
Software Cache Coherence for Large Scale Multiprocessors
�

Leonidas I. Kontothanassis and Michael L. Scott

Department of Computer Science, University of Rochester, Rochester, NY 14627-0226�
kthanasi,scott� @cs.rochester.edu

Abstract
Shared memory is an appealing abstraction for paral-

lel programming. It must be implemented with caches in
order to perform well, however, and caches require a coher-
ence mechanism to ensure that processors reference current
data. Hardware coherence mechanisms for large-scale ma-
chines are complex and costly, but existing software mech-
anisms for message-passing machines have not provided
a performance-competitive solution. We claim that an in-
termediate hardware option—memory-mapped network in-
terfaces that support a global physical address space—can
provide most of the performance benefits of hardware cache
coherence. We present a software coherence protocol that
runs on this class of machines and greatly narrows the per-
formance gap between hardware and software coherence.
We compare the performance of the protocol to that of
existing software and hardware alternatives and evaluate
the tradeoffs among various cache-write policies. We also
observe that simple program changes can greatly improve
performance. For the programs in our test suite and with
the changes in place, software coherence is often faster and
never more than 55% slower than hardware coherence.

1 Introduction
Large scale multiprocessors can provide the computa-

tional power needed for some of the larger problems of
science and engineering today. Shared memory provides
an appealing programming model for such machines. To
perform well, however, shared memory requires the use
of caches, which in turn require a coherence mechanism to
ensure that copies of data are up-to-date. Coherence is easy
to achieve on small, bus-based machines, where every pro-
cessor can see the memory traffic of the others [4, 11], but
is substantially harder to achieve on large-scale multipro-
cessors [1, 15, 19]. It increases both the cost of the machine
and the time and intellectual effort required to bring it to
market. Given the speed of advances in microprocessor
technology, long development times generally lead to ma-
chines with out-of-date processors. There is thus a strong
motivation to find coherence mechanisms that will produce
acceptable performance with little or no special hardware.1

�
This work was supported in part by NSF Institutional Infrastructure

grant no. CDA-8822724 and ONR research grant no. N00014-92-J-1801
(in conjunction with the DARPA Research in Information Science and
Technology—High Performance Computing, Software Science and Tech-
nology program, ARPA Order no. 8930).

1We are speaking here of behavior-driven coherence—mechanisms
that move and replicate data at run time in response to observed patterns
of program behavior—as opposed to compiler-based techniques [9].

Unfortunately, the current state of the art in software
coherence for message-passing machines provides perfor-
mance nowhere close to that of hardware cache coherence.
Our contribution is to demonstrate that most of the benefits
of hardware cache coherence can be obtained on large ma-
chines simply by providing a global physical address space,
with per-processor caches but without hardware cache
coherence. Machines in this non-cache-coherent, non-
uniform memory access (NCC-NUMA) class include the
Cray Research T3D and the Princeton Shrimp [6]. In com-
parison to hardware-coherent machines, NCC-NUMAs can
more easily be built from commodity parts, and can follow
improvements in microprocessors and other hardware tech-
nologies closely.

We present a software coherence protocol for NCC-
NUMA machines that scales well to large numbers of pro-
cessors. To achieve the best possible performance, we
exploit the global address space in three specific ways.
First, we maintain directory information for the coherence
protocol in uncached shared locations, and access it with
ordinary loads and stores, avoiding the need to interrupt
remote processors in almost all circumstances. Second,
while using virtual memory to maintain coherence at the
granularity of pages, we never copy pages. Instead, we
map them remotely and allow the hardware to fetch cache
lines on demand. Third, while allowing multiple writers
for concurrency, we avoid the need to keep old copies and
compute diffs by using ordinary hardware write-through or
write-back to the unique main-memory copy of each page.

Full-scale hardware cache coherence may suffer less
from false sharing, due to smaller coherence blocks, and
can execute protocol operations in parallel with “real” com-
putation. Current trends, however, are reducing the impor-
tance of each of these advantages: relaxed consistency, bet-
ter compilers, and improvements in programming method-
ology can also reduce false sharing, and trends in both
programming methodology and hardware technology are
reducing the fraction of total computation time devoted to
protocol execution. At the same time, software coherence
enjoys the advantage of being able to employ techniques
such as multiple writers, delayed write notices, and delayed
invalidations, which may be too complicated to implement
reliably in hardware at acceptable cost. Software coherence
also offers the possibility of adapting protocols to individ-
ual programs or data regions with a level of flexibility that is
difficult to duplicate in hardware. We exploit this advantage
in part in our work by employing a relatively complicated
eight-state protocol, by using uncached remote references
for application-level data structures that are accessed at a
very fine grain, and by introducing user level annotations

mls
HPCA '95

that can impact the behavior of the coherence protocol.
The rest of the paper is organized as follows. Section 2

describes our software coherence protocol and provides in-
tuition for our algorithmic and architectural choices. Sec-
tion 3 describes our experimental methodology and work-
load. We present performance results in section 4 and com-
pare our work to other approaches in section 5. We compare
our protocol to a variety of existing alternatives, including
sequentially-consistent hardware, release-consistent hard-
ware, straightforwardsequentially-consistent software, and
a coherence scheme for small-scale NCC-NUMAs due to
Petersen and Li [21]. We also report on the impact of sev-
eral architectural alternatives on the effectiveness of soft-
ware coherence. These alternatives include the choice of
write policy (write-through,write-back, write-throughwith
a write-merge buffer) and the availability of a remote refer-
ence facility, which allows a processor to choose to access
data directly in a remote location, by disabling caching.
Finally, to obtain the full benefit of software coherence, we
observe that minor program changes can be crucial. In par-
ticular, we identify the need to employ reader-writer locks,
avoid certain interactions between program synchroniza-
tion and the coherence protocol, and align data structures
with page boundaries whenever possible. We summarize
our findings and conclude in section 6.

2 The Software Coherence Protocol
In this section we present a scalable protocol for soft-

ware cache coherence. As in most software coherence
systems, we use virtual memory protection bits to enforce
consistency at the granularity of pages. As in Munin [26],
Treadmarks [14], and the work of Petersen and Li [20, 21],
we allow more than one processor to write a page concur-
rently, and we use a variant of release consistency to limit
coherence operations to synchronization points. (Between
these points, processors can continue to use stale data in
their caches.) As in the work of Petersen and Li, we exploit
the global physical address space to move data at the gran-
ularity of cache lines: instead of copying pages we map
them remotely, and allow the hardware to fetch cache lines
on demand.

The protocol employs a distributed, non-replicated di-
rectory data structure that maintains cacheability and shar-
ing information, similar to the coherent map data structure
of PLATINUM [10]. A page can be in one of the following
four states:

Uncached – No processor has a mapping to the page. This
is the initial state for all pages.

Shared – One or more processors have read-only map-
pings to the page.

Dirty – A single processor has both read and write map-
pings to the page.

Weak – Two or more processors have mappings to the page
and at least one has both read and write mappings.

To facilitate transitions from weak back to the other states,
the coherent map includes auxiliary counts of the number
of readers and writers of each page.

Each processor holds the portion of the coherent map
that describes the pages whose physical memory is local
to that processor—the pages for which the processor is

the home node. In addition, each processor holds a local
weak list that indicates which of the pages to which it has
mappings are weak. When a processor takes a page fault
it locks the coherent map entry representing the page on
which the fault was taken. It then changes the coherent
map entry to reflect the new state of the page. If necessary
(i.e. if the page has made the transition from shared or
dirty to weak) the processor updates the weak lists of all
processors that have mappings for that page. It then unlocks
the entry in the coherent map. The process of updating a
processor’s weak list is referred to as posting a write notice.

Use of a distributed coherent map and per-processor
weak lists enhances scalability by minimizing memory con-
tention and by avoiding the need for processors at acquire
points to scan weak list entries in which they have no inter-
est (something that would happen with a centralized weak
list [20]. However it may make the transition to the weak
state very expensive, since a potentially large number of
remote memory operations may have to be performed (se-
rially) in order to notify all sharing processors. Ideally,
we would like to maintain the low acquire overhead of per-
processor weak lists while requiringonly a constant amount
of work per shared page on a transition to the weak state.

In order to approach this goal we take advantage of the
fact that page behavior tends to be relatively constant over
the execution of a program, or at least a large portion of
it. Pages that are weak at one acquire point are likely to
be weak at another. We therefore introduce an additional
pair of states, called safe and unsafe. These new states,
which are orthogonal to the others (for a total of 8 distinct
states), reflect the past behavior of the page. A page that
has made the transition to weak several times and is about
to be marked weak again is also marked as unsafe. Future
transitions to the weak state will no longer require the send-
ing of write notices. Instead the processor that causes the
transition to the weak state changes only the entry in the
coherent map, and then continues. The acquire part of the
protocol now requires that the acquiring processor check
the coherent map entry for all its unsafe pages, and inval-
idate the ones that are also marked as weak. A processor
knows which of its pages are unsafe because it maintains a
local list of them (this list is never modified remotely). A
page changes from unsafe back to safe if has been checked
at several acquire operations and found not to be weak.

In practice we find that the distinction between safe
and unsafe pages makes a modest, though not dramatic,
contribution to performance in well-structured programs
(up to 5% improvement in our application suite). It is more
effective for more poorly-structured programs (up to 35%
for earlier versions of our programs), for which it provides a
“safety net”, allowing their performance to be merely poor,
instead of really bad.

The state diagram for a page in our protocol appears in
figure 1. The state of a page as represented in the coher-
ent map is a property of the system as a whole, not (as in
most protocols) the viewpoint of a single processor. The
transactions represent read, write, and acquire accesses on
the part of any processor. Count is the number of proces-
sors having mappings to the page; notices is the number
of notices that have been sent on behalf of a safe page;
and checks is the number of times that a processor has
checked the coherent map regarding an unsafe page and
found it not to be weak.

& Notices > Limit
& Count > 1
Read/Write

Write

SAFE
 DIRTY
SAFE

WEAK
SAFE

SHARED
SAFE

 UNCACHED Write

Read/Write

 DIRTY

WEAKSHARED

UNSAFE UNSAFE

UNSAFEUNSAFE

 UNCACHED

Write & Count > 1

Read Read

Write & Count = 1 Write & Count = 1

& Count = 1
Read/Write

& Count = 1

Read/Write

All non-acquire accesses

Write & Count > 1

Acquire & Checks > Limit

Acquire & Count != 0

Acquire & Checks > Limit

All non-acquire accesses
Acquire & Count != 0

Read
Acquire &
Checks <= Limit

& Notices > Limit

Write & Count > 1

Read
Acquire

& Count > 1

& Notices <= Limit

& Notices <= Limit

Acquire & Count = 0 Acquire & Count = 0

Acquire & Checks <= Limit
Read/Write

& Count > 1

Acquire

Figure 1: Scalable software cache coherence state diagram

We apply one additional optimization. When a processor
takes a page fault on a write to a shared, non-weak page
we could choose to make the transition to weak (and post
write notices if the page was safe) immediately, or we could
choose to wait until the processors’s next release operation:
the semantics of release consistency do not require us to
make writes visible before then2. The advantage of delayed
transitions is that any processor that executes an acquire
operation before the writing processor’s next release will
not have to invalidate the page. This serves to reduce the
overall number of invalidations. On the other hand, delayed
transitions have the potential to lengthen the critical path
of the computation by introducing contention, especially
for programs with barriers, in which many processors may
want to post notices for the same page at roughly the same
time, and will therefore serialize on the lock of the coherent
map entry. Delayed write notices were introduced in the
Munin distributed shared memory system [26], which runs
on networks of workstations and communicates solely via
messages. Though the relative values of constants are quite
different, experiments indicate (see section 4) that delayed
transitions are generally beneficial in our environment as
well.

One final question that has to be addressed is the mech-
anism whereby written data makes its way back into main
memory. Petersen and Li found a write-through cache to
be the best option, but this could lead to a potentially unac-
ceptable amount of memory traffic in large-scale systems.
Assuming a write-back cache either requires that no two
processors write to the same cache line of a weak page—an
unreasonable assumption—or a mechanism to keep track of
which individual words are dirty. We ran our experiments
(see section 4.2) under three different assumptions: write-
through caches, write-back caches with per-word hardware
dirty bits in the cache, and write-through caches with a
write-merge buffer [8] that hangs onto recently-written lines

2Under the same principle a write page-fault on an unmapped page
will take the page to the shared state. The writes will be made visible only
on the subsequent release operation

(16 in our experiments) and coalesces any writes that are
directed to the same line. Depending on the write policy,
the coherence protocol at a release operation must force a
write-back of all dirty lines, purge the write-merge buffer,
or wait for acknowledgments of write-throughs.

3 Experimental Methodology
We use execution driven simulation to simulate a mesh-

connected multiprocessor with up to 64 nodes. Our sim-
ulator consists of two parts: a front end, Mint [25], that
simulates the execution of the processors, and a back end
that simulates the memory system. The front end is the
same in all our experiments. It implements the MIPS II
instruction set. Interchangeable modules in the back end
allow us to explore the design space of software and hard-
ware coherence. Our hardware-coherent modules are quite
detailed, with finite-size caches, full protocol emulation,
distance-dependent network delays, and memory access
costs (including memory contention). Our simulator is ca-
pable of capturing contention within the network, but only
at a substantial cost in execution time; the results reported
here model network contention at the sending and receiv-
ing nodes of a message, but not at the nodes in-between.
Our software-coherent modules add a detailed simulation
of TLB behavior, since it is the protection mechanism used
for coherence and can be crucial to performance. To avoid
the complexities of instruction-level simulation of interrupt
handlers, we assume a constant overhead for page faults.
Table 1 summarizes the default parameters used both in
our hardware and software coherence simulations, which
are in agreement with those published in [3] and in several
hardware manuals.

Some of the transactions required by our coherence pro-
tocols require a collectionof the operations shown in table 1
and therefore incur the aggregate cost of their constituents.
For example a page fault on a read to an unmapped page
consists of the following: a) a TLB fault service, b) a
processor interrupt caused by the absence of read rights,
c) a coherent map entry lock acquisition, and d) a coher-
ent map entry modification followed by the lock release.

System Constant Name Default Value
TLB size 128 entries
TLB fill time 24 cycles
Interrupt cost 140 cycles
Coherent map modification 160 cycles
Memory response time 20 cycles/cache line
Page size 4K bytes
Total cache per processor 128K bytes
Cache line size 32 bytes
Network path width 16 bits (bidirectional)
Link latency 2 cycles
Wire latency 1 cycle
Directory lookup cost 10 cycles
Cache purge time 1 cycle/line

Table 1: Default values for system parameters

Lock acquisition itself requires traversing the network and
accessing the memory module where the lock is located.
Assuming that accessing the coherent entry lock requires
traversing 10 intermediate nodes and there is no contention
in the network and the lock is found to be free the cost for
lock acquisition is � 2 � 1� � 10 � 12 � 1 � � 2 � 1� � 10 � 73
cycles. The total cost for the above transaction would then
be 24 � 140 � 73 � 160 � 398 cycles.

We report results for six parallel programs. Three are
best described as computational kernels: Gauss, sor, and
fft. Three are complete applications: mp3d, water, and
appbt. The kernels are local creations. Gauss performs
Gaussian elimination without pivoting on a 448 � 448 ma-
trix. Sor computes the steady state temperature of a metal
sheet using a banded parallelization of red-black succes-
sive overrelaxation on a 640 � 640 grid. Fft computes
an one-dimensional FFT on a 65536-element array of com-
plex numbers, using the algorithm described in [2]. Mp3d
and water are part of the SPLASH suite [24]. Mp3d is a
wind-tunnel airflow simulation. We simulated 40000 par-
ticles for 10 steps in our studies. Water is a molecular
dynamics simulation computing inter- and intra-molecule
forces for a set of water molecules. We used 256 molecules
and 3 times steps. Finally appbt is from the NASA paral-
lel benchmarks suite [5]. It computes an approximation to
Navier-Stokes equations. It was translated to shared mem-
ory from the original message-based form by Doug Burger
and Sanjay Mehta at the University of Wisconsin. Due to
simulation constraints our input data sizes for all programs
are smaller than what would be run on a real machine, a
fact that may cause us to see unnaturally high degrees of
sharing. Since we still observe reasonable scalability for
the applications (with the exception of mp3d) we believe
that the data set sizes do not compromise our results.

4 Results
Our principal goal is to determine whether one can

approach the performance of hardware cache coherence
without the special hardware. To that end, we begin in
section 4.1 by evaluating the tradeoffs between different
software protocols. Then, in sections 4.2 and 4.3, we con-
sider the impact of different write policies and of simple
program changes that improve the performance of software
cache coherence. These changes include segregation of
synchronization variables, data alignment and padding, use

of reader-writer locks to avoid coherence overhead, and use
of uncached remote references for fine-grain data sharing.
Finally, in section 4.4, we compare the best of the soft-
ware results to the corresponding results on sequentially-
consistent and release-consistent hardware.

4.1 Software coherence protocol alternatives
This section compares our software protocol (presented

in section 2) to the protocol devised by Petersen and Li [20]
(modified to distribute the centralized weak list among the
memories of the machine), and to a sequentially consis-
tent page-based cache coherence protocol. For each of the
first two protocols we present two variants: one that de-
lays write-driven state transitions until the subsequent re-
lease operation, and one that performs them immediately.
The comparisons assume a write-back cache. Coherence
messages (if needed) can be overlapped with the flush op-
erations, once the writes have entered the network. The
protocols are named as follows:

rel.distr.del: The delayed version of our distributed pro-
tocol, with safe and unsafe pages. Write notices are
posted at the time of a release and invalidations are
done at the time of an acquire. At release time, the
protocol scans the TLB/page table dirty bits to de-
termine which pages have been written. Pages can
therefore be mapped read/write on the first miss, elim-
inating the need for a second trap if a read to an
unmapped page is followed by a write. This pro-
tocol has slightly higher bookkeeping overhead than
rel.distr.nodel below, but reduces trap costs
and possible coherence overhead by delaying transi-
tions to the dirty or weak state (and posting of associ-
ated write notices) for as long as possible. It provides
the unit of comparison (normalized running time of 1)
in our graphs.

rel.distr.nodel: Same as rel.distr.del, except that
write notices are posted as soon as an inconsistency
occurs. (Invalidations are done at the time of an ac-
quire, as before.) While this protocol has slightly less
bookkeeping overhead (no need to remember pages
for an upcoming release operation), it may cause
higher coherence overhead and higher trap costs. The
TLB/page table dirty bits are not sufficient here, since
we want to take action the moment an inconsistency
occurs. We must use the write-protect bits to generate
page faults.

rel.centr.del: Same as rel.distr.del, except that
write notices are propagated by inserting weak pages
in a global list which is traversed on acquires. List en-
tries are distributed among the nodes of the machine
although the list itself is conceptually centralized.

rel.centr.nodel: Same as rel.distr.nodel, except
that write notices are propagated by inserting weak
pages in a global list which is traversed on acquires.
This protocol is a straightforward extension of the
one proposed by Petersen and Li [20] to large scale
distributed memory machines. The previous protocol
(rel.centr.del) is also similar to that of Petersen
and Li with the addition of the delayed write notices.

gauss sor water mp3d appbt fft

0
1

2
3

4

Performance on 64 processors
No

rm
ali

ze
d e

xe
cu

tio
n t

im
e

rel.distr.del
rel.distr.ndl
rel.centr.del
rel.centr.ndl
seq

Figure 2: Comparative performance of different software
protocols on 64 processors

seq: A sequentially consistent software protocol that al-
lows only a single writer for every coherence block
at any given point in time. Interprocessor interrupts
are used to enforce coherence when an access fault
occurs. Interprocessor interrupts present several prob-
lems for our simulation environment (fortunately this
is the only protocol that needs them) and the level
of detail at which they are simulated is significantly
lower than that of other system aspects. Results for
this protocol may underestimate the cost of coherence
management (especially in cases of high network traf-
fic) but since it is the worst protocol in most cases, the
inaccuracy has no effect on our conclusions.

Figure 2 presents the running time of the different soft-
ware protocols on our set of partially modified applica-
tions. We have used the best version of the applications
that does not require protocol modifications (i.e. no identi-
fication of reader/writer locks or use of remote reference;
see section 4.3). The distributed protocols outperform the
centralized implementations, often by a significant margin.
The largest improvement (almost three-fold) is realized on
water and mp3d. These applications exhibit higher de-
grees of sharing and thus accentuate the importance of the
coherence algorithm. In the remaining programs where co-
herence is less important, our protocols still provide reason-
able performance improvements over the remaining ones,
ranging from 2% to 35%.

The one application in which the sequential protocol out-
performs the relaxed alternatives is Gaussian elimination.
While the actual difference in performance may be smaller
than shown in the graph, due in part to the reduced detail in
the implementation of the sequential protocol, there is one
source of overhead that the relaxed protocols have to pay
that the sequential version does not. Since the releaser of a
lock does not know who the subsequent acquirer of the lock
will be, it has to flush changes to shared data at the time of
a release in the relaxed protocols, so those changes will be
visible. Gauss uses locks as flags to indicate that a partic-
ular pivot row has become available to other processors. In
section 4.3 we note that the use of locks as flags results in
many unnecessary flushes, and we present a refinement to
the relaxed consistency protocols that avoids them.

gauss sor water mp3d appbt fft

0
1

2
3

4
5

6

Overhead on 64 processors

Ov
erh

ea
d A

na
lys

is

ipc-interrupts
lock wait
coherence
cache

Figure 3: Overhead analysis of different software protocols
on 64 processors

Sor and water have very regular sharing patterns,
sor among neighbors and water within a well-defined
subset of the processors partaking in the computation. The
distributed protocol makes a processor pay a coherence
penalty only for the pages it cares about, while the cen-
tralized one forces processors to examine all weak pages,
which is all the shared pages in the case ofwater, resulting
in very high overheads. In water, the centralized relaxed
consistency protocols are badly beaten by the sequentially
consistent software protocol. This agrees to some extent
with the results reported by Petersen and Li [20], but the
advantage of the sequentially consistent protocol was less
pronounced in their work. We believe there are two reasons
for our difference in results. First, we have restructured the
code to greatly reduce false sharing, thus removing one of
the advantages that relaxed consistency has over sequential
consistency. Second, we have simulated a larger number
of processors, aggravating the contention caused by the
shared weak list used in the centralized relaxed consistency
protocols.
Appbt and fft have limited sharing. Fft exhibits

limited pairwise sharing among different processors for ev-
ery phase (the distance between paired elements decreases
for each phase). We were unable to establish the access
pattern of appbt from the source code; it uses linear ar-
rays to represent higher dimensional data structures and the
computation of offsets often uses several levels of indirec-
tion.
Mp3d [24] has very wide-spread sharing. We modified

the program slightly (prior to the current studies) to ensure
that colliding molecules belong with high probability to ei-
ther the same processor or neighboring processors. There-
fore the molecule data structure exhibits limited pairwise
sharing. The main problem is the space cell data structure.
Space cells form a three dimensional array. Unfortunately
molecule movement is fastest in the outermost dimension
resulting in long stride access to the space cell array. That
coupled with large coherence blocks results in all the pages
of the space cell data structure being shared across all pro-
cessors. Since the processors modify the data structure for
every particle they process, the end result is a long weak
list and serialization in the centralized protocols. The dis-
tributed protocols improve the coherence management of

gauss sor water mp3d appbt fft

0.0
0.5

1.0
1.5

2.0

No
rm

ali
ze

d e
xe

cu
tio

n t
im

e

W-back
W-through
W-through+Clct

Figure 4: Comparative performance of different cache
architectures on 64 processors

the molecule data structure but can do little to improve on
the space cell data structure, since sharing is widespread.

While run time is the most important metric for appli-
cation performance it does not capture the full impact of
a coherence algorithm. Figure 3 shows the breakdown
of overhead into its major components for the five soft-
ware protocols on our six applications. These components
are: interprocessor interrupt handling overhead (sequen-
tially consistent protocol only), time spent waiting for ap-
plication locks, coherence protocol overhead (including
waiting for system locks and flushing and purging cache
lines), and time spent waiting for cache misses. Coherence
protocol overhead has an impact on the time spent wait-
ing for application locks—the two are not easily separable.
The relative heights of the bars do not agree in figures 2
and 3, because the former pertains to the critical path of
the computation, while the latter provides totals over all
processors for the duration of execution. Aggregate costs
for the overhead components can be higher but critical path
length can be shorter if some of the overhead work is done
in parallel. The coherence part of the overhead is signif-
icantly reduced by the distributed delayed protocol for all
applications. For mp3d the main benefit comes from the
reduction of lock waiting time. The program is tightly
synchronized; a reduction in coherence overhead implies
less time holding synchronization variables and therefore a
reduction in synchronization waiting time.

4.2 Write policies
In this section we consider the choice of write policy for

the cache. Specifically, we compare the performance ob-
tained with a write-through cache, a write-back cache, and
a write-through cache with a buffer for merging writes [8].
The policy is applied on only shared data. Private data uses
a write-back policy by default.

Write-back caches impose the minimum load on the
memory and network, since they write blocks back only on
evictions, or when explicitly flushed. In a software coherent
system, however, write-back caches have two undesirable
qualities. The first of these is that they delay the execution
of synchronization operations, since dirty lines must be
flushed at the time of a release. Write-through caches
have the potential to overlap memory accesses with useful

computation.

The second problem is more serious, because it affects
program correctness in addition to performance. Because
a software coherent system allows multiple writers for the
same page, it is possible for different portions of a cache
line to be written by different processors. When those
lines are flushed back to memory we must make sure that
changes are correctly merged so no data modifications are
lost. The obvious way to do this is to have the hardware
maintain per-word dirty bits, and then to write back only
those words in the cache that have actually been modified.
We assume there is no sub-word sharing: words modified
by more than one processor imply that the program is not
correctly synchronized.

Write-through caches can potentially benefit relaxed
consistency protocols by reducing the amount of time spent
at release points. They also eliminate the need for per-word
dirty bits. Unfortunately, they may cause a large amount of
traffic, delaying the service of cache misses and in general
degrading performance. In fact, if the memory subsystem
is not able to keep up with all the traffic, write-through
caches are unlikely to actually speed up releases, because
at a release point we have to make sure that all writes have
been globally performed before allowing the processor to
continue. A write completes when it is acknowledged by
the memory system. With a large amount of write traffic
we may have simply replaced waiting for the write-back
with waiting for missing acknowledgments.

Write-through caches with a write-merge buffer [8] em-
ploy a small (16 entries in our case) fully associative buffer
between the cache and the interconnection network. The
buffer merges writes to the same cache line, and allocates
a new entry for a write to a non-resident cache line. When
it runs out of entries the buffer randomly chooses a line for
eviction and writes it back to memory. The write-merge
buffer is an attempt to combine the desirable features of
both the write-through and the write-back cache. It re-
duces memory and network traffic when compared to a
plain write-through cache and has a shorter latency at re-
lease points when compared to a write-back cache. Per-
word dirty bits are required at the buffer to allow successful
merging of cache lines into memory.

Figure 4 presents the relative performance of the differ-
ent cache architectures when using the best relaxed pro-
tocol on our best version of the applications. For almost
all programs the write-through cache with the write-merge
buffer outperforms the others. The exceptions aremp3d, in
which a simple write-through cache is better, and Gauss,
in which a write-back cache is better. In both cases the per-
formance of the write-through cache with the write-merge
buffer is within 5% of the better alternative.

We also ran experiments using a single policy for both
private and shared data. These experiments capture the
behavior of an architecture in which write policies can-
not be varied among pages. If a single policy has to be
used for both shared and private data, a write-back cache
provides the best performance. As a matter of fact the
write-through policies degrade performance significantly,
with plain write-through being as much as 50 times worse
in water.

mp3d gauss

0
1

2
3

4
5

No
rm

ali
ze

d e
xe

cu
tio

n t
im

e

Plain
Sync-fix,pad
Sort
RW-locks
R-ref

Figure 5: Normalized runtime of Mp3d and Gauss with
different levels of restructuring

4.3 Program modifications to support software
cache coherence

The performance observed under software coherence is
very sensitive to the locality properties of the application.
In this section we describe the modifications we had to make
to our applications in order to get them to run efficiently on
a software coherent system. We then present performance
comparisons for the modified and unmodified applications.

We have used four different techniques to improve the
performance of our applications. Two are simple program
modifications. They require no additions to the coherence
protocol, and can be used in the context of hardware co-
herent systems as well. Two take advantage of program
semantics to give hints to the coherence protocol on how to
reduce coherence management costs.

Our four techniques are:
� Separation of synchronization variables from other

writable program data.
� Data structure alignment and padding at page or sub-

page boundaries.
� Identification of reader-writer locks and avoidance of

coherence overhead at the release point.
� Identification of fine grained shared data structures

and use of remote reference for their access to avoid
coherence management.

All our changes produced dramatic improvements on the
runtime of one or more applications, with some showing
improvement of well over 50%.

Separation of busy-wait synchronization variables from
the data they protect is also important on hardware coherent
systems, where it avoids invalidating the data protected by
locks in response to unsuccessful test and set opera-
tions on the locks themselves. Under software coherence
however, this optimization becomes significantly more im-
portant to performance. The problem caused by colocation
is aggravated by an adverse interaction between application
locks and the locks protecting coherent map entries at the
OS level. A processor that attempts to access an application
lock for the first time will take a page fault and will attempt

appbt water

0.0
0.5

1.0
1.5

2.0
2.5

No
rm

ali
ze

d e
xe

cu
tio

n t
im

e

Plain
Sync-fix,pad
R-ref

Figure 6: Normalized runtime of appbt and waterwith
different levels of restructuring

to map the page containing the lock. This requires the ac-
quisition of the OS lock protecting the coherent map entry
for that page. The processor that attempts to release the
application lock must also acquire the lock for the coher-
ent map entry representing the page that contains the lock
and the data it protects, in order to update the page state to
reflect the fact that the page has been modified. In cases
of contention the lock protecting the coherent map entry is
unavailable: it is owned by the processor(s) attempting to
map the page for access.

We have observed this lock-interaction effect in Gaus-
sian elimination, in the access to the lock protecting the in-
dex to the next available row. It is also present in the imple-
mentation of barriers under the Argonne P4 macros (used
by the SPLASH applications), since they employ a shared
counter protected by a lock. We have changed the barrier
implementation to avoid the problem in all our applications
and have separated synchronization variables and data in
Gauss to eliminate the adverse interaction. Gauss enjoys
the greatest improvement due to these changes, though no-
ticeable improvements occur in water, appbt and mp3d
as well.

Data structure alignment and padding is a well-known
means of reducing false sharing [12]. Since coherence
blocks in software coherent systems are large (4K bytes
in our case), it is unreasonable to require padding of data
structures to that size. However we can often pad data
structures to subpage boundaries so that a collection of
them will fit exactly in a page. This approach coupled
with a careful distribution of work, ensuring that proces-
sor data is contiguous in memory, can greatly improve the
locality properties of the application. Water and appbt
already had good contiguity, so padding was sufficient to
achieve good performance. Mp3d on the other hand starts
by assigning molecules to random coordinates in the three-
dimensional space. As a result, interacting particles are
seldom contiguous in memory, and generate large amounts
of sharing. We fixed this problem by sorting the particles
according to their slow-moving � coordinate and assigned
each processor a contiguous set of particles. Interacting
particles are now likely to belong to the same page and
processor, reducing the amount of sharing.

hw-best
sw-best

 gauss sor water mp3d appbt fft

0.0
0.5

1.0
1.5

No
rm

ali
ze

d e
xe

cu
tio

n t
im

e

Figure 7: Comparative software and hardware system per-
formance on 16 processors

We were motivated to give special treatment to reader-
writer locks after studying the Gaussian elimination pro-
gram. Gauss uses locks to test for the readiness of pivot
rows. In the process of eliminating a given row, a processor
acquires (and immediately releases) the locks on the pre-
vious rows one by one. With regular exclusive locks, the
processor is forced on each release to notify other proces-
sors of its most recent (single-element) change to its own
row, even though no other processor will attempt to use that
element until the entire row is finished. Our change is to
observe that the critical section protected by the pivot row
lock does not modify any data (it is in fact empty!), so no
coherence operations are needed at the time of the release.
We communicate this information to the coherence proto-
col by identifying the critical section as being protected by
a reader’s lock.3

Even with the changes just described, there are program
data structures that are shared at a very fine grain, and
that can therefore cause performance degradation. It can
be beneficial to disallow caching for such data structures,
and to access the memory modules in which they reside
directly. We term this kind of access remote reference,
although the memory module may sometimes be local to
the processor making the reference. We have identified
the data structures in our programs that could benefit from
remote reference and have annotated them appropriately by
hand (our annotations range from one line of code inwater
to about ten lines in mp3d.) Mp3d sees the largest benefit:
it improves by almost two fold when told to use remote
reference on the space cell data structure. Appbt improves
by about 12% when told to use remote reference on a certain
array of condition variables. Water and Gauss improve
only minimally; they have a bit of fine-grain shared data,
but they don’t use it very much.

The performance improvements for our four modified
applications can be seen in figures 5 and6. Gauss im-

3An alternative fix for Gauss would be to associate with each pivot
row a simple flag variable on which the processors for later rows could
spin. Reads of the flag would be acquire operations without corresponding
releases. This fix was not available to us because our programming model
provides no means of identifying acquire and release operations except
through a pre-defined set of synchronization operations.

hw-best
sw-best

 gauss sor water mp3d appbt fft

0.0
0.5

1.0
1.5

No
rm

ali
ze

d e
xe

cu
tio

n t
im

e

Figure 8: Comparative software and hardware system per-
formance on 64 processors

proves markedly when fixing the lock interference prob-
lem and also benefits from the identification of reader-
writer locks. Remote reference helps only a little. Water
gains most of its performance improvement by padding the
molecule data structures to sub-page boundaries and relo-
cating synchronization variables. Mp3d benefits from relo-
cating synchronization variables and padding the molecule
data structure to subpage boundaries. It benefits even more
from improving the locality of particle interactions via sort-
ing, and remote reference shaves off another 50%. Finally
appbt sees dramatic improvements after relocating one
of its data structures to achieve good page alignment and
benefits nicely from the use of remote reference as well.

Our program changes were simple: identifying and fix-
ing the problems was a mechanical process that consumed
at most a few hours. The one exception was mp3d which,
apart from the mechanical changes, required an understand-
ing of program semantics for the sorting of particles. Even
in that case identifying the problem took less than a day;
fixing it was even simpler: a call to a sorting routine. We
believe that such modest forms of tuning represent a rea-
sonable demand on the programmer. We are also hopeful
that smarter compilers will be able to make many of the
changes automatically. The results for mp3d could most
likely be further improved, with more major restructuring
of access to the space cell data structure, but this would
require effort out of keeping with the current study.
4.4 Hardware v. software coherence

Figures 7 and 8 compare the performance of our best
software protocol to that of a relaxed-consistency DASH-
like hardware protocol [18] on 16 and 64 processors respec-
tively. The unit line in the graphs represents the running
time of each application under a sequentially consistent
hardware coherence protocol. In all cases the performance
of the software protocol is within 55%4 of the relaxed con-
sistency hardware protocol. In most cases it is much closer.
For the three kernels, the software protocol is faster than
the hardware.

4The only example of a disparity as large as 55% occurs in mp3d on 64
processors. However mp3d does not really scale to a machine of that size.
The 16-processor case provides a more meaningful comparison: here the
performance difference is closer to 30%.

For all programs the best software protocol is the one
described in section 2, with a distributed coherence map
and weak list, safe/unsafe states, delayed transitions to the
weak state, and write-through caches with a write-merge
buffer. The applications include all the program modifica-
tions described in section 4.3, though remote reference is
used only in the context of software coherence; it does not
make sense in the hardware-coherent case. Experiments
(not shown) confirm that the program changes improve
performance under both hardware and software coherence,
though they help more in the software case. They also help
the sequentially-consistent hardware more than the release
consistent hardware; we believe this accounts for the rel-
atively modest observed advantage of the latter over the
former. We have also run experiments (not shown here)
varying several of the architectural constants in out simu-
lations. In all cases software cache coherence maintained
performance comparable to that of the hardware alterna-
tives.

5 Related Work
Our work is most closely related to that of Petersen and

Li [20]: we both use the notion of weak pages, and purge
caches on acquire operations. The difference is scalability:
we distribute the coherent map and use per processor weak
lists, distinguish between safe and unsafe pages, check the
coherent map only for unsafe pages mapped by the cur-
rent processor, and multicast write notices for safe pages
that turn out to be weak. We have also examined architec-
tural alternatives and program-structuring issues that were
not addressed by Petersen and Li. Our work resembles
Munin [26] and lazy release consistency [13] in its use of
delayed write notices, but we take advantage of the glob-
ally accessible physical address space for cache fills and
write-through, and for access to the coherent map and the
local weak lists.

Our use of remote reference to reduce the overhead of co-
herence management can also be found in work on NUMA
memory management [7, 10, 17]. However relaxed con-
sistency greatly reduces the opportunities for profitable re-
mote data reference. In fact, early experiments we have
conducted with on-line NUMA policies and relaxed con-
sistency have failed badly in their attempt to determine
when to use remote reference.

On the hardware side our work bears resemblance to the
Stanford Dash project [19] in the use of a relaxed consis-
tency model, and to the Georgia Tech Beehive project [23]
in the use of relaxed consistency and per-word dirty bits
for successful merging of inconsistent cache lines. Both
these systems use their extra hardware to allow coherence
messages to propagate in the background of computation
(possibly at the expense of extra coherence traffic) in or-
der to avoid a higher waiting penalty at synchronization
operations.

Coherence for distributed memory with per-processor
caches can also be maintained entirely by a compiler [9].
Under this approach the compiler inserts the appropriate
cache flush and invalidation instructions in the code, to en-
force data consistency. The static nature of the approach,
however, and the difficulty of determining access patterns
for arbitrary programs, often dictates conservative deci-
sions that result in higher miss rates and reduced perfor-
mance.

6 Conclusions
We have shown that supporting a shared memory pro-

gramming model while maintaining high performance does
not necessarily require expensive hardware. Similar results
can be achieved by maintaining coherence in software us-
ing the operating system and address translation hardware.
We have introduced a new scalable protocol for software
cache coherence and have shown that it out-performs exist-
ing approaches (both relaxed and sequentially consistent).
We have also studied the tradeoffs between different cache
write policies, showing that in most cases a write-through
cache with a write-merge buffer is preferable. Finally we
have shown certain simple program modifications can sig-
nificantly improve performance on a software coherent sys-
tem.

We are currently studying the sensitivity of software
coherence schemes to architectural parameters (e.g. net-
work latency and page and cache line sizes). We are also
pursuing protocol optimizations that should improve per-
formance for important classes of programs. For example,
we are considering policies in which flushes of modified
lines and purges of invalidated pages are allowed to take
place “in the background”—during synchronization waits
or idle time, or on a communication co-processor. In fact,
we believe that many of the performance-enhancing fea-
tures of our software coherence protocol could be of use in
programmable cache controllers, such as those being de-
veloped by the Flash [16] and Typhoon [22] projects. It
is not yet clear whether such controllers will be cost ef-
fective, but they offer the opportunity to combine many of
the advantages of both hardware and software coherence:
small coherence blocks and concurrent execution of very
complicated protocols. Finally, we believe strongly that
behavior-driven coherence, whether implemented in hard-
ware or software, can benefit greatly from compiler support.
We are actively pursuing the design of annotations that a
compiler can use to provide hints to the coherence system,
allowing it to customize its actions to the sharing patterns
of individual data structures.
Acknowledgements

Our thanks to Ricardo Bianchini and Jack Veenstra for
the long nights of discussions, idea exchanges and sugges-
tions that helped make this paper possible.

References
[1] A. Agarwal and others. The MIT Alewife Machine: A

Large-Scale Distributed-Memory Multiprocessor. In M.
Dubois and S. S. Thakkar, editors, Scalable Shared Mem-
ory Multiprocessors, pages 239–261. Kluwer Academic
Publishers, 1992.

[2] S. G. Akl. The Design and Analysis of Parallel Algorithms.
Prentice Hall, Inc., Englewood Cliffs, NJ, 1989.

[3] T. E. Anderson, H. M. Levy, B. N. Bershad, and E. D.
Lazowska. The Interaction of Architecture and Operat-
ing System Design. In Proceedings of the Fourth Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 108–120,
Santa Clara, CA, April 1991.

[4] J. Archibald and J. Baer. Cache Coherence Protocols: Eval-
uation Using a Multiprocessor Simulation Model. ACM

Transactions on Computer Systems, 4(4):273–298, Novem-
ber 1986.

[5] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS
Parallel Benchmarks. Report RNR-91-002, NASA Ames
Research Center, January 1991.

[6] M. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. Felten, and J.
Sandberg. Virtual Memory Mapped Network Interface for
the SHRIMP Multicomputer. In Proceedings of the Twenty-
First International Symposium on Computer Architecture,
pages 142–153, Chicago, IL, April 1994.

[7] W. J. Bolosky, M. L. Scott, R. P. Fitzgerald, R. J. Fowler,
and A. L. Cox. NUMA Policies and Their Relation to
Memory Architecture. In Proceedings of the Fourth Inter-
national Conferenceon Architectural Support for Program-
ming Languages and Operating Systems, pages 212–221,
Santa Clara, CA, April 1991.

[8] Y. Chen and A. Veidenbaum. An Effective Write Policy for
Software Coherence Schemes. In Proceedings Supercom-
puting ’92, Minneapolis, MN, November 1992.

[9] H. Cheong and A. V. Veidenbaum. Compiler-Directed
Cache Management in Multiprocessors. Computer,
23(6):39–47, June 1990.

[10] A. L. Cox and R. J. Fowler. The Implementation of a
Coherent Memory Abstraction on a NUMA Multiproces-
sor: Experiences with PLATINUM. In Proceedings of the
Twelfth ACM Symposium on Operating Systems Principles,
pages 32–44, Litchfield Park, AZ, December 1989.

[11] S. J. Eggers and R. H. Katz. Evaluation of the Performance
of Four Snooping Cache Coherency Protocols. In Proceed-
ings of the Sixteenth International Symposium on Computer
Architecture, pages 2–15, May 1989.

[12] M. D. Hill and J. R. Larus. Cache Considerations for Mul-
tiprocessor Programmers. Communications of the ACM,
33(8):97–102, August 1990.

[13] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy Release
Consistency for Software Distributed Shared Memory. In
Proceedings of the Nineteenth International Symposium on
Computer Architecture, pages 13–21, Gold Coast, Aus-
tralia, May 1992.

[14] P. Keleher, S. Dwarkadas, A. Cox, and W. Zwaenepoel.
TreadMarks: Distributed Shared Memory on Standard
Workstations and Operating Systems. COMP TR93-214,
Department of Computer Science, Rice University, Novem-
ber 1993.

[15] Kendall Square Research. KSR1 Principles of Operation.
Waltham MA, 1992.

[16] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni,
K. Gharachorloo, J. Chapin, D. Nakahira, J. Baxter, M.
Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy. The
FLASH Multiprocessor. In Proceedings of the Twenty-First

International Symposium on Computer Architecture, pages
302–313, Chicago, IL, April 1994.

[17] R. P. LaRowe Jr. and C. S. Ellis. Experimental Comparison
of Memory Management Policies for NUMA Multiproces-
sors. ACM Transactions on Computer Systems, 9(4):319–
363, November 1991.

[18] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J.
Hennessy. The Directory-Based Cache Coherence Protocol
for the DASH Multiprocessor. In Proceedings of the Seven-
teenth International Symposium on Computer Architecture,
pages 148–159, Seattle, WA, May 1990.

[19] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A.
Gupta, J. Hennessy,M. Horowitz, and M. S. Lam. The Stan-
ford Dash Multiprocessor. Computer, 25(3):63–79, March
1992.

[20] K. Petersen and K. Li. Cache Coherence for Shared Mem-
ory Multiprocessors Based on Virtual Memory Support. In
Proceedings of the Seventh International Parallel Process-
ing Symposium, Newport Beach, CA, April 1993.

[21] K. Petersen and K. Li. An Evaluation of Multiprocessor
Cache Coherence Based on Virtual Memory Support. In
Proceedingsof the Eighth International Parallel Processing
Symposium, pages 158–164, Cancun, Mexico, April 1994.

[22] S. K. Reinhardt, J. R. Larus, and D. A. Wood. Tempest
and Typhoon: User-level Shared-Memory. In Proceedings
of the Twenty-First International Symposium on Computer
Architecture, pages 325–336, Chicago, IL, April 1994.

[23] G. Shah and U. Ramachandran. Towards Exploiting the
Architectural Features of Beehive. GIT-CC-91/51, College
of Computing, Georgia Institute of Technology, November
1991.

[24] J. P. Singh, W. Weber, and A. Gupta. SPLASH: Stanford
Parallel Applications for Shared-Memory. ACM SIGARCH
Computer Architecture News, 20(1):5–44, March 1992.

[25] J. E. Veenstra and R. J. Fowler. Mint: A Front End
for Efficient Simulation of Shared-Memory Multiproces-
sors. In Proceedings of the Second International Workshop
on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS ’94), pages 201–
207, Durham, NC, January – February 1994.

[26] W. Zwaenepoel,J. Bennett, J. Carter, and P. Keleher. Munin:
Distributed Shared Memory Using Multi-Protocol Release
Consistency. Newsletter of the IEEE Computer Society
Technical Committee on Operating Systems and Applica-
tion Environments, 5(4):11, Winter 1991.

