and add are at the same level (level 2) in Herlihy’s hi-
erarchy, this does not imply that there are lock-free
simulations of one of these primitives using the other.
Similarly, while both compare and swap and the pair
load linked/store conditional are universal prim-
itives, it is possible to provide a lock-free simulation
of compare and swap using load linked and store -

conditional, but not vice versa.
A pair of atomic load and compare and swap can-

not simulate load linked and store conditional

because compare and swap cannot detect if a shared
location has been written with the same value that has
been read by the atomic load or not. Thus compare -

and swap might succeed where store conditional

should fail. This feature of compare and swap can
cause a problem if the datum is a pointer and if a
pointer can retain its original value after deallocat-
ing and reallocating the storage accessed by it. Her-
lihy presented methodologies for implementing lock-
free (and wait-free) implementations of concurrent
data objects using compare and swap [11] and load -

linked/store conditional [13]. The compare -

and swap algorithms are less efficient and conceptu-
ally more complex than the load linked/store -



conditional algorithms due to the pointer prob-
lem [13].

On the other hand, there are several algorithms
that need or benefit from compare and swap [19, 20,
21, 27]. A simulation of compare and swap using
load linked and store conditional is less efficient
than providing compare and swap in hardware. A suc-
cessful simulated compare and swap is likely to cause
two cache misses instead of the one that would oc-
cur if compare and swap were supported in hardware.
(If load linked suffers a cache miss, it will gen-
erally obtain a shared (read-only) copy of the line.
Store conditional will miss again in order to obtain
write permission.) Also, unlike load linked/store -

conditional, compare and swap is not subject to any
restrictions on the loads and stores between atomic -

load and compare and swap. Thus, it is more suit-
able for implementing atomic update operations that
require memory access between loading and compar-
ing (e.g. an atomic update operation that requires a
table lookup based on the original value).

3 Implementations
The main design issues for implementing atomic

primitives on cache coherent DSM multiprocessors
are:

1. Where should the computational power to ex-
ecute the atomic primitives be located: in the
cache controllers, in the memory modules, or
both?

2. Which coherence policy should be used for atom-
ically accessed data: no caching, write-invalidate,
or write-update?

3. What auxiliary instructions, if any, can be used
to enhance performance?

We focus our attention on fetch and Φ, compare -

and swap, and load linked/store conditional be-
cause of their generality, their popularity on small-
scale machines, and their prevalence in the litera-
ture. We consider three implementations for fetch -

and Φ, five for compare and swap, and three for
load linked/store conditional. The implementa-
tions can be grouped into three categories according
to the coherence policies used:

1. INV (INValidate): Computational power in the
cache controllers, with a write-invalidate coher-
ence policy. The main advantage of this imple-
mentation is that once the datum is in the cache,
subsequent atomic updates are executed locally,
so long as accesses by other processors do not in-
tervene.

2. UPD (UPDate): Computational power in the
memory, with a write-update policy. The main
advantage of this implementation is a high read
hit rate, even in the case of alternating accesses
by different processors.

3. UNC (UNCached): Computational power in the
memory, with caching disabled. The main advan-
tage of this implementation is that it eliminates
the coherence overhead of the other two policies,
which may be a win in the case of high contention
or even the case of no contention when accesses
by different processors alternate.

INV and UPD implementations are embedded in
the cache coherence protocols. Our protocols are
mainly based on the directory-based protocol of the
DASH multiprocessor [17].

For fetch and Φ and compare and swap, INV ob-
tains an exclusive copy of the datum and performs the
operation locally. UNC sends a request to the mem-
ory to perform the operation on an uncached datum.
UPD also sends a request to the memory to perform
the operation, but retains a shared copy of the datum
in the local cache. The memory sends updates to all
the caches with copies.

In addition, for compare and swap we consider two
variants of INV: INVd (‘d’ for deny) and INVs (‘s’
for share). In these variants, if the line is not already
cached in exclusive mode locally, comparison of the
old value with the expected value takes place in either
the home node or the owner node, whichever has the
most up-to-date copy of the line (the home node is the
node at which the memory resides; the owner, if any,
is the node that has an exclusive cached copy of the
line). If equality holds, INVd and INVs behave like
INV: the requesting node acquires an exclusive copy.
Otherwise, the response to the requesting node indi-
cates that compare and swap must fail. In the case
of INVd, no cached copy is provided. In the case of
INVs, a read-only copy is provided. The rationale be-
hind these variants is to prevent a request that will
fail from invalidating copies cached in other nodes.

The implementations of load linked/store -

conditional are somewhat more elaborate, due to
the need for reservations. In the INV implementation,
each processing node has a reservation bit and a reser-
vation address register. Load linked sets the reserva-
tion bit to valid and writes the address of the shared
location to the reservation register. If the cache line is
not valid, a shared copy is acquired, and the value is
returned. If the cache line is invalidated and the ad-
dress corresponds to the one stored in the reservation



register, the reservation bit is set to invalid. Store -

conditional checks the reservation bit. If it is invalid,
store conditional fails. If the reservation bit is valid
and the line is exclusive, store conditional succeeds
locally. Otherwise, the request is sent to the home
node. If the directory indicates that the line is exclu-
sive or uncached, store conditional fails, otherwise
(the line is shared) store conditional succeeds and
invalidations are sent to holders of other copies.

In the UNC implementation of load linked/
store conditional, each memory location (at least
conceptually) has a reservation bit vector of size equal
to the total number of processors. Load linked

reads the value from memory and sets the appropri-
ate reservation bit. Any write or successful store -

conditional to the location clears the reservation
vector. Store conditional checks the correspond-
ing reservation bit and succeeds or fails accordingly.
Various space optimizations are conceivable for prac-
tical implementations; see section 3.1 below. In the
UPD implementation, load linked requests have to
go to memory even if the datum is cached, in order to
set the appropriate reservation bit. Similarly, store -

conditional requests have to go to memory to check
the reservation bit.

We consider two auxiliary instructions. Load -

exclusive reads a datum but acquires exclusive ac-
cess. It can be used with INV instead of an ordi-
nary load when reading data that are then accessed
by compare and swap. The intent is to make it more
likely that compare and swap will not have to go to
memory. Load exclusive is also useful for ordinary
operations on migratory data. Drop copy can be used
to drop (self-invalidate) a cached line, to reduce the
number of serialized messages required for subsequent
accesses by other processors. A write miss on an un-
cached datum requires 2 serialized messages (from re-
questing node to the home node and back), instead of 4
for a remote exclusive datum (requesting node to home
to owner to home and back to requesting node) and
3 for a remote shared datum (from requesting node
to home to sharing nodes, with acknowledgments sent
back to the requesting node).

3.1 Hardware Requirements

If the base coherence policy is different from the
coherence policy for access to synchronization vari-
ables, the complexity of the cache coherence protocol
increases significantly. However, the directory entry
size remains the same with any coherence policy on
directory-based multiprocessors (modulo any require-
ments for reservation information in the memory for
load linked/store conditional).

Computational power (e.g. adders and compara-
tors) needs to be added to each cache controller if
the implementation is INV, or to each memory mod-
ule if the implementation is UPD or UNC, or to both
caches and memory modules if the implementation for
compare and swap is INVd or INVs.

If load linked and store conditional are im-
plemented in the caches, one reservation bit and
one reservation address register per cache are needed
to maintain ideal semantics, assuming that load -

linked and store conditional pairs are not allowed
to nest. On the MIPS R4000 processor [22] there is an
LLbit and an on-chip system control processor regis-
ter LLAddr. The LLAddr register is used only for diag-
nostic purposes, and serves no function during normal
operation. Thus, invalidation of any cache line causes
the LLbit to be reset. A store conditional to a
valid cache line is not guaranteed to succeed, as the
datum might have been written by another process on
the same physical processor. Thus, a reservation bit is
needed (at least to be invalidated on a context switch).

If load linked and store conditional are imple-
mented in the memory, the hardware requirements are
more significant. A reservation bit for each processor
is needed for each memory location. There are several
options:

• A bit vector of size equal to the number of proces-
sors can be added to each directory entry. This
option limits the scalability of the multiprocessor,
as the (total) directory size increases quadrati-
cally with the number of processors.

• A linked list can be used to hold the ids of the pro-
cessors holding reservations on a memory block.
The size overhead is reduced to the size of the
head of the list, if the memory block has no reser-
vations associated with it. However, a free list is
needed and it has to be maintained by the cache
coherence protocol.

• A limited number of reservations (e.g. 4) can
be maintained. Reservations beyond the limit
will be ignored, so their corresponding store -

conditional’s are doomed to fail. If a failure
indicator can be returned by beyond-the-limit
load linked’s, then the corresponding store -

conditional’s can fail locally without causing
any network traffic. This option eliminates the
need for bit vectors or a free list. Also, it can
help reduce the effect of high contention on per-
formance. However, it compromises the lock-free
semantics of lock-free objects based on load -

linked and store conditional.



• A hardware counter associated with each mem-
ory block can be used to indicate a serial num-
ber of writes to that block. Load linked will re-
turn both the datum and the serial number, and
store conditional must provide both the da-
tum and the expected serial number. A store -

conditional with a serial number different from
that of the counter will fail. The counter should
be large enough (e.g. 32 bits) to eliminate any
problems due to wrap-around. The message
sizes associated with load linked and store -

conditional must increase by the counter size.

In each of these options, if the space overhead is too
high to accept for all of memory, atomic operations
can, with some loss of convenience, be limited to a
subset of the physical address space.

For the purposes of this paper we do not need to fix
an implementation for reservations, but we prefer the
last one. It has the potential to provide the advantages
of both compare and swap and load linked/store -

conditional. Load linked resembles a load that re-
turns a longer datum; store conditional resembles
a compare and swap that provides a longer datum.
The serial number portion of the datum eliminates the
pointer problem mentioned in section 2.2. In addition,
the lack of an explicit reservation means that store -

conditional does not have to be preceded closely in
time by load linked; a process that expects a partic-
ular value (and serial number) in memory can issue a
bare store conditional, just as it can issue a bare
compare and swap. This capability is useful for algo-
rithms such as the MCS queue-based spin lock [20],
in which it reduces by one the number of memory
accesses required to relinquish the lock. It is not
even necessary that the serial number reside in special
memory: load linked and store conditional could
be designed to work on doubles. The catch is that “or-
dinary” stores to synchronization variables would need
to update the serial number. If this number were sim-
ply kept in half of a double, special instructions would
need to be used instead of ordinary stores.

4 Experimental Results
4.1 Methodology

The experimental results were collected using an
execution driven cycle-by-cycle simulator. The simu-
lator uses MINT (Mips INTerpreter) [26], which sim-
ulates MIPS R4000 object code, as a front end. The
back end simulates a 64-node multiprocessor with
directory-based caches, 32-byte blocks, queued mem-
ory, and a 2-D worm-hole mesh network. The sim-
ulator supports directory-based cache coherence pro-
tocols with write-invalidate and write-update coher-

ence policies. The base cache coherence protocol–used
for all data not accessed by atomic primitives in all
experiments–is a write-invalidate protocol. In order
to provide accurate simulations of programs with race
conditions, the simulator keeps track of the values of
cached copies of atomically accessed data in the cache
of each processing node. In addition to the MIPS
R4000 instruction set (which includes load linked

and store conditional), the simulated multiproces-
sor supports fetch and Φ, compare and swap, load -

exclusive, and drop copy. Memory and network la-
tencies reflect the effect of memory contention and
of contention at the entry and exit of the network
(though not at internal nodes).

We used two sets of applications, real and synthetic,
to achieve different goals. We began by studying two
lock-based applications from the SPLASH suite [25]—
LocusRoute and Cholesky—and an application that
computes the transitive closure of a directed graph—
based on the Floyd-Warshall algorithm [5]—that uses
a lock-free counter to distribute variable-size input-
dependent jobs among the processors (figure 1). From
these real applications we identified typical sharing
patterns of atomically accessed data. In LocusRoute
and Cholesky, we replaced the library locks with an as-
sembly language implementation of the test-and-test-
and-set lock [23] with bounded exponential backoff
implemented using the atomic primitives and auxil-
iary instructions under study. In Transitive Closure,
we used different versions of a lock-free counter us-
ing fetch and add, compare and swap, and load -

linked/store conditional, and we use the scalable
tree barrier [20] for barrier synchronization.

Our three synthetic applications served to explore
the parameter space and to provide controlled per-
formance measurements. The first uses a lock-free
concurrent counter to cover the case in which load -

linked/store conditional and compare and swap

simulate fetch and Φ. The second uses a counter pro-
tected by a test-and-test-and-set lock with bounded
exponential backoff to cover the case in which all three
primitives are used in a similar manner. The third uses
a counter protected by an MCS lock [20] to cover the
case in which load linked/store conditional sim-
ulates compare and swap.

4.2 Sharing Patterns

Performance of atomic primitives is affected by con-
tention and average write-run length [6]. In this con-
text, we define the level of contention to be the num-
ber of processors that concurrently try to access an
atomically accessed shared location. Average write-
run length is the average number of consecutive writes
(including atomic updates) by a processor to an atom-



private pid, procs, size;

shared counter, flag, E;

tclosure()

{

local i,j,k,row,rows,work,pivot,cur;

for(i=0;i<size;i++)

{

if(pid==0){ counter=0; flag=0; }

row=0; rows=0;

barrier();

while(!flag)

{

rows=((size-row-rows-1)>>1)/procs+1;

row=fetch_and_add(&count,rows);

if(row>=size){ flag=1; break;}

work=(rows<size-row) ? rows : size-row;

pivot=E[i];

for(j=row;j$<$row+work;j++)

{

cur=E[j];

if((cur[i]==TRUE) && (i!=j))

for(k=0;k<size;k++)

if(pivot[k]==TRUE) cur[k]=TRUE;

}

}

barrier();

}

}

Figure 1: Process pid’s transitive closure program.

ically accessed shared location without intervening ac-
cesses (reads or writes) by any other processors.

The average write-run length of atomically accessed
data in simulated runs of LocusRoute and Cholesky
on 64 processors with different coherence policies was
found to range from 1.70 to 1.83, and from 1.59 to 1.62,
respectively. This indicates that in these applications
lock variables are unlikely to be written more than two
consecutive times by the same processor without inter-
vening accesses by other processors. In other words,
a processor usually acquires and releases a lock with-
out intervening accesses by other processors, but it is
unlikely to re-acquire it without intervention. In Tran-
sitive Closure, the average write-run length was found
to be always slightly above 1.00, suggesting a high
level of contention as shown in the next paragraph.

As a measure of contention, we use histograms
of the number of processors contending to access an

atomically accessed shared location at the beginning
of each access (we found a line graph to be more
readable than a bar graph, though the results are
discrete, not continuous). Figure 2 shows the con-
tention histograms for the real applications, with dif-
ferent coherence policies. The figures for LocusRoute
and Cholesky indicate that the no-contention case is
the common one, for which performance should be op-
timized. At the same time, they indicate that the
low and moderate contention cases do arise, so that
performance for them needs also to be good. High
contention is rare: reasonable differences in perfor-
mance among the primitives can be tolerated in this
case. However, the figure for Transitive Closure—
which achieves an acceptable efficiency of 45% on
64 processors—indicates a common case of very high
contention, implying that differences in performance
among the primitives are more important in this case.
The contention can be attributed to the frequent use
of barrier synchronization in the application, which in-
creases the likelihood that all or most of the processors
will try to access the counter concurrently.

4.3 Relative Performance of Implementa-
tions

We collected performance results of the synthetic
applications with various levels of contention and
write-run length. We used constant-time barriers sup-
ported by MINT to control the level of contention. Be-
cause these barriers are constant-time, they have no
effect on the results other than enforcing the intended
sharing patterns. In these applications, each proces-
sor executes a tight loop, in each iteration of which it
either updates the counter or not, depending on the
desired level of contention. Depending on the desired
average write-run length, every one or more iterations
are separated by a constant-time barrier.

Figures 3, 4, and 5 show the performance results
for the synthetic applications. The bars represent the
elapsed time averaged over a large number of counter
updates. In each figure, the graphs to the left rep-
resent the no-contention case with different numbers
of consecutive accesses by each processor without in-
tervention from the other processors. The graphs to
the right represent different levels of contention. The
bars in each graph are categorized according to the
three coherence policies used in the implementation
of atomic primitives. In INV and UPD, there are
two subsets of bars. The bars to the right represent
the results with the drop copy instruction; those to
the left represent the results without it. In each of
the two subsets in the INV category, there are 4 bars
for compare and swap. These represent, from left to
right, the results for the INV, INVd, INVs, and INV
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Figure 2: Histograms of the level of contention in Lo-
cusRoute, Cholesky, and Transitive Closure.

with load exclusive implementations.

Figure 6 shows the performance results for Locus-
Route, Cholesky, and Transitive Closure. Time is
measured from the beginning to the end of execution
of the parallel part of the applications. The order of
bars in the graph is the same as in the previous figures.

We base our analysis on the results of the synthetic
applications, where we have control over the parame-
ter space. The results for the real applications serve
only to validate the results of the synthetic applica-
tions. LocusRoute and Transitive Closure use dy-
namic scheduling, which explains the difference in rel-
ative performance between primitives in these applica-
tions and in the corresponding synthetic applications.
With dynamic scheduling slight changes in timings al-
low processors to obtain work from the central work
pool in different orders, causing changes in control flow
and load balancing.
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Figure 3: Average time per counter update for the
lock-free counter application. P denotes processors,
c contention, and a the average number of non-
interleaved counter updates by each processor.



0

1000

2000

3000
p=64 c=1 a=1

 UNC               INV                  UPD    

A
v
e

ra
g

e
 C

y
c
le

s FAP   
LLSC  
CAS   

0

1000

2000

3000
p=64 c=1 a=1.5

 UNC               INV                  UPD    

A
v
e

ra
g

e
 C

y
c
le

s FAP   
LLSC  
CAS   

0

1000

2000

3000
p=64 c=1 a=2

 UNC               INV                  UPD    

A
v
e

ra
g

e
 C

y
c
le

s FAP   
LLSC  
CAS   

0

1000

2000

3000
p=64 c=1 a=3

 UNC               INV                  UPD    

A
v
e

ra
g

e
 C

y
c
le

s FAP   
LLSC  
CAS   

0

1000

2000

3000
p=64 c=1 a=10

 UNC               INV                  UPD    

A
v
e

ra
g

e
 C

y
c
le

s FAP   
LLSC  
CAS   

0

1000

2000

3000
p=64 c=2

 UNC               INV                  UPD    

A
v
e

ra
g

e
 C

y
c
le

s FAP   
LLSC  
CAS   

0

1000

2000

3000
p=64 c=4

 UNC               INV                  UPD    

A
v
e

ra
g

e
 C

y
c
le

s FAP   
LLSC  
CAS   

0

1000

2000

3000
p=64 c=8

 UNC               INV                  UPD    

A
v
e

ra
g

e
 C

y
c
le

s FAP   
LLSC  
CAS   

0

1000

2000

3000
p=64 c=16

 UNC               INV                  UPD    

A
v
e

ra
g

e
 C

y
c
le

s FAP   
LLSC  
CAS   

0

1000

2000

3000
p=64 c=64

 UNC               INV                  UPD    

A
v
e

ra
g

e
 C

y
c
le

s FAP   
LLSC  
CAS   

Figure 4: Average time per counter update for the
TTS-lock-based counter application. P denotes pro-
cessors, c contention, and a the average number of
non-interleaved counter updates by each processor.

0

500

1000

1500

p=64 c=1 a=1

 UNC               INV                  UPD    

A
v
e

ra
g

e
 C

y
c
le

s FAP   
LLSC  
CAS   

0

500

1000

1500

p=64 c=1 a=1.5

 UNC               INV                  UPD    

A
v
e

ra
g

e
 C

y
c
le

s FAP   
LLSC  
CAS   

0

500

1000

1500

p=64 c=1 a=2

 UNC               INV                  UPD    

A
v
e

ra
g

e
 C

y
c
le

s FAP   
LLSC  
CAS   

0

500

1000

1500

p=64 c=1 a=3

 UNC               INV                  UPD    

A
v
e

ra
g

e
 C

y
c
le

s FAP   
LLSC  
CAS   

0

500

1000

1500

p=64 c=1 a=10

 UNC               INV                  UPD    

A
v
e

ra
g

e
 C

y
c
le

s FAP   
LLSC  
CAS   

0

500

1000

1500

p=64 c=2

 UNC               INV                  UPD    

A
v
e

ra
g

e
 C

y
c
le

s FAP   
LLSC  
CAS   

0

500

1000

1500

p=64 c=4

 UNC               INV                  UPD    

A
v
e

ra
g

e
 C

y
c
le

s FAP   
LLSC  
CAS   

0

500

1000

1500

p=64 c=8

 UNC               INV                  UPD    

A
v
e

ra
g

e
 C

y
c
le

s FAP   
LLSC  
CAS   

0

500

1000

1500

p=64 c=16

 UNC               INV                  UPD    

A
v
e

ra
g

e
 C

y
c
le

s FAP   
LLSC  
CAS   

0

500

1000

1500

p=64 c=64

 UNC               INV                  UPD    
A

v
e

ra
g

e
 C

y
c
le

s FAP   
LLSC  
CAS   

Figure 5: Average time per counter update for the
MCS-lock-based counter application. P denotes pro-
cessors, c contention, and a the average number of
non-interleaved counter updates by each processor.

4.3.1 Coherence Policy

In the case of no contention with short write runs,
UNC implementations of the three primitives are com-
petitive with, and sometimes better than, the corre-
sponding cached implementations, even with an av-
erage write-run length as large as 2. There are two
reasons for these results. First, a write miss on an
uncached line takes two serialized messages, which is
always the case with UNC, while a write miss on a
remote exclusive or remote shared line takes 4 or 3
serialized messages respectively (see table 1). Second,
UNC implementations do not incur the overhead of in-
validations and updates as INV and UPD implemen-
tations do.

Furthermore, with contention (even very low),



0

2

4

6

8

10
x 10

6 LocusRoute    p=64

UNC                                             INV                                                        UPD  

T
o

ta
l  

  
 C

yc
le

s

FAP   
LLSC  
CAS   

0

2

4

6

8

10

12

x 10
6 Cholesky    p=64

UNC                                             INV                                                        UPD  

T
o

ta
l  

  
 C

yc
le

s

FAP   
LLSC  
CAS   

0

5

10

15
x 10

7 Transitive Closure    p=64

UNC                                             INV                                                        UPD  

T
o

ta
l  

  
 C

yc
le

s

FAP   
LLSC  
CAS   

Figure 6: Total elapsed time for LocusRoute with dif-
ferent implementations of atomic primitives.

UNC 2
INV to cached exclusive 0
INV to remote exclusive 4
INV to remote shared 3
INV to uncached 2
UPD to cached 3
UPD to uncached 2

Table 1: Serialized network messages for stores to
shared memory with different coherence policies.

UNC outperforms the other policies (with the excep-
tion of INV compare and swap/load exclusive when
simulating fetch and Φ), as the effect of avoiding ex-
cess serialized messages, and invalidations or updates,
is more evident as ownership of data changes hands
more frequently. The INV compare and swap/load -

exclusive combination for simulating fetch and Φ
is an exception as the timing window between the
read and the write in the read-modify-write cycle is
narrowed substantially, thereby diminishing the effect
of contention by other processors. Also, in the INV
implementation, successful compare and swap’s after
load exclusive’s are mostly hits, while by definition,
all UNC accesses are misses.

On the other hand, as write-run length increases,
INV increasingly outperforms UNC and UPD, because
subsequent accesses in a run are all hits.

Comparing UPD to INV, we find that INV is better
in most cases. This is due to the excessive number of
useless updates incurred by UPD. INV is much bet-
ter in the case of long write runs, as it benefits from
caching. In the case of high contention with the test-
and-test-and-set lock, UPD is better, since every time
the lock is released almost all processors try to acquire
it by writing to it. With INV all these processors ac-
quire exclusive copies although only one will eventu-
ally succeed in acquiring the lock, while in the case
of UPD, only successful writes cause updates. How-
ever this is not the common case with locks, in which
backoff serves to greatly reduce contention.

4.3.2 Atomic Primitives

In the case of the lock-free counter, UNC fetch and -

add yields superior performance over the other primi-
tives and implementations, especially with contention.
The exception is the case of long write runs, which
are not the common case, and may well represent bad
programs (e.g. a shared counter should be updated
only when necessary, instead of being repeatedly in-
cremented). We conclude that UNC fetch and add

is a useful primitive to provide for supporting shared
counters. However, since it is limited to only certain
kinds of algorithms, we recommend it only in addition
to a universal primitive.

Among the INV universal primitives, compare -

and swap almost always benefits from load -

exclusive, because compare and swap’s are hits in
the case of no contention and, as mentioned earlier,
load exclusive helps minimize the failure rate of
compare and swap as contention increases. In con-
trast, load linked cannot be exclusive: otherwise
livelock is likely to occur.



The performance of the INVd and INVs implemen-
tations of compare and swap is almost always equal to
or worse than that of compare and swap or compare -

and swap/load exclusive. The cost of extra hard-
ware to make comparisons both in memory and in the
caches does not appear to be warranted.

As for UPD universal primitives, compare and -

swap is always better than load linked/store -

conditional, as most of the time compare and swap

is preceded by an ordinary read which is most likely
to be a hit with UPD. Load linked requests have to
go to memory even if the datum is cached locally, as
the reservation has to be set in a unique place that
has the most up-to-date version of data—in memory
in the case of UPD.

With an INV policy and an average write-run
length of one with no contention, drop copy improves
the performance of fetch and Φ and compare and -

swap/load exclusive, because it allows the atomic
primitive to obtain the needed exclusive copy of the
data with only 2 serialized messages instead of 4 (no
other processor has the datum cached; they all have
dropped their copies). As contention increases, the ef-
fect of drop copy varies with the application. It can in
fact cause an increase in serialized messages and mem-
ory and network contention. For example, an exclu-
sive cache line may be dropped just when its owner is
about to receive a remote request for an exclusive copy
of the line. The write-back causes unnecessary mem-
ory and network traffic. Moreover, instead of granting
the remote request, the local node replies with a neg-
ative acknowledgment, and the remote node has to re-
peat its request for exclusive access to the subsequent
owner.

With an UPD policy, drop copy always improves
performance, because it reduces the number of use-
less updates and in most cases reduces the number of
serialized messages for a write from 3 to 2.

5 Conclusions

Based on the experimental results and the rela-
tive power of atomic primitives, we recommend imple-
menting compare and swap in the cache controllers of
future DSM multiprocessors, with a write-invalidate
coherence policy for atomically-accessed data. We
also recommend supporting load exclusive to en-
hance the performance of compare and swap (as well
as assisting in efficient data migration). To address
the pointer problem, we recommend consideration of
an implementation based on serial numbers, as de-
scribed for the in-memory implementation of load -

linked/store conditional in section 3.1.

Although we do not recommend it as the sole

atomic primitive, because it is not universal, we find
fetch and add to be very efficient for lock-free coun-
ters, and for many other objects [9]. We recom-
mend implementing it in uncached memory as an extra
atomic primitive.
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