
Tech. Rep.SSO

Scheduler-Conscious Synchronization *

Leonidas 1. Kontothanassis, Robert W. Wisniewski, and Michael L. Scott

Department of Computer Science
University of Rochester

Rochester, NY 14627-0226

{kthanasi,bob,scott}@cs.rochester.edu

December 1994

Abstract

Efficient synchronization is important for achieving good performance in parallel
programs, especially on large-scale multiprocessors. Most synchronization algorithms
have been designed to run on a dedicated machine, with one application process per
processor, and can suffer serious performance degradation in the presence of multipro­
gramming. Problems arise when running processes block or, worse, busy-wait for action
on the part of a process that the scheduler has chosen not to run.

In this paper we describe and evaluate a set of scheduler-conscious synchronization
algorithms that perform well in the presence of multiprogramming while maintaining
good performance on dedicated machines. We consider both large and small machines,
with a particular focus on scalability, and examine mutual-exclusion locks, reader-writer
locks, and barriers. The algorithms we study fall into two classes: those that heuristi­
cally determine appropriate behavior and those that use scheduler information to guide
their behavior. We show that while in some cases either method is sufficient, in general
sharing information across the kernel-user interface both eases the design of synchro­
nization algorithms and improves their performance.

'This work was supported in part by National Science Foundation grants numbers CCR-9319445 and
CDA-8822724, by ONR contract number N00014-92-J-1801 (in conjunction with the ARPA Research in
Information Science and Technology-High Performance Computing, Software Science and Technical pro­
gram, ARPA Order no. 8930), and by ARPA research grant no. MDA972-92-J-1012. Robert Wisniewski
was supported in part by an ARPA Fellowship in High Performance Computing administered by the Insti­
tute for Advanced Computer Studies, University of Maryland. Experimental results were obtained in part
through use of resources at the Cornell Theory Center, which receives major funding from NSF and New
York State; additional funding comes from ARPA, the NIH, IBM Corporation, and other members of the
Center's Corporate Research Institute. The government has certain rights in this material.

1

1 Introduction

One of the most basic questions for any synchronization mechanism is whether a process
that is unable to continue should spin-repeatedly testing the desired condition-or block­
yielding the processor to another, runnable process. Early work addressed this question
primarily in the context of uniprocessors. For such machines, spinning ("busy-waiting")
makes sense for synchronization among the memory operations of the processor and its de­
vices, but scheduler-based (blocking) synchronization must be used when the synchronizing
processes are being multiplexed on top of a single processor.

With the advent of shared-memory multiprocessors, busy-wait synchronization has also
come to be widely used in user-level applications. Spinning makes sense when the expected
wait time of a synchronization operation is less than twice the context switch time, or when
the spinning processor has nothing else useful to do. Researchers have developed a wealth of
busy-wait mechanisms, including mutual exclusion locks, reader-writer locks (which allow
concurrent access among readers, but guarantee exclusive access by writers), and barriers
(which guarantee that no process continues past a given point in a computation until all
other processes have reached that point). Of particular interest in recent years have been
scalable synchronization algorithms, which employ backoff or distributed data structures to
minimize contention [1,9, 11, 19, 20, 25, 26, 30, 31, 32, 38, 44, 45J. (The purpose of backoff
is to reduce the frequency with which spinning processes access a common synchronization
variable. The purpose of distributed data structures is to allow each process to spin on a
separate, locally-accessible variable.)

Unfortunately, busy-waiting in user-level code tends to work well only if each process
runs on a separate physical processor. If the total number of processes in the system
exceeds the number of processors, them some processors will have to be multiprogrammed.
The processes on a given processor may be from different applications or, if the scheduler
partitions the machine, from a single application. In either case, conflicts between scheduling
and synchronization can seriously degrade performance when:

• a process is preempted while holding a lock,

• a process is preempted while waiting for a lock and then is handed the lock while still
preempted, or

• a process spins when some preempted process could be making better use of the
processor.

In our experiments, we have found that algorithms that provide excellent performance in
the absence of multiprogramming may perform orders of magnitude worse when multipro­
gramming is introduced. These results suggest the need for scheduler-conscioussynchroniza­
tion-techniques that use knowledge of the scheduler's actions when making synchronization
decisions, and that provide information to the scheduler that it can use when making its
decisions.

Several research groups have addressed one or more aspects of scheduler-conscious syn­
chronization. Some have shown how to avoid preempting a process that holds a test_and_­

set lock, or to recover from this preemption if it occurs. Others have developed heuristics

2

that allow a process to guess whether it would be better to relinquish the processor, rather
than spin, while waiting for a lock. Several important aspects, however, have not yet been
addressed. In this paper we provide a relatively comprehensive treatment of scheduler­
conscious synchronization, covering mutual exclusion locks, reader-writer locks, and barri­
ers, for both large and small machines. Our contributions include:

• scheduler-conscious ticket and list-based queue locks, which provide FIFO servicing
of requests and scale well to large machines;

• a fair, scalable, scheduler-conscious reader-writer lock (the non-scalable verSlOn IS
trivial) ;

• a scheduler-conscious barrier for small machines (in which a centralized data structure
does not suffer from undue contention, and in which processes can migrate between
processors); and

• a scheduler-conscious barrier for large machines that are partitioned among applica­
tions, and on which processes migrate only when repartitioning.

The key to most of our techniques is to widen the kernel/user interface. We propose
three simple interface extensions that inform an application about the status of its processes
and the processors on which they run, and that allow it, safely and within limits, to limit
the points at which preemption may occur. Using this kernel interface, our algorithms are
able to achieve performance that degrades gracefully and linearly with increases in the level
of multiprogramming, while scaling without contention to very large numbers of processors.
We also consider heuristic techniques that attempt to adapt to the scheduling policy without
widening the kernel interface. These techniques achieve acceptable performance in certain
cases, but in general we find that use of the wider interface results in cleaner code and
better performance.

We assume the availability of special instructions that allow a process to read, modify,
and write a shared variable as a single atomic operation. 1 Examples include test_and_set,

fetch_and_increment, fetch_and_store (swap), compare_and_store, and the pair load_­

linked and store_conditional [15], now available in the DEC Alpha and MIPS II archi­
tectures. The atomic instructions used in our algorithms can all be emulated efficiently by
load-linked and store-conditional.

Our emphasis on large machines stems not only from the fact that scalable algorithms are
newer and hence less studied, but also from the fact that scheduler-conscious synchronization
is inherently harder for scalable algorithms based on distributed data structures. Scalable
algorithms have difficulties because their deterministic ordering of processes can conflict
with the actions of the scheduler in a multiprogrammed system. For example: a mutual
exclusion lock may keep waiting processes in a FIFO queue, either for the sake of fairness

1 Some multiprocessors, especially the larger ones, provide more sophisticated hardware support for syn­
chronization. Examples include the queued locks of the Stanford Dash machine [21], the QOLB (queue-on­
lock-bit) operation of the IEEE Scalable Coherent Interface [14], and the near-constant-time barriers of the
Thinking Machines CM-5 and the Cray Research T3D. It is not yet clear whether the advantages of such
special operations over simpler read-modify-write instructions are worth the implementation cost.

3

or to mllllmize contention. The algorithm's performance is then vulnerable not only to
preemption of the process in the critical section, but also to preemption of processes near
the head of the waiting list-the algorithm may give the lock to a process that is not
running [48]. Similarly, a barrier algorithm may keep processes in a tree, in order to replace
o (n) serialized operations on a counter with 0 (log n) operations on the longest path in the
tree. But then processes must execute their portions of the barrier algorithm in the order
imposed by the tree. If the processes on a given processor are scheduled in a different order,
and if they simply yield the processor when unable to proceed (as opposed to waiting on a
kernel-provided synchronization queue), then the scheduler may need to cycle through most
of the ready list several times in order to achieve a barrier [7].

The rest of the paper is organized as follows. Section 2 discusses related work. It explains
in more detail why synchronization algorithms suffer under multiprogramming, why scal­
able synchronization algorithms are particularly susceptible to multiprogramming effects,
and why previous research does not fully remedy the problem. Section 3 describes our
kernel interface and compares it to alternative approaches, such as process-to-process hand­
shaking and experience-based heuristics, that use a more conventional interface. Section 4
describes our scheduler-conscious algorithms, in prose and pseudo-code. Section 5 describes
our experimental environment and presents performance results. Conclusions appear in
section 6.

2 Background

In this section we describe sources of performance loss due to the adverse interaction of
scheduling and synchronization. We discuss related work regarding multiprogramming en­
vironments, synchronization algorithms, and their interaction, while placing our work in
context.

2.1 Small-Scale Locks

It is widely recognized that lock-based algorithms (i.e. mutual exclusion and reader-writer
locks) can suffer performance losses when a process is preempted while in a critical sec­
tion. Remaining processes cannot access the shared data structure or protected resource
until the preempted process releases the lock it is holding. (In a reader-writer lock, a pre­
empted reader will only prevent writers from accessing the shared data structure. In a fair
implementation this has the side effect that readers following the writers are also denied
access.)

Ousterhout [35] introduced spin-then-block locks that attempt to minimize the impact
of preemption (or other sources of delay) in critical sections by having a waiting process
spin for a small amount of time and then, if unsuccessful, block. Karlin et al. [16] present
and evaluate a richer set of spin-then-block alternatives, including competitive techniques
that adjust the spin time based on past experience. 2 Their goal is to adapt to variability in

2 A competitive algorithms is one whose worst-case performance is provably within a constant factor of
optimal worst-case performance.

4

the length of critical sections, rather than to cope with preemption. Competitive spinning
works best when the behavior of a lock does not change rapidly with time, so that past
behavior is an appropriate indicator of future behavior.

Zahorjan et al. [46, 48J present a formal model of spin-wait times. For lock-based
applications in which all processes on a given processor belong to the same application, they
show that performance problems can be avoided if the operating system simply partitions
processes among processors and allows the application to make intra-processor scheduling
decisions (never preempting a process with a lock).

Several groups have proposed extensions to the kernel/user interface that allow a sys­
tem to avoid adverse scheduler/lock interactions while still doing scheduling in the kernel.
The Scheduler Activation proposal of Anderson et al. [2J allows a parallel application to
recover from untimely preemption. When a processor is taken away from an application,
another processor in the same application is given a software interrupt, informing it of the
preemption. The second processor can then perform a context switch to the preempted
process if desired, e.g. to push it through its critical section. In a similar vein, Black's work
on Mach [5J allows a process to suggest to the scheduler that it be de-scheduled in favor of
some specific other process, ego the holder of a desired lock. Both of these proposals assume
that process migration is relatively cheap.

Rather than recover from untimely preemption, the Symunix system of Edler et al. [8J
and the Psyche system of Marsh et al. [29J provide mechanisms to avoid or prevent it. The
Symunix scheduler allows a process to request that it not be preempted during a critical
section, and will honor that request, within reason. The Psyche scheduler provides a "two­
minute warning" that allows a process to estimate whether it has enough time remaining
in its quantum to complete a critical section. If time is insufficient, the process can yield
its processor voluntarily, rather than start something that it may not be able to finish.

2.2 Alternative Approaches to Atomic Update

All of the work in the previous section aims to make spin locks safe from untimely preemp­
tion. An alternative approach is to avoid the use of locks. There are at least two ways of
doing so.

Herlihy [12, 13J has led the development of lock-free and wait-free data structures. Rather
than rely on locks, these data structures use special algorithms based on such universal
atomic primitives as compare_and_store and load_l inked/ store_condi t ional. The al­
gorithms are designed in such a way as to guarantee both atomicity and forward progress,
despite arbitrary delays on the part of individual processes.3 The key idea in most of these
algorithms is to modify a copy of (a portion of) the data structure, and then swap it for the
original in one atomic step (assuming the original has not been modified since the copy was
created). Tolerance of arbitrary delays means that lock-free and wait-free data structures

3Wait-free data structures are starvation-free: lock-free data structures are not. More formally, a data

structure is wait-free if every process that attempts to perform an atomic update is guaranteed to succeed
in a bounded number of steps. A data structure is lock-free if some competing process is guaranteed to
complete an operation in a bounded number of steps. An atomic primitive is universal if a constant number
of instances of it can be used to emulate any other single-word atomic primitive.

5

are immune to the performance effects of inopportune preemption. It also means that they
can tolerate some page faults and even certain kinds of hardware failure, something none
of the techniques in the previous section can do. Unfortunately, the current state of the
art in general-purpose lock-free and wait-free synchronization techniques incurs substantial
performance overhead, even where there is no competition for access to the data structure.

A second way to avoid the use of locks is to create a manager process that is responsible
for all operations on the "shared" data structure, and to require other processes to send
messages to the manager. This sort of organization is common in distributed systems. It
can be cast as a natural interpretation of monitors (as, for exam pIe, in Brinch Hansen's
Distributed Processes notation [6]), or as function shipping [24, 40] to a common destination.
In recent years, several machines have been developed that provide hardware support for
very fast invocation of functions on remote processors [18, 33]. Even on more conventional
hardware, programming techniques such as active messages [42] can make remote execution
very fast. Because computation is centralized and requests are processed serially, active
messages provide implicit synchronization. On the other hand, they do not permit concur­
rency (as do, say, reader-writer locks), and can only be used when the manager is not a
bottleneck. They also require that data be accessed through a narrow interface (the data
are not directly visible), and are inefficient on some machines.

2.3 Scalable Locks

When two processes spin on the same location, coherence operations or remote memory
references (depending on machine type) can create substantial amounts of contention for
memory and for the processor-memory interconnect. The key to good performance is to
minimize active sharing. One option is to use backoff techniques [1, 30] in which a proces­
sor that attempts unsuccessfully to acquire a lock waits for a period of time before trying
again. The amount of time depends on the estimated level of contention. Bounded expo­
nential backoff works well for test_and_set locks. Backoff proportional to the number of
predecessors works well for ticket locks.

A second option for scalable locks is to use distributed data structures to ensure that
no two processes spin on the same location. The queue-based spin locks of Anderson [1]
and of Graunke and Thakkar [9] minimize active sharing on coherently-cached machines
by arranging for every waiting processor to spin on a different element of an array. Each
element of the array lies in a separate, dynamically-chosen cache line, which migrates to the
spinning processor. The queue-based spin lock of Mellor-Crummey and Scott [30] represents
its queue with a distributed linked list instead of an array. Each waiting processor uses a
fetch_and_store operation to obtain the address of the list element (if any) associated
with the previous holder of the lock. It then modifies that list element to contain a pointer
to its own element, on which it then spins. Because it spins on a location of its own
choosing, a process can arrange for that location to lie in local memory even on machines
without coherent caches. Magnussen et al. [26] have shown how to modify linked-list queue­
based locks to minimize interprocessor communication on a coherently-cached machine.
Markatos [27] uses a doubly-linked list in a queue-based lock to replace FIFO order with
highest-priority-first, for real-time systems. Others have shown how to build queue-based

6

scalable reader-writer 10cks[19, 31]. Yang and Anderson [44] have shown how to use local­
only spinning to improve the performance of locks that use no atomic memory operations
other than loads and stores.

Scalable synchronization algorithms reduce contention for memory and interconnect
resources but usually have higher overhead than their centralized counterparts in the absence
of contention. Lim and Agarwal [23] suggest synchronization algorithms that monitor the
degree of contention and switch between centralized and distributed implementations based
on the observed degree of competition for synchronization variables.

Moving from a centralized to a queue-based lock adds one more dimension to the
scheduler/synchronization problem. In order to have every process spin on a separate
variable, queue-based locks require that processes acquire the lock in a deterministic (gen­
erally FIFO) order. If a process is preempted while awaiting its turn to access a shared
data structure, processes later in the order cannot proceed even if the lock is released by
the original owner-the lock will be passed to the preempted process instead. This problem
was noted by Zahorjan et al. [48], but no solution was suggested. In section 4 we present
two mutual exclusion locks and a reader-writer lock that solve the problem by bypassing
preempted processes in the queue and having them retry for the lock when they resume
execution.4

2.4 Barriers

Barrier synchronization algorithms force processes to wait at a specified point in the com­
putation until all their peers have arrived at that same point. From a scheduling point
of view, the principal difference between locks and barriers is that while the time between
lock acquisition and release is generally bounded and short (one critical section's worth of
computation), the time between consecutive barriers can be arbitrarily long. This means,
for example, that while it may be acceptable to disable preemption in a process that holds
a lock, it is not acceptable to do so in a process that must continue to execute in order to
reach the next barrier.

Performance loss in barriers occurs when processes spin uselessly, waiting for preempted
peers. When a process on a multi programmed processor spins at a barrier that has not
yet been reached by some other process on the same processor, it may waste as much as a
quantum, reducing system throughput and likely increasing the computation's critical path
length.

Inspired by Karlin et al., we have developed techniques to make the spin versus block
decision at a centralized (small-scale) barrier [17]. We present these techniques in the begin­
ning of section 4.3. They are most useful in an environment in which the OS-level scheduler
partitions processors among applications (so that multiprogramming is only among the pro­
cesses of a single application), but they can be used in a more general time-shared environ­
ment as well. Heuristics based on past behavior suffice to obtain competitive performance,
but a small extension to the kernel/user interface admits on-line optimal decisions.

4The mutual exclusion locks originally appeared in a conference publication [43].

7

Centralized barriers generally employ a counter that is updated by each process. Access
to the counter poses two obstacles to scalable performance on large machines. First, as
with locks, simultaneous attempts to update the counter can lead to unacceptable levels
of contention. Second, even in the absence of contention, serial access to a counter implies
an asymptotic running time of O(p) for the barrier algorithm, which becomes unacceptable
as the number of processors p grows large. Several researchers have shown how to solve
these problems by building scalable barriers, with log-depth tree- or FFT -like patterns of
point-to-point notifications among processes [3, 11, 20, 25, 30, 32, 38,45].

Unfortunately, the deterministic notification patterns of scalable barriers may require
that processes run in a different order from the one chosen by the scheduler. The problem
is related to, but more severe than, the preemption-while-waiting problem in FIFO locks.
With a lock the scheduler may need to cycle through the entire ready list before reaching
the process that is able to make progress. With a scalable busy-wait barrier, Markatos et
al. have shown [28] that the scheduler may need to cycle through the entire ready list a
logarithmic number of times (spinning for as long as a quantum between context switches)
in order to achieve the barrier. To avoid this problem, they suggest (without an implemen­
tation) that blocking synchronization be used among the processes on a given processor,
with a scalable busy-wait barrier among processors. (Such combination barriers were orig­
inally I:)uggel:)ted by Axelrod [4] to rninirni:.-:e rewurce needl:) in barrierl:) conl:)truded [rorn
OS-provided locks.) The challenge for a combination barrier is to communicate partition
information from the scheduler to the application, and to adapt to partitioning changes at
run time. We present such a barrier in the latter part of section 4.3, enhanced with our
optimal spin versus block decision-making technique within each processor.

2.5 Multiprogramming on Multiprocessors

Multiprogramming on uniprocessors is desirable because it mllllmizes response time and
makes effective use of system resources. Simple timesharing allows multiple users to share
a processor transparently, with only a small performance penalty. Multiprocessors and
parallel programs complicate maters significantly, by introducing synchronization and by
requiring that performance metrics consider issues such as speedup. Simple timesharing
may lead to very bad performance if processes that need to synchronize with one another
do not run simultaneously, or if an application runs for a small amount of time on a large
number of processors (at low efficiency) rather than for a large amount of time on a small
number of processors (at high efficiency).

To address the synchronization issue, Ousterhout et al. [34] developed the notion of co­
scheduling (also known as gang scheduling), in which all of the processes of an application
run at the same time. Unfortunately, bin-packing problems make it difficult to use all
processors effectively in a co-scheduled system, and context switches among applications
detract from computation time and lead to sub-optimal use of caches.

Using simulation, modeling, and experimentation, Crovella et al. [7], Leutenegger and
Vernon [22], Tucker and Gupta [10], and Zahorjan and McCann [47] have shown that
dynamically partitioning the processors of a machine among applications is preferable to
either timesharing or co-scheduling. Tucker and Gupta also identify the existence of more

8

Centralized Scalable
Locks 1, 3 1,2,3

Barriers 3 3

Table 1: Types of performance loss encountered in different synchronization algorithms

processes than processors as the main reason for remaining performance degradation and
propose a scheme in which applications adapt to changes in the size of hardware partitions
by changing the number of processes they use [41]. In a similar vein, Zahorjan et al. [48]
suggest that barrier-based programs use guided self-scheduling [36], with exactly one server
thread per processor. It is not clear, however, that all applications will be able to adjust
their number of processes dynamically, or that programmers will wish to write in a style that
allows them to do so. Our combination barrier is designed to work well even for applications
with a fixed number of processes on a dynamically changing number of processors.

2.6 Summary

In section 1 we listed three scenarios under which programs can suffer performance loss due
to adverse interactions between scheduling and synchronization:

1. A process is preempted while holding a lock. The critical path of the computation
may increase if other processes (on the same or different processors) need to acquire
the lock.

2. A process is preempted while waiting for a lock and then is handed the lock while still
preempted. As in (1), critical path length may increase.

3. A process spins when some preempted process could make better use of the processor.
This is the flip side of lock scenarios (1) and (2). It also arises in barriers. Critical
path length may increase, and overall system throughput suffer.

Table 1 shows which of these scenarios are possible for each type of synchronization (cen­
tralized/scalable, locks/barriers). Previous work has produced satisfactory solutions for the
case of centralized locks but only partial solutions in the other three cases. In the following
sections we show how to build

• scalable scheduler-conscious queue-based and ticket locks;

• a scheduler-conscious reader-writer lock;

• scheduler-conscious centralized barrers that make optimal spin versus block decisions
on small time-shared machines; and

• scheduler-conscious scalable barriers for large, partitioned machines.

9

3 Solution Structure

In order to avoid adverse interactions, either the scheduler or the synchronization algorithm
could adapt to the behavior of the other. We assume that user-level code can influence the
behavior of the scheduler enough to avoid preemption in (short) critical sections, but that
otherwise the scheduler is in control, and it is the synchronization algorithm that must
adapt. Scheduler-conscious synchronization algorithms therefore require a mechanism to
obtain information about the status of other processes and about the processors available
to the application. This information may be (1) guessed via past experience using heuris­
tics, (2) deduced through interaction with other processes, e.g. via "handshaking", or (3)
provided by the kernel itself. In order, these options provide information of increasing accu­
racy. They also incur increasing costs in performance and/or complexity: experience-based
heuristics require only the collection of process-local statistics; process interactions take
time, and lead to more complicated code; kernel-provided information requires changes to
the kernel/user interface.

Experience-based heuristics can be successful to the extent that the present and future
resemble the past. It forms the basis of the competitive lock algorithms of Karlin et al. [16],
and of the competitive barriers we describe at the beginning of section 4.3. In the case of
locks, the goal is to block if the wait time will be longer than twice the context switch time,
and to spin if it will be shorter. For barriers, the goal is to block if there is another process
(not currently running) that could use the current processor to make progress toward the
barrier, and to spin otherwise. In both cases, the algorithm is able to determine (by reading
the clock) whether blocking or spinning would have been a better policy at the most recent
synchronization operation. If it finds it made the wrong decision, it biases its decision
in favor of the other alternative the next time around. While this sort of adaptation has
been shown to work better than any static alternative, it induces overhead to maintain the
statistics that allow the decision to be made, and still makes the wrong decision some of the
time. In the case of delay variance due to preemption, it is not clear that recent behavior
is a particularly good predictor.

Interactions with peer processes can provide better information about the peers' status,
provided that they respond promptly to enquiries (when running). In section 4.1, for
example, we use a "handshaking" technique in some of our mutual exclusion algorithms.
To hand a peer a lock, a process sets a flag on which the peer is expected to be spinning,
and then waits for the peer to set an acknowledgment flag. If the acknowledgment does
not appear within a certain amount of time, the signaling process assumes that the peer is
currently preempted. There is an inherent inefficiency with this approach however: if the
signaling process doesn't wait long enough, it will too often skip over a running peer by
mistake. Any time it waits, however, is lost to computation. All the signaling process really
needs to know is whether its peer is running or preempted, information readily available to
the scheduler.

We have found that using heuristics or handshaking to determine the state of a process
or group of processors can be expensive both in implementation and execution cost. We
therefore propose extensions to the kernel interface to make appropriate information avail­
able to the user. Algorithms based on kernel-provided information are simpler and easier to

10

design. They also tend to perform better, in part because the information from the kernel
is more accurate than user-level estimates, and in part because the kernel can collect the
information more efficiently than user-level code can guess it.

Our kernel extensions are enumerated below. They build upon ideas proposed by the

Symunix project at NYU [8]. Similar extensions could be based on the kernel interfaces of
Psyche [29] or Scheduler Activations [2] .

• KE-l: For each process the kernel and user cooperate to maintain a variable that rep­
resents the process's state and that can be manipulated under certain rules by either.
The variable has four possible values: preemptable, preempted, self _unpreempt­

able, and other _unpreemptable. Preemptable indicates that the process is running,
but that the kernel is free to preempt it. Preempted indicates that the kernel has pre­
empted the process. Self _unpreemptable and otheLunpreemptable indicate that
the process is running and should not be preempted. The kernel honors this request
whenever possible (see KE-2 below), deducting any time it adds to the end of the
current quantum from the beginning of the next.

The non-preemptable states indicate that the process is executing in a critical section.
The need for two distinct states arises from the need to accommodate certain race
conditions in queue-based mutual exclusion algorithms, in which a process wishes to
hand the lock to one of its peers and simultaneously make that peer unpreemptable.
Most changes to the state variable make sense only for a particular previous value.
For example, it makes no sense for user-level code to change a state variable from
preempted to anything else. Overall system correctness does not depend on correct
use of flags by applications, but the performance of a particular application may
suffer if it uses the flags incorrectly. To make sure that changes happen only from
appropriate previous values, our algorithms generally modify state variables using an
atomic compare_and_store instruction. 5

• KE-2: To ensure fairness for applications, the kernel maintains an additional per­
process Boolean flag. This flag can be modified only by the kernel but is readable in
user mode. The kernel sets a process's flag to indicate that it wanted to preempt the
process but has honored a request (indicated via the KE-l variable) not to do so. To
maintain ultimate control of the processor, the kernel honors the request only when
the KE-2 flag is not yet set; if the flag is already set the kernel proceeds with the
preemption. Upon exiting a critical section (and setting the KE-l variable back to
preemptable), a process should inspect the flag and yield the processor if the flag is
set. Yielding implicitly clears the flag. So long as critical sections are shorter than
the interval between the kernel's attempts at preemption, voluntarily yielding the
processor at the end of critical section in which the KE-2 flag has been set ensures
that preemption will not occur during a subsequent critical section (barring page faults
or other unusual sources of delay).

5Compare_and...store (locat ion, expected_val, new_val) compares the value expected_val to the con­
tents of locat ion. If they are identical it stores new_val in locat ion and returns true. Otherwise it returns

false.

11

• KE-3: The kernel also maintains a data structure, visible in user mode, that con­
tains information about the hardware partition on which the application is running.
Specifically, the information maintained includes the number of processors available
in the partition, the id of the current processor, the number and ids of processes
scheduled on each processor, and the generation count of the partition. The genera­
tion count indicates the number of times that the partition has changed in size since
the application started running.

As noted above, extensions KE-1 and KE-2 are based in part on ideas developed for
the Symunix kernel [8]. We have introduced additional states, and have made the state
variable writable and readable by both user-level and kernel-level code [43]. Extension
(KE-3) is a generalization of the interface described in our work on small-scale scheduler­
conscious barriers [17] and resembles the "magic page" of information provided by the
Psyche kernel [37]. None of the extensions requires the kernel to maintain information that
it does not already have available in its internal data structures. Furthermore, the kernel
requires no knowledge of the particular synchronization algorithm(s) being used by the
application, and does not need to access any user level code or data structures. We have
run our experiments in user space, but a kernel-level implementation of our ideas would not
be hard to build.

Like most scalable synchronization algorithms, ours achieve their scalability by arranging
for processors to spin only on local locations, on which no other processor spins. We also
endeavor to ensure that those locations will be local not only on cache coherent machines
(on which they migrate to the spinning processor), but also on machines that lack hardware
cache coherence. On these latter, NUMA machines, variables on which processes spin must
be allocated statically in the local memory of the spinning processor; spins are terminated
by a single uncached remote write by another processor. In several cases we achieve this
static allocation by means of indirection. Given the following code for a cache-coherent
machine:

shared f : Boolean false

process A:
repeat until f

process B:
f := true

we can employ the following version on a non-cache-coherent machine:

const available := II some non-nil bit pattern that is not a valid pointer
shared f : -Boolean := nil

process A:
private my_flag: Boolean := false
private temp : -Boolean
if temp != available

fetch and store Cf, &my_flag)

12

repeat until my_flag

process B:
private temp : -Boolean
if temp != nil

temp- := true

fetch and store Cf, available)

In rare cases, the overhead of indirection may not be warranted. There is one point in
our reader-writer lock, for example, at which an unlikely race condition may force a process
to spin until a pointer on another processor becomes non-nil. We could employ a method
similar to that above to eliminate the remote spin, but the cumulative overhead in the
common case would exceed the cumulative savings in the uncommon case.

4 Algorithms

In this section we present scheduler-conscious synchronization algorithms that make use
of heuristics, handshaking, and the extended kernel interface described in section 3. We
consider mutual exclusion, reader-writer locks, and barriers in turn.

The pseudocode in figure 1 defines the interface between the kernel and the applica­
tion. The state field of a context_block is written by application processes to indicate
when they do not want to be preempted. The remaining fields of both the context_block
and partition_block records are writable only by the kernel scheduler; they provide the
application with information about system state, to facilitate the design of efficient algo­
rithms. Our mutual exclusion and reader-writer locks use only the context_block records;
the barriers use both.

All of our algorithms work well in a dynamic hardware-partitioned environment-an
environment widely believed to provide the best combination of throughput and fast turn­
around for large-scale multiprocessors [7,22,41,47]. Except for the barriers, which require
partition information, all of the algorithms will also work well under ordinary time sharing.
For a co-scheduled environment the additional complexity of scheduler-conscious algorithms
is not necessary, but does not introduce any serious overhead.

type context_block = record
state: (preempted, preemptable, unpreemptable_self, unpreemptable_other)
warning : Boolean

type partition_block = record
num_processors, generation: integer
processes_on_processor : array [MAX_PROCESSORS] of integer
processor_ids: array [MAX_PROCESSES] of integer

Figure 1: Pseudocode declarations for the kernel-application interface.

13

4.1 Mutual Exclusion

Scalability in mutual exclusion algorithms is best achieved by arranging for processes to
spin on local locations, thereby eliminating interconnect and memory contention. Many
researchers have now developed algorithms of this type [1, 9, 26, 30, 44]. The scalability
of centralized algorithms may also be improved by introducing appropriate forms of back­
off [1, 30]. The scheduler-conscious test_and_set locks of Psyche, Symunix, or Scheduler
Activations can be modified trivially to incorporate backoff, though the work of Anderson
and of Mellor-Crummey and Scott suggests that the result will still produce more contention
than a queue-based lock. In this section we present two scheduler-conscious variants of the
queue-based lock of Mellor-Crummey and Scott. We also present a scheduler-conscious
variant of the ticket lock. This latter lock, while less trivial than a scheduler-conscious
test_and_set lock, is substantially simpler than a queue-based lock, and is likely to pro­
vide acceptable performance for many environments. Unlike a test_and_set lock, the
ticket lock also provides fair FIFO ordering among currently-running processes. Because
they awaken processes in a deterministic order, both the queue-based and ticket locks must
be modified to address not only preemption within a critical section, but also preemption
while waiting in line.

Our first variant of the queue-based lock uses the Symunix kernel interface: kernel
extension KE-2 and the preemptable and selLunpreemptable values (only) of KE-l.
It uses handshaking to determine the status of other processes. When releasing a lock,
a process notifies its successor in the queue that it (the successor) is now the holder of
the lock. The successor must then acknowledge receipt of the lock by setting another
flag. If this acknowledgement is not received within a fixed amount of time, the releasing
process assumes that its successor is preempted, rescinds its notification, and proceeds to
the following process (throughout this period the releasing process is unpreemptable).

Atomic fetch_and_store instructions are used to access the notification flag in order to
avoid a timing window that might otherwise occur if the successor were to see its notification
flag just before the releaser attempts to rescind it. Without the atomic instruction it would
be possible for the releaser to think that the successor has failed and proceed to give the
lock to another processor, and for the successor to think that it has succeeded and proceed
to the critical section, thus violating mutual exclusion. Pseudocode for the handshaking
algorithm appears in figure 2.

The handshaking version of the queue-based lock solves the preemption problem but un­
fortunately adds significant overhead to the common case. Processes need to interact several
times when a lock is released. To address this limitation, we have designed a scheduler­
conscious algorithm that uses the full version of kernel extension KE-1 and does not require
handshaking. In this Smart Queue algorithm the releasing process examines its successor's
state variable, which is kept up-to-date by the kernel. If the successor is preempted, the
releaser proceeds to other candidates later in the queue. If the successor is running, the
releaser uses an atomic compare_and_store instruction to change the successor's state to
otheLunpreemptable. If the change is successful the lock is passed to the successor. The
need for compare_and_store stems from a potential race between the releaser and the ker­
nel: after determining that the successor is not preempted, we must make it unpreemptable

14

type multi_flag = (not_yet, can_go, got_it, lost_it, ack, nack)
type qnode = record

next, prev : -qnode
next_done : Boolean
status : multi_flag

type lock = -qnode
private cb : -context_block

procedure acquire_lock (L : -lock, I
loop

-qnode)

I->next := nil
cb->state := unpreemptable_self
I->prev := fetch_and_store (L, I)
if I->prev = nil return
I->status := not_yet
I->prev->next I
repeat

cb->state preempt able
if cb->warning yield II kernel wanted to preempt me
cb->state := unpreemptable_self

until I->status != not_yet II spin
val : multi_flag := fetch_and_store (I->status, got_it)
if val = can_go

I->prev->next_done := true
repeat until I->status = ack
return

II tell prev I'm done with its qnode
II let prev finish using my qnode

while val != nack val := I->status II wait until qnode no longer needed

procedure release_lock (L : -lock, I: -qnode)
if I->next = nil II no known successor

if compare_and_store (L, I, nil)
repeat while I->next = nil

I->next_done := false

goto rtn
II spin

loop

rtn:

I->next->status := can_go
for i in 1 .. TIMEOUT

if I->next_done
II spin

I->next->status := ack; goto rtn
if fetch_and_store (I->next->status, lost_it) got_it

II oh! successor was awake after all
repeat until I->next_done
I->next->status := ack; goto rtn

succ : -qnode := I->next->next II successor was asleep
if succ = nil

if compare_and_store (L, I->next, nil)
I->next->status := nack; goto rtn

repeat while (succ := I->next->next) nil II spin; non-local
I->next->status := nack
I->next := succ; succ->prev I

cb->state := preemptable
if cb->warning yield II kernel wanted to preempt me

Figure 2: Queued Handshake lock using the Symunix kernel interface.

15

type qnode = record
self -context_block
next : - qnode
next_done : Boolean
status: (waiting, success, failure)

type lock = -qnode
private cb : -context_block;

procedure acquire_lock (L : -lock, I
repeat

I->next := nil
I->self := cb
cb->state := unpreemptable_self

-qnode)

pred : -qnode fetch and store (L, I)
if pred = nil

return
I->status := waiting
pred->next := I
(void) compare_and_store (&cb->state,

unpreemptable_self, preemptable)
repeat while I->status

until I->status = success
waiting II spin

procedure release_lock (L : -lock, I
shadow: -qnode := I
candidate : -qnode
loop

if candidate = nil

I->next

-qnode)

if compare_and_store (L, shadow, nil)
exit loop II no one waiting for lock

repeat while shadow->next = nil II spin; probably non-local
candidate := shadow->next

II order of following checks is important
if compare_and_store (&candidate->self->state,

unpreemptable_self, unpreemptable_other)
or compare_and_store (&candidate->self->state,

preemptable, unpreemptable_other)
candidate->status := success
exit loop

II else candidate seems to be preempted
shadow := candidate II move down queue
candidate := shadow->next
shadow->status := failure

cb->state := preemptable
if cb->warning

yield

Figure 3: Smart Queue lock using kernel extensions KE-1 and KE-2.

16

without giving the kernel an opportunity to preempt it. Pseudocode for the Smart Queue
lock appears in figure 3.

One of the problems with queue-based locks is high overhead in the absence of con­
tention. On small-scale machines and for low-contention locks a test_and_set with expo­
nential backoff or ticket lock with proportional backoff may be preferable [30]. (A hybrid lock
that switches between test_and_set and a queue-based lock, depending on observed con­
tention, is another possibility [23].) With appropriate backoff, test_and_set and ticket locks
scale equally well. They use different atomic instructions, making them usable on different
machines. The ticket lock also guarantees FIFO service (relaxed in our scheduler-conscious
version to FIFO among those processes currently running), while the test_and_set lock
admits the possibility of starvation.

The basic idea of the ticket lock is reminiscent of the "please take a number" and "now
serving" signs found at customer service counters. When a process wishes to acquire the lock
it performs an atomic fetch_and_increment on a "next available number" variable. It then
spins until a "now serving" variable matches the value returned by the atomic instruction.
To avoid contention on large-scale machines, a process should wait between reads of the
"now serving" variable for a period of time proportional to the difference between the
last read value and the value returned by the fetch_and_increment of the "next available
number" variable. To release the lock, a process increments the "now serving" variable.

Our scheduler-conscious, handshaking version of the ticket lock (figure 4) uses one ad­
ditional "acknowledgment" variable, which contains the number of the last granted but un­
acknowledged ticket. A releasing process sets the additional variable and the "now-serving"
variable and waits for the former to be reset. If the acknowledgment does not occur within
a timeout window, the releaser withdraws its grant of the lock, and re-increments the "now
serving" variable in an attempt to find another acquirer. Changes to the acknowledgment
variable are made with compare_and_store to avoid an update race between a skipped-over
acquirer and its successor. Our ticket lock assumes that the "now serving" variable does
not have the opportunity to wrap all the way around and reach a value it previously had,
while a process remains preempted. For 32-bit integers, a 1 GHz processor, and an empty
critical section, a process would have to be preempted for more than three minutes before
correctness would be lost. Going to 64-bit integers would extend this time to over 16,000
years.

There IS no obvious way to develop a scheduler-conscious verSlOn of the ticket lock
without either handshaking or exporting lock code into the kernel. The problem is that
the lock does not keep track of the identities of waiting processes. The releaser of a lock
is therefore unable to use KE-1 to determine the status of its successor: it does not know
who the successor is.

A caveat with all three of our scheduler-conscious locks is that they give up the FIFO
ordering of the scheduler-oblivious version. It is thus possible (though highly unlikely) that
a series of adverse scheduling decisions could cause a process to starve. We have considered
algorithms that leave preempted processes in an explicit queue so that they only lose their
turn while they are preempted. Markatos adopted a similar approach in his real-time queued
lock [27], where the emphasis was on passing access to the highest-priority waiting process.
For simple un prioritized mutual exclusion, leaving preempted processes in the queue mainly

17

type t_Iock = record
next_ticket, now_serving, reI_flag

private cb : -context_block
unsigned integer

procedure acquire_lock (L : -t_Iock)
restart:

cb->state := unpreemptable_self
my_ticket : integer := fetch_and_increment (&L->next_ticket)

II overflow is benign
repeat

cb->state := preemptable
if cb->warning

yield
cb->state := unpreemptable_self
if (my_ticket - L->now_serving) > MAX_PROCESSES

II I've been passed up (overflow is benign)
goto restart

for i in 1 .. ((my_ticket - L->now_serving) * SPIN_FACTOR)
II spin

until my_ticket = L->now_serving
if !compare_and_store (&L->rel_flag, my_ticket, my_ticket-MAX_PROCESSES)

goto restart

procedure release_lock (L : -t_Iock)
retry:

rtn:

new_ticket: integer := L->rel_flag
L->now_serving := new_ticket
if L->next_ticket = L->now_serving

goto rtn
for i : integer in 1 .. TIMEOUT

L->now_serving + 1

II nobody waiting

if L->rel_flag new ticket - MAX PROCESSES
goto rtn

II we timed out
if compare_and_store (&L->rel_flag, new_ticket, new_ticket-MAX_PROCESSES)
II ticket successfully rescinded

goto retry

cb->state := preemptable
if cb->warning

yield

Figure 4: Scheduler-conscious ticket lock.

18

makes the common case more expensive: processes releasing a lock have to skip over their
preem pted peers repeatedly. We consider the (unlikely) possibility of starvation insignificant
in comparison to this overhead.

4.2 Reader-Writer Locks

Reader-writer locks are a refinement of mutual exclusion locks. They provide exclusive
access to a shared data structure on the part of writers (processes making changes to the
data), but allow concurrent access by any number of readers. There are several versions
of reader-writer locks, distinguished by the policy they use to arbitrate among competing
requests from both readers and writers. Reader-preference locks always force writers to wait
until there are no readers interested in acquiring the lock. Writer-preference locks always
force readers to wait until there are no interested writers. Fair variants prevent newly­
arriving readers from joining an active reading session when there are writers waiting, and
grant a just-released lock to the process(es) that have been waiting the longest.

Pseudocode for our scheduler-conscious reader-writer lock appears in figures 5 through 7.
It is based on a fair scalable reader-writer lock devised by Krieger et al. [19]. When a writer
releases a lock for which both readers and writers are waiting, and the longest waiting
unpreempted process is a reader, the code grants access to all readers that have been waiting
longer than any writers. An alternative interpretation of fairness would grant access in the
same situation to all currently-waiting unpreempted readers. Like the Smart Queue lock,
the reader-writer lock uses both kernel extensions KE-l and KE-2. It would probably be
possible to rewrite the algorithm to use a handshaking protocol and the simpler Symunix
interface, but the algorithm is already so complex that we have not attempted to deal with
the extra complexity.

Requests for the lock are inserted in a doubly linked list. A reader arriving at the lock
checks the status of the previous request. If the previous request is an active reader or if
there is no previous request, then the newly-arriving reader marks itself as an active reader
and proceeds. In all other cases the newly-arriving process spins, waiting to be released
by its predecessor. A process releasing a lock must first remove itself from the queue. If
the process is a writer this is an easy task since it has no predecessor in the queue and the
procedure is similar to the one followed in the mutual exclusion section. If it is a reader
however, then the process may have to remove itself from the middle of the queue. To ensure
correct manipulation of the linked list data structure a reader process locks both its own
list node and that of its predecessor. It then updates the link pointers to reflect the new
state of the list. The locks protecting individual list elements use test_and_set. We have
opted for this type of lock because the critical sections are short and the maximum number
of contending processes is three. When an unlocking reader attempts, unsuccessfully, to
acquire the lock on its predecessor's list element, it re-checks the identity of the predecessor
in case it has changed as a result of action on the part of whoever was holding the lock.

After a process has linked itself out of the queue, it must wake up its successor if
there is one. The procedure is similar to the one followed in the mutual exclusion case.
The releasing process checks the state of its successor and attempts to set its state to
unpreemptable_other. If the attempt is successful, the releasing process proceeds to notify

19

type rw_qnode = record
self : -context_block
state: (reader, active_reader, writer)
spin_flag: (waiting, success, failure)
next, prev : -rw_qnode
exc_lock : exclusive_lock

type rw_lock = -rw_qnode
private cb : -context_block

procedure writer_lock (L : -rw_lock, I
I->self := cb
repeat

cb->state := unpreemptable_self
I->state := writer
I->spin_flag := waiting
I->next := nil
pred : -rw_qnode := fetch and_store (L, I)
if pred != nil

pred->next := I
(void) compare_and_store (&cb->state,

unpreemptable_self, preemptable)
repeat while I->spin_flag = waiting II spin

else
return

until I->spin_flag = success

procedure writer_unlock (L: -rw_lock, I: -rw_qnode)
shadow: -rw_qnode := I
candidate: -rw_qnode := I->next
loop

if candidate = nil
if compare_and_store (L, shadow, nil)

exit loop
repeat while shadow->next = nil
candidate := shadow->next

II order of following checks is important

II no one waiting for lock
II spin; probably non-local

if compare_and_store (&candidate->self->state,
unpreemptable_self, unpreemptable_other)

or compare_and_store (&candidate->self->state, preemptable,
unpreemptable_other)

candidate->prev := nil
candidate->spin_flag := success
exit loop

II else candidate seems to be preempted
shadow := candidate
candidate := shadow->next
shadow->spin_flag := failure

cb->state := preemptable
if cb->warning

yield

II move down queue

Figure 5: Scheduler-conscious reader-writer lock (declarations and writer part).

20

procedure reader_lock (L
I->self := cb
exc_lock (1)

repeat
cb->state := unpreemptable_self
I->next := I->prev := nil
I->state := reader
I->spin_flag := waiting
pred : -rw_qnode fetch_and_store (L, I)
if pred = nil

exit loop
I->prev := pred
pred->next := I

II leave repeat

if pred->state = active_reader
exi t loop I I leave repeat

compare_and_store (&cb->state,
unpreemptable_self, preemptable)

repeat while I->spin_flag = waiting
until I->spin_flag = success
I->state := active_reader
candidate: -rw_qnode := I->next
loop

if candidate = nil or candidate->state != reader
exit loop

II order of following checks is important
if compare_and_store (&candidate->self->state,

unpreemptable_self, unpreemptable_other)
or compare_and_store (&candidate->self->state,

preemptable, unpreemptable_other)
candidate->spin_flag := success
exit loop

II else candidate seems to be preempted
if candidate->next = nil

I->next := nil
if compare_and_store (L, candidate, I)

II we are now tail of queue
candidate->spin_flag := failure
exit loop

II else need to spin until successor establishes pointers
repeat while candidate->next = nil

II preempted candidate has a successor
I->next := candidate->next
candidate->next->prev := I
candidate->spin_flag failure
candidate := I->next

exc_unlock (1)

Figure 6: Scheduler-conscious reader-writer lock (reader lock part).

21

procedure reader_unlock (L : -rw_lock, I
find_previous:

pred : -rw_qnode := I->prev
if pred = nil goto no_previous
while !exc_lock_conditional (pred)

pred := I->prev
if pred = nil goto no_previous

if pred != I->prev
exc_unlock (pred)
goto find_previous

exc_lock (1)

pred->next := nil
if I->next = nil

if !compare_and_store (L, I, I->prev)
repeat while I->next = nil

if I->next != nil
I->next->prev
I->prev->next

exc unlock (pred)
goto rtn

no_previous:
exc_lock (1)

loop

I->prev
I->next

candidate: -rw_qnode := I->next
if candidate = nil

if compare_and_store (L, I, nil) goto rtn

II spin

repeat while I ->next = nil I I spin
else

rtn:

if candidate->self->state = unpreemptable_other
or compare_and_store (&candidate->self->state,

unpreemptable_self, unpreemptable_other)
or compare_and_store (&candidate->self->state,

preemptable, unpreemptable_other)
candidate->prev := nil
candidate->spin_flag := success
goto rtn

II else candidate seems to be preempted
if candidate->next = nil

if compare_and_store (L, candidate, nil)
II no one at tail of queue
candidate->spin_flag := failure
goto rtn

repeat while candidate->next = nil
II preempted candidate has a successor
I->next := candidate->next
candidate->next->prev := I
candidate->spin_flag failure

II spin

exc_unlock (1)

cb->state := preemptable
if cb->warning yield

Figure 7: Scheduler-conscious reader-writer lock (reader unlock part).

22

its successor that it has been granted the lock. If the attempt fails, it notifies its successor
of failure by setting a flag in the successor's node, and proceeds to the next process in the
queue. When notified that it has been granted the lock, a reader uses this same procedure
to release its own successor, if that successor is also a reader.

4.3 Barriers

We present four scheduler-conscious barriers in this section. The first three are designed
for smaller bus-based multiprocessors, or for small partitions on larger machines, in which
migration is assumed to be relatively inexpensive. The barriers differ in the amount of
information they use in order to make their decisions, and in the quality of those decisions.
The first two require no kernel extensions; they employ heuristics and are competitive. The
third barrier employs kernel extension KE-3 to make optimal spin versus block decisions.
The fourth barrier is designed for large-scale multiprocessors, on which migration is as­
sumed to be an expensive, uncommon event. This barrier makes optimal spin versus block
decisions within each processor (or within each cluster of a machine in which migration is
inexpensive among small sets of processors), uses a logarithmic-time scalable barrier across
processors/ clusters, and adapts dynamically to changes in the allocation of processes to
processors or processors to applications.

Barrier synchronization's primary source of performance loss in multiprogrammed en­
vironments is the cycles wasted spinning while waiting for preempted processes to arrive
at the barrier. In order to reduce the performance penalty of wasted spinning, processes
can choose to block and relinquish their processor to a preempted peer. Blocking however
can be expensive, especially on modern processors, due to the large amount of state that
needs to be saved. There are several possible ways to resolve this tradeoff, ranging from
always spin to always block. For a dynamically changing environment neither of the ex­
tremes provides a satisfactory solution. Inspired by the competitive spinning techniques
used by Karlin et al. for locks [16], we have developed a set of competitive techniques for
barriers [17]. These techniques choose between spinning and blocking based on the amount
of time spent waiting at previous barrier episodes. Since maintaining history is expensive,
and since the recent past is generally a better predictor of the future than is the distant
past, we base our decisions on the times observed at the last few barrier episodes only.

Two competitive, heuristic-based barriers appear in figures 8 and 9. The first barrier
spins for a fixed amount of time and then blocks. By setting the time spent in spinning
equal to the context switch time, we can guarantee that the algorithm takes at most twice
as long as necessary. The second barrier gathers information from the last three barrier
episodes and shortens or lengthens its spinning threshold based on the observed waiting
time. Additional heuristics are explored in a previous paper [17].6

Competitive spinning barriers provide a simple way to achieve acceptable performance in
a multi programmed environment. They require no kernel extensions, and work reasonably
well if process arrival times are not significantly skewed. They depend on changes to the set
of processors available to an application being relatively infrequent, compared to the rate
at which barriers are encountered.

6The pseudocode of the previous paper has been modified slightly here for the sake of consistency.

23

shared global_sense, barrier_count, num_blocked : integer
shared wakeup_sems : array [2] of semaphore {a}

shared mutex : lock
private local_sense integer o

procedure barrier ()
local_sense := 1 - local_sense
count : integer := fetch_and_increment (&barrier_count)
if count < NUM_PROCESSES - 1

else

for i : integer in 1 .. SWITCH_TIME
if global_sense = local_sense

return
acquire_lock (mutex)
if global_sense = local_sense

release_lock (mutex)
return

num blocked +:= 1
release_lock (mutex)
P (wakeup_sem[local_sense])

barrier_count := 0

0, 0, 0

acquire_lock (mutex)
global_sense := 1 - global_sense
count := num_blocked
num_blocked := 0

II release spinning processes

release_lock (mutex)
for i in 1 .. count

V (wakeup_sems[local_sense]) II release blocked processes

Figure 8: Fixed time (spin-block) competitive barrier.

24

shared global_sense, barrier_count, num_blocked : integer
shared wakeup_sems : array [2] of semaphore {O}
shared mutex : lock
private local_sense: integer := 0
private spin_threshold: integer := SWITCH_TIME
private episode_count : integer := 0
private episode_time: array [3] of integer := {SWITCH_TIME}

procedure barrier ()
local_sense := 1 - local_sense
count : integer := fetch_and_increment (&barrier_count)
if count < NUM_PROCESSES - 1

now: integer := get_current_time ()
for i in 1 .. spin_threshold

if global_sense = local_sense
goto exit_barrier

acquire_lock (mutex)
if global_sense = local_sense

release_lock (mutex)
goto exit_barrier

num blocked +:= 1
release_lock (mutex)
P (wakeup_sem[local_sense])

exit_barrier:

0, 0, 0

episode_time[episode_count] := get_current_time () - now
episode_count := (episode_count + 1) % 3

else

if average (episode_time) < SWITCH_TIME
spin_threshold min (SWITCH_TIME, spin_threshold + ADJUST)

else
spin_threshold max (0, spin_threshold - ADJUST)

barrier count := 0
acquire_lock (mutex)
global_sense := 1 - global_sense
count := num_blocked
num_blocked := 0
release_lock (mutex)
for i in 1 .. count

V (wakeup_sem[local_sense])

II release spinning processes

II release blocked processes

Figure 9: Average three competitive barrier.

25

shared global_sense, barrier_count: integer := 0, 0
shared wakeup_sems : array [2] of semaphore := {a}

shared partition: -partition_block
shared barrier_processors: array [2] of integer := {partition->num_processors}
private local_sense: integer := 0

procedure barrier ()
local_sense := 1 - local_sense
count : integer := fetch_and_increment (&barrier_count)
if count + 1 < NUM_PROCESSES

else

if count + 1 >= NUM_PROCESSES - barrier_processors[local_sense]
repeat until global_sense = local_sense II spin

else
P (wakeup_sem[local_sense])

barrier_count := 0
barrier_processors[1-local_sense] := partition->num_processors
global_sense := 1 - global_sense
for i in 1 .. (NUM_PROCESSES - barrier_processors[local_sense])

V (wakeup_sem[local_sense])

Figure 10: Scheduler Information barrier.

Competitive spinning barriers have several problems, however. One is the inability to
handle skewed arrival times gracefully. When processes arrive at a barrier at very different
times, the competitive algorithms block, incorrectly concluding that there are not enough
processors to accommodate all the processes. In addition, the competitive algorithms use a
uniform policy for all processes: either all will spin or all will block. Ideally on a system with
N processes and P processors (and inexpensive migration) the first N - P processes should
block while the remaining P should spin. By using kernel extension KE-3, the application
can be made aware of the number of available processors. By keeping an internal count of
the number of processes already at the barrier and by knowing the number of processors,
each individual process can make the optimal choice as whether to spin or to block when
arriving at a barrier. This approach has low overhead (a check against the number of
available processors) and makes the optimal spin versus block decision. Pseudocode for the
Scheduler Information barrier appears in figure 10.

Barriers for large-scale multiprocessors are of necessity more complicated since counter
based algorithms are too slow (linear in the number of processes) and cause too much
contention. Scalable barrier algorithms use log-depth data structures to note the arrival and
signal the departure of processes. Unfortunately, these data structures tend to exacerbate
the problems caused by multi programmed environments, since they require portions of the
barrier code in different processes to be interleaved in a deterministic order. This order may
conflict with the scheduling policy on a multiprogrammed system, consequently causing an
unreasonable number of context switches [28] to occur before achieving the barrier.

The basic idea of our scalable scheduler-conscious barrier is to make the optimal spin
versus block decision within each individual processor or cluster, and to employ a scalable
log-depth barrier across processors, where context switches are not an issue. Specifically,

26

type whole_and_parts
whole : long

union

parts: array [4] of byte
type tree_node = record

have_child : whole_and_parts
child_not_ready : whole_and_parts := have_child
parent_flag : -byte
dummy : byte II something harmless to point at

type processor_info = record
barrier_count: integer 0
wakeup_sems : array [2] of semaphore := {a}

generation: integer := 0 II used to synchronize reorganization
shared processors: array [MAX_PROCESSORS] of processor_info
shared nodes : array [MAX_PROCESSORS] of tree_node

II have_child and parent_flag fields of individual nodes are initialized
II as appropriate in the inter-processor tree; see code in reorganize ()

shared global_sense: integer := 0
shared partition: -partition_block
shared barrier_partition: partition_block
private local_sense: integer := 0
private cb : -context_block

partition-

private process_id : integer := II unique number in o .. NUM PROCESSES-1
private my_processor: integer := partition->processor_ids[process_id]
private my_generation: integer := 0

procedure barrier ()
local sense := 1 - local_sense
L : processor_info := &processors[my_processor]
count : integer := fetch_and_increment (&L->barrier_count)
if count + 1 < barrier_partition.processes_on_processor[my_processor]

II not the last process on the processor
P (L->wakeup_sems[local_sense])
goto rtn

II last process on this processor; wait for children on other processors
my_node: -tree_node := &nodes[my_processor]
repeat while my_node->child_not_ready.whole <> 0 II spin
II barrier has been achieved
my_node->child_not_ready.whole my_node->have_child.whole
my_node->parent_flag- := 0 II notify parent
if my_processor = 0 II root of inter-processor tree

II copy partition information if necessary; loop ensures atomicity
check : integer := barrier_partition. generation
while check <> partition->generation

check := partition->generation
barrier_partition := partition­

global_sense := local_sense
else repeat while global_sense

II release spinning processes
!= local sense II spin

L->barrier_count := 0 II reset for this processor only
for i in 1 .. count

V (L->wakeup_sems[local_sense]) II release blocked processes
rtn:

if my_generation != barrier_partition.generation reorganize ()

Figure 11: Scheduler-conscious tree barrier.

27

procedure reorganize ()
my_generation := barrier_partition. generation
my_processor := barrier_partition.processor_ids[process_id]
my_node: -tree_node := &nodes[my_processor]
for i in o .. process_id-1

if barrier_partition.processor_ids[i] = my_processor
II I'm not the representative of my processor
repeat until processors [my_processor] . generation = my_generation

II spin
return

for i in 0 .. 3
my_node->havechild.parts[i]

(integer) ((my_processor*4 + i+1) < barrier_partition.num_processors)
my_node->childnotready.whole := my_node->havechild.whole
if my _processor = 0 I I root of inter-processor tree

else

my_node->parentflag := &my_node->dummy
processors [my_processor] . generat ion := my_generation

II signal children it is safe to proceed

parent_id : integer := (my_processor-1)/4
my_node->parentflag :=

&nodes[parent_id] .childnotready.parts[(my_processor-1)%4]
processors [my_processor] . generat ion := my_generation
repeat until processors [parent_id] . generat ion = my_generation

II spin

Figure 12: Scheduler-conscious tree barrier reorganization.

28

we combine the Scheduler Information barrier of figure 10 with the scalable tree barrier
of Mellor-Crummey and Scott [30]. Processes assigned to the same processor or cluster
use a Scheduler Information barrier. The last process to reach the barrier becomes the
representative process for the processor/cluster. Representative processes participate in the
tree barrier.

A partition generation count allows us to handle repartitioning-changes in the mapping
of processes to processors or clusters. We shadow this generation count with a count that
belongs to the barrier. The process at the root of the inter-processor barrier checks the
barrier generation count against the partition generation count. If the two counts are
found to be different, processes within each new processor/cluster elect a representative
and the representatives then go through a barrier reorganization phase, initializing tree
pointers appropriately. 7 This approach has the property that barrier data structures can
be reorganized only at a barrier departure point. As a result, processes may go through one
episode of the barrier using outdated information. While this does not affect correctness
it could have an impact on performance. If repartitioning were a frequent event, then
processes would use old information too often and performance would suffer. However, we
consider it unlikely that repartitioning would occur more than a few times per second on a
large-scale, high-performance machine, in which case the impact of using out-of-date barrier
data I:ltrudurel:l would be negligible. Pl:leudocode [or the I:lcheduler-conl:lcioul:l I:lcalable barrier
appears in figures 11 and 12.

5 Results

This section presents a performance evaluation of different scheduler-conscious synchroniza­
tion algorithms, including a comparison to the best known scheduler-oblivious algorithms.
We begin by describing our experimental methodology. We then consider mutual exclusion,
reader-writer locks, and barriers in turn.

5.1 Methodology

We have tested our algorithms on two different architectures. As an example of a small-scale
bus-based machine we use a 12-processor Silicon Graphics Challenge. As an example of a
large-scale distributed memory machine we use a 64-processor partition of a Kendall Square
KSR 1. We have used both synthetic and real applications. The synthetic applications
allow us to thoroughly explore the parameters that may affect synchronization performance,
including the ratio between the lengths of critical and non-critical sections, the degree
of multiprogramming, the quantum size, and others. The real applications allow us to
validate our findings in the context of a larger computation, potentially capturing effects
that are missing in the synthetic applications, and providing a measure of the impact of the
synchronization algorithms on overall system performance.

7Note that the representative for the re-organization phase is not necessarily the process that will par­
ticipate in the inter-processor phase of subsequent barriers; this latter role is played by the last process to
arrive at each individual intra-processor barrier.

29

Our synchronization algorithms employ atomic operations not available on either of the
two target architectures. We have im plemented software versions of these instructions using
small critical sections bracketed by the native synchronization primitives of the machines
(test_and_set implemented by the load_linked and store_conditional instructions on
the Challenge, get_subpage (lock cache line) and free_subpage (unlock cache line) on
the KSR). While this approach adds overhead to the algorithms, the overhead is small.s

Moreover, because we are running scalable algorithms, in which processes use backoff or
spin only on local locations, competition is essentially non-existent for the critical sections
that implement the "atomic" operations, and does not result in any significant increase in
overall levels of network and memory contention. Our results for the non-native locks are
therefore slightly higher in absolute time, but qualitatively very close in character, to what
would be achieved with hardware supported fetch_and_<P instructions.

For the sake of simplicity, we employ a user-level scheduler in our experiments. One
processor is dedicated to running the scheduler. While the kernel interface described in
section 3 would not be hard to implement, it was not needed for our experiments (we
also lacked the authorization to make kernel changes on the KSR machine). For the lock
experiments, each application process has its own processor. Preemption is simulated by
sending a user-defined signal to the process. The process catches this signal and jumps to a
handler where it spins on a flag that the scheduler process will set when it is time to return
to executing application code. The time spent spinning is meant to represent execution by
one or more processes belonging to other, unrelated applications.

For the scalable barriers, multiprogramming is simulated by multiplexing one or more
application processes on the same processor. Both the SGI and KSR operating systems
provide us with this capability by allowing us to bind processes to processors. The central­
ized barrier experiments require process migration. On the SGI we can restrict processors
(prevent processes from executing on them). Restricting a processor increases the multi­
programming level on the remaining processors. Processes are allowed to migrate among
the unrestricted processors. The KSR operating system does not provide an analogue of
the SGI restrict operation, so we were unable to control the number of processors available
to migrating processes. For this reason we do not report results for the centralized barriers
on the KSR.

The multiprogramming level reported in the experiments indicates the average number
of processes per processor. For the lock-based experiments, one of these processes belongs
to our application program; the others are assumed to belong to other applications, and are
simulated by spinning in a signal handler as described above. For the barrier-based exper­
iments, multiple application processes reside on each processor, and participate in all the
barriers. The reason for the difference in methodology is that for lock-based applications we
are principally concerned about processes being preempted while holding a critical resource,
while for barrier-based applications we are principally concerned about processes wasting
processor resources while their peers could be doing useful work. Our lock algorithms are
designed to work in any multi programmed environment; the scalable barrier assumes that

80n the SGI machine we we could have used load_linked and store_conditional directly on the atomic
variable, rather than on an associated flag, but the difference in code lengths is insignificant, and the added
uniformity between machines made the experiments slightly easier.

30

processors are partitioned among applications. A multiprogramming level of 1 indicates
one application process on each processor. Fractional multiprogramming levels indicate
additional processes on some, but not all, processors.

5.2 Mutual Exclusion

We implemented ten different mutual exclusion algorithms, covering scheduler-conscious
and scheduler-oblivious, and scalable and centralized locks:

TAS-B - A standard test-and-test_and_set lock with bounded exponential backoff. This
algorithm repeatedly reads a central flag until it appears to be unset, then attempts
to set it atomically in order to acquire the lock. On the SGI Challenge, this is the
native lock, augmented with backoff.

TAS-B-np - The same as TAS-B, but avoids preemption in critical sections by using the
Symunix kernel interface.

Queue - A list-based queued lock with local-only spinning [30].

Queue-np - An extension to the Queue lock that avoids preemption in critical sections,
also using the Symunix kernel interface. This algorithm does not avoid passing the
lock to a process that has been preempted while waiting in line.

Queue-HS - An extension to the Queue-np lock that uses handshaking to ensure that the
lock is not transferred to a preempted process. This algorithm appears in figure 2.

Smart-Q - An alternative extension to the Queue-np lock that uses kernel extensions KE-
1 and KE-2 to obtain simpler code and lower overhead than in the Queue-HS lock.
This algorithm appears in figure 3.

Ticket - The standard ticket lock with proportional backoff, but with no special handling
of preemption in the critical section or the queue.

Ticket-np - A scheduler-conscious ticket lock with backoff, using handshaking to avoid
preemption in the critical section. This algorithm appears in figure 4.

Native - A lock employing machine-specific hardware. This is the standard lock that
would be used by a programmer familiar with the machine's capabilities.

Native-np - An extension to the native lock that uses the Symunix kernel interface to
avoid preemption while in the critical section.

The Native lock on the SGI Challenge is a test-and-test_and_set lock implemented
using the load_linked and store_conditional instructions of the R4400 microprocessor.
The Native lock on the KSR 1 employs a cache line locking mechanism that provides the
equivalent of queued locks in hardware. The queuing is based on physical proximity in a
ring-based interconnection network, rather than on the chronological order of requests. We
would expect the Native-np locks to outperform all other options on these two machines,

31

time QueUe Ticket /
Qu~~e-np T AS-;//

60 -----7I~------~~_~:~_~~_:_S ______ .. -----.. ~/Native
,; , _____ ~/<~.r--A------------
;;! ..; r-

50 Pi ct- ... ······----

/Ot Tic_ke",t_-n_p~.-----/
'" -8'---

40 .J"
//

./ 1'';1

30 /

20

TAS-B-np

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
multiprogramming level

Figure 13: Varying multiprogramming
level on an 11-processor SG I Challenge.

time

45

40

Queue ~
Ticket/

/Queue-np
; Queue-H~i/

/ Ticket-

/ .// ~/
/ /J/,//Native ..

Native-np

/ />/,/ .--:~~~'~ §~~~~~

:: ~~;;~~~~ TAS-B-np

2 3 4 5 6 7 8 9 10 11
Number of processors

Figure 15: Varying the number of proces­
sors on the SGI Challenge with a
multiprogramming level of 2.

32

time i! Queue-np
iii Queue
if; Ticket Queue-HS

-.. r----- ~---- ----$---_____ ~---_------~ __ -- ----...- ______ +___ _ ___ ~- --------

150 ',:
TA~-B

* Smart-Q .. '-- -·-:·a ... ___ -EJ-_ ••• ----- -B-·--_· (3---

TAS-B-np
+ ---+

Ticket-np
50

Native-np

o L-~ __ ~ __ L-~ __ ~ __ ~~ __ -L __ ~~

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
multiprogramming level

Figure 14: Varying multiprogramming
level on a 63-processor KSR 1.

time

100

80

60

40

!!!Queue-np
:;,Queue
i;iTicket

10 20 30 40 50
number of processors

60

Figure 16: Varying the number of proces­
sors on the KSR 1 with a
multiprogramming level of 2.

not only because they make use of special hardware, but because the atomic operations in
all the other locks are built on top of them. Our experiments confirm this expectation.

Our synthetic application executes a simple loop consisting of a work section and a
critical section. The total number of loop iterations is proportional to the number of ex­
ecuting processes. In designing a scalable synthetic application we needed to ensure that

the critical section did not become a bottleneck. Therefore, we set the ratio of the lengths
of the critical and non-critical sections on both machines to slightly less than the inverse of

the maximum number of processors. Absolute quantum length (in cycles or microseconds)
had no significant effect on performance. We therefore concentrate here on the remaining
variables in the synthetic application: multiprogramming level and number of processors.

Figures 13 and 14 plot execution time of the synthetic application against multipro­
gramming level for a fixed n urn ber of processors (11 on the SG I and 63 on the KSR). On

the SGI, the scheduling quantum is fixed at 20 ms and the critical to non-critical section
ratio is 1:14. We used a random number generator to vary the length of the critical section
within a narrow range, to more closely approximate the behavior of real applications and to

avoid possible lock-stepping of the different processes. The Queue, Queue-np, and Ticket
locks show the worst degradation, because processes queue up behind preempted peers.

Preventing preemption in the critical section helps a little, but not much: preemption of
processes waiting in the queue is the dominant problem.

Considerably better behavior is obtained by preventing critical section preemption and
ensuring that the lock is not given to a blocked process waiting in the queue: the Queue­
HS, Smart-Q, and Ticket-np locks perform far better than the other scalable locks, and also

outperform the Native and TAS-B locks at multiprogramming levels of 2 and above. The
Native-np and TAS-B-np locks display the best results, though past work [30] suggests that

they will generate more bus traffic than the scalable locks, and would interfere more with
the data-access memory traffic of a real program.9

On the KSR, the scheduling quantum is fixed at 50 ms and the ratio of critical to non­

critical section lengths is 1:65. The results show slightly different behavior from that on the
SGI. The Queue, Queue-np, and Ticket locks suffer an even greater performance hit as the

multiprogramming level increases. The Queue-HS lock improves performance considerably,
since it eliminates both the critical section and queue preemption problems. Unfortunately,

it requires a significant number of high-latency remote references, resulting in a high, steady
level of overhead. The Smart-Q lock lowers this level by a third, but it is still a little slower
than the TAS-B-n p lock. The best non-native lock is Ticket-n p. This is expected behavior,

since the Ticket lock deals well with contention (not as well as the queued lock, but there
is less contention observed in a multiprogrammed environment), and Ticket-np has solved

the preemption problem.

The N ative-n p lock provides the best overall performance. Since all the non-native locks

use native locks internally to implement atomic operations, this too is expected behavior.
The TAS-B and Native locks perform well when the multiprogramming level is low, but
deteriorate as it increases. If the necessary atomic operations (fetch_and_add, swap, etc.)

9The synthetic application does not capture this effect; it operates almost entirely out of registers during
its critical and non-critical sections. The impact on data-access traffic can be seen in our experiments with

real applications.

33

Smart-Q

Queue-HS

Tlcket-np

Ticket

Queue-np

Queue

TAS-B-np

TAS-B

Natlve-np

Native

o 10 20 30

Figure 17: Completion time (in seconds)
for Cholesky on the SG I.

Smart-Q

Queue-liS

Tlcket-np

Ticket

Queue-np

Queue

TAS-B-np

TAS-B

Natlve-np

Native

o 10 20 30

Figure 19: Completion time (in seconds)
for Quicksort on the SG I.

Smart-Q

Queue-HS

Tlcket-np

Ticket

Queue-np

Queue

TAS-B-np

TAS-B

Natlve-np

Native

o 10 20 30 40 50

Figure 18: Completion time (in seconds)
for Cholesky on the KSR.

Smart-Q

Queue-liS

Tlcket-np

Ticket

Queue-np

Queue

TAS-B-np

TAS-B

Natlve-np

Native

o 20 40 60 80 100

Figure 20: Completion time (in seconds)
for Quicksort on the KSR.

were available on the KSR 1, we would expect the queued and ticket locks to perform better
than they do by a small constant factor. The closeness with which those locks follow the
performance of KSR's relatively complex built-in primitive suggests that that primitive IS

probably not cost effective.

Increasing the number of processors working in parallel can result in a significant amount
or cOIl1.(,II1.ioli. ('sp('ciall,v ir 1.11(' prol!;ralll 1I('('ds 1.0 s,vllcllrollil:(' rr<'<lII('lIl1,v. I)r('violls \\'ork lias

sllm\'11 1.1Ia1. <l1I('II('d locks ilIiProV(' p('rrOrlllall(,(' ill sllcll all (,lIvirolllll('IIt.. bill. as illdica1.('d b,Y

1.11(' I!;ra.plls ill riI!;III'('S r:~ alld I I 1.1I(',v ('xp('ri('II(,(' dirriclll1.i('s IIlId('r 11I1I11.iprol!;rallllllilll!;. '1'11('

I!;ra.plls ill riI!;III'('S I!) alld I (j sllm\' 1.11(' <'fr('cj or i IIcr('asi III!; 1.11(' 1111111 b('r or proc('ssors Oil 1.11('

dirr('r(,lI1. locks a1. a 11I1I11.iprol!;rallllllilll!; l('v('1 or:z.

'1'11(' s,vlI1.II('1.ic prol!;ralll I'll liS a l.o1.al II 11111 b('r or loop i1.('ratiolls propor1.iollal 1.01.11(' 1111111-

b('r or proc('ssors. so ('x('cll1.ioll l.illl(, slloilid 1101. d('cr('as(' as proc('ssors ar(' add('d. Id('all,v. it

\\'oliid r<'lliaili cOlIs1.allt.. bill. cOIl1.(,II1.ioll alld sc II ('d 111('1' ill1.('rr('r<'II(,(' \\'ill caIlS(' i1. 1.0 illcr('as('.

;~ I

With quantum size and critical to non-critical ratio fixed as before, results on the SGI again
show the Queue, Queue-np, and Ticket locks performing poorly, as a result of untimely pre­
emption. The performance of the TAS-B and Native locks also degrades with additional
processors, because of increased contention and because of the increased likelihood of pre­
emption in the critical section. The Smart-Q and Ticket-np locks degrade more slowly, but
also appear to experience higher overheads. Increasing the number of processors does not
affect the TAS-B-np and Native-np locks until there are more than about eight processors
active (the point at which bus contention becomes an issue).

The results on the KSR indicate that contention effects are important for larger numbers
of processors. The native lock, with our modification to avoid critical section preemption,
is roughly twice as fast as the nearest competition, because of the hardware queuing effect.
Among the all-software locks, Ticket-np performs the best but TAS-B-np and Smart-Q are
still reasonably close.

Backoff constants for the TAS-B and Ticket locks were determined by trial and error.
The best values differ from machine to machine, and even from program to program. The
queued locks are more portable. As noted above, contention on both machines becomes a
serious problem sooner if the code in the critical and non-critical sections generates memory
traffic. As witnessed from real application results, the queued locks suffer less from this
effect.

To verify the results obtained from the synthetic program, and to investigate the ef­
fect of memory traffic generated by data accesses, we measured the performance of a pair
of real applications: the Cholesky program from the Stanford SPLASH suite [39], and a
multiprocessor version of Quicksort. These programs contain no barriers; they synchronize
only with locks. Figures 17 to 20 show their completion times, in seconds, when run with a
multiprogramming level of 2 using 11 processors on the SGI and 63 processors on the KSR.
As with the synthetic program, scheduler-oblivious queuing of preemptable processes is dis­
astrous. This time, however, with real computation going on, the Ticket-np and Smart-Q
locks match the performance of the TAS-B-np and Native-np locks on the SGI, and to
outperform TAS-B-np in the Quicksort program on the KSR.

5.3 Reader-Writer Locks

We implemented six different reader-writer locks:

RW-TAS-B - A centralized reader-writer lock based on a standard test-and-test_and_set
lock with exponential backoff.

RW-TAS-B-np - The same as RW-TAS-B, but with avoidance of preemption in critical
sections, using the Symunix kernel interface.

RW-Queue - A scalable reader-writer lock based on the lock by Krieger et al. [19].

RW-Smart-Q - An extension to the RW-Queue lock that uses kernel extensions KE-l
and KE-2 to avoid preemption in the critical section, and to avoid passing the lock to
a preempted process. This algorithm appears in figures 5 through 7.

35

time
90

80

70

60

50

40

30

20

10

RW-Queue -
RW-Smart-Q+

RW-TAS-8 G --­

RW-TAS-8-np*

OL-~~--~~--~~--~~~~

1 1.2 1.4 1.6 1.8 2 2_2 2.4 2_6 2_8 3
multiprogramming level

Figure 21: Varying the multiprogram­
ming level for the reader-writer lock on
the SG I (11 processors).

time
90

80

70

60

50

40

30

RW-Queue -
RW-Smart-Q+

RW-TAS-8 G --­

RW-TAS-8-np*

20 _______________ -+-________________ +-________________ + ____ -------------+-----------------

10

OL-~----~----~----~----~~

2 468
Number of processors

10

Figure 23: Varying the number of proces­
sors for the reader-writer lock on
the SGI (multiprogramming level = 2).

36

time
450

375

300

225

150

RW-Queue -
RW-Smart-Q+

RW-TAS-8 G -­

RW-TAS-8-np *
RW-Native -A-­

RW-Native-np

~.A--- _ - _..A- --

75 -'-
~:~;~~~-:~~;~~~~~:_;~~~ .. :::::.:-:?~~=~f.-~-:.~=~=~=:----:.~:::::~,t_-:~:-=~:~.:-t·:-:::~:~:-.t:::-=-:-:~-

OL-~~--~~--~~--~~~--~

1 1.2 1.4 1.6 1.8 2 2_2 2.4 2_6 2_8 3
multiprogramming level

Figure 22: Varying the multiprogram­
ming level for the reader-writer lock on
the KSR (63 processors).

time
450

375

300

225

150

75

o

RW-Queue -
RW-Smart-Q+

RW-TAS-8 G -­

RW-TAS-8-np*
RW-Native -A-­

RW-Native-np --.--

/-
~::.------

--6;;~~~=
10 20 30 40 50 60

Number of processors

Figure 24: Varying the number of proces­
sors for the reader-writer lock on
the KSR (multiprogramming level = 2).

RW-Native - A reader-writer lock based on the native synchronization primitive. On the
SG I this is identical to the RW -TAS-Block.

RW-Native-np - The same as RW-Native, but with avoidance of preemption in critical
sections, using the Symunix kernel interface. On the SGI this is identical to the
RW-TAS-B-np lock.

Figures 21 and 22 show the performance of the various reader-writer locks under vary­
ing levels of multiprogramming on the SGI (11 processors) and KSR (63 processors), re­
spectively. Figures 23 and 24 show performance on varying numbers of processors, at a
multiprogramming level of 2.

Reader-writer locks display behavior similar to that of mutual exclusion locks. The
RW-Native-np lock outperforms all the others in a multiprogrammed environment. The
RW-Smart-Q lock is a close second. The algorithms that do not cope with preemption
behave increasingly worse as the multiprogramming level increases, though this effect is
less pronounced than it was in the case of mutual exclusion. Five percent of the critical
sections in our experiments acquire a writer lock; the rest acquire a reader lock, and can
proceed in parallel with other readers. Preempting a process that holds a lock usually means
preempting a reader, not a writer, so other readers can still proceed (so long as a writer is
not yet in line).

As in the case of mutual exclusion, the centralized RW-TAS-B and RW-TAS-B-np locks
still suffer from contention on large numbers of processors. The contention effects observed
with reader-writer locks are more pronounced than what was observed with the mutual
exclusion locks. In contrast to those earlier experiments, we did not try to maintain a
ratio of regular work and critical section work inversely proportional to the number of
processors. We assumed that the additional parallelism available due to the concurrency of
readers would reduce the observed contention. This turned out not to be the case: reader­
writer locks experienced a high degree of contention. Graph 22 shows that the centralized
version of the lock based on the test_and_set primitive actually improves in performance as
multiprogramming increases. The reason is that the increase in multiprogramming reduces
the contention experienced by processes and allows lock operations to complete faster, even
though there are fewer processor cycles available to the application.

For completeness, we ran experiments with one, five, and fifty percent writers. Larger
numbers of writers cause a higher degree of contention-expected since there is less concur­
rency available-and degrade the performance of the RW -TAS-Band RW -TAS-B-n p locks.
We present the five percent results here. The others are qualitatively similar.

5.4 Barriers

We present results on barrier synchronization in two sections, one for small-scale machines
such as the SG I Challenge (these results also apply to small partitions of a larger machine),
and one for large-scale machines such as the KSR 1.

37

5.4.1 Small-scale barriers

For small-scale, centralized barriers, we implemented three baseline cases-always spin,
always block, and spin-then-block-, three competitive algorithms that adjust their behavior
based on previous barrier episodes, and the scheduler information barrier of figure 10, which
uses kernel extension KE-3 to make an optimal spin versus block decision:

C-spin - All processes spin while waiting for their peers to reach the barrier.

C-block - Processes never spin; if they need to wait, they place themselves on a semaphore
queue. The last process to arrive at the barrier wakes up its peers by performing V
operations on the semaphore.

C-sp-blk - Processes spin for a bounded amount of time equal to the cost of a context
switch. If the bound expires before the barrier is achieved, then the process yields the
processor by performing a P operation on a semaphore. The last process to arrive at
the barrier checks the semaphore queue and wakes up any processes that are blocked.
This algorithm appears in figure 8.

C-Iastl - Processes spin for a period of time determined by how long they waited at the
previous barrier episode. This time is increased if the process did not exceed it during
the last barrier episode and decreased otherwise. The upper bound on the time is the
cost of a context switch.

C-avg3 - This barrier is similar to the C-lastl barrier, except that the last three barrier
episodes are used in determining the amount of time spent spinning. This algorithm
appears in figure 9.

C-coarse - A competitive barrier similar to the C-lastl barrier, except that the spinning
time is not adjusted incrementally, but rather all at once.

C-sched - A barrier that makes an optimal spin versus block decision based on the number
of available processors (as reported by kernel extension KE-3) and the number of
processes that have yet to reach the barrier. This algorithm appears in figure 10.

Figure 25 shows the performance of the synthetic application on the SGI Challenge
when using different barrier implementations, as the multiprogramming level increases. Our
experiments were run in a dynamic hardware partitioned environment, where the number
of processors available to the application varies between 5 and 11, with an average of 7.9.
The multiprogramming level is calculated based on the average number of processors and
the number of processes used by the application. The synthetic application performs no
real work between barriers; it does not capture the effect of data-access memory references.
The kernel scheduler moves processes among processors in order to balance load. Processes
running on the same processor are multi programmed with a quantum length of 30 ms, the
default value used by the IRIX kernel scheduler.

In the absence of multiprogramming, the C-sched barrier performs as well as the C-spin
barrier-its overhead is low-, and significantly better than the competitive barriers. As

38

c; CoIV~~

C-sp-blk

C-spln

time

280

240

200

160

120

80

40

C-spin
C-block+­

C-sp-blk 3

C-avg3 x

C-last1
C-coarse x

C-sched ~

o ~ ____ ~ ______ ~ ______ -L ______ ~ ____ ~

1 1.5 2 2.5 3
multiprogramming level

Figure 25: Performance of the small-scale barriers for the synthetic program.

I I
I I
I c; CoIV~~ I
I C-sp-blk I

I I
I I

I C-spln II I-<om

Figure 26: Gaussian Elimination run-time
for different barrier implementations
(multiprogramming level=l).

Figure 27: Gaussian Elimination run-time
for different barrier implementations
(multiprogramming level=2).

the multiprogramming level increases the spinning barrier's performance degrades sharply,
while the C-sched barrier retains its good performance and its advantage over the other
algorithms. It never spins when other processes could make use of the current processor,
and it avoids the overhead of blocking in the last P processes to arrive at the barrier.
At very high multiprogramming levels, the Scheduler Information barrier is only slightly
ra:-;j('r thall th(' cOlllp<'1itiv(' alld blockilll!; barri(,rs: as th(' 1I111l1b('r or proc('ss('S p(,r proc(,ssor

i IIcr('as('s it I)('COIII('S I('ss i III portallt to avoid blocki III!; ill tli(' ri lIal proC('ss Oil ('acli proc('ssor.

To validat(' tli(' r('silits obtaill('d \\itli tli(' s.vlltli('tic applicatioll, \\(' ('xp('rilll('lIt('d \\itli

;) r('al applicatioll as m'lI: (;;lIIssiall ('Iilllillatioli. \V(' rail II proc('sS('S Oil !) II proc('ssors,

\\·itli a <I"alltlllll 1('lIl!;tli of" :Hj IllS alld a r('partitioll op('ratioll (a clialll!;(' ill tli(' 1I111l1b('r of"

proc('ssors) ('v('r.v SO IllS.

TIi(' Iliaill dirr('f"{'IIC<' m' obs('rv('d \\·itli r('sp('ct to tli(' s.vlltli('tic r('silits is a d('cr('as(' ill tli('

illipact of" s.vllclirolli;:atioll Oil ov(,rall P('r/·OI"lliallC<'. sillc(' it is COlli bi lI('d \\·itli tli(' tilll(, sp(,111

time

375

10 20 30 40

Scal-SC -
Com-tree -+--­

Tree ··G····

50
Number of processors

60

Figure 28: Varying the number of proces­
sors for the barriers on the KSR
(multiprogramming level = 2).

time

120

100

80

60

40

Scal-SC -
Com-tree -+---

20 +- - -~--------+- -- --- __ ~~~~~+--------- -----------------------------------

0'------------'-------'--------'---------'

o 500 1000 1500 2000
Time between repartitions (msecs)

Figure 29: Varying the frequency of repar­
titioning decisions for the barriers on the
KSR (57 processors).

in real computation. Figures 26 and 27 show the completion time of Gaussian elimination
at multiprogramming levels of 1 and 2 respectively. In both cases the application receives
an average of eight processors during its lifetime, but in the second case there are more
(16) application processes cooperating on the problem. In both cases the C-sched barrier
provides the best performance.

As with mutual exclusion and reader-writer locks, we experimented with a variety of
other values for each of the experimental parameters. The only parameter (other than
multiprogramming level and number of processors) to display a noticeable impact on per­
formance was the frequency of repartitioning decisions. As the time between repartitions
increases, the performance of the competitive barriers improves to some extent, since they
need time to adapt to a change in partition size, and an increase in the time between repar­
titions allows them to amortize their adaptation cost over a larger number of episodes. The
performance of the blocking and spinning barriers is essentially independent of the time
between repartitions.

We were initially surprised to see a small but steady improvement in the performance
of the C-sched barrier as the time between repartitions increased. The explanation is that
it is possible for the algorithm to err when a repartitioning decision occurs at the same
time that the application is going through a barrier. In this case, some threads will use
old information to guide their decision and thus may decide sub-optimally. When the time
between scheduling decisions is large, sub-optimal decisions happen less frequently, resulting
in a small performance improvement.

5.4.2 Scalable barriers

For large scale machines we implemented and tested three barriers:

40

Com-tree

Scal-SC

Tree

o 2 4 6 s

Time In sees

Figure 30: Gaussian elimination run-time
on the KSR using 57 processors
(multiprogramming level = 1)

Com-tree

Scal-SC

Tree f-------------17'+/-1 >3m

o 10 20 30 40 50

Time In sees

Figure 31: Gaussian elimination run-time
on the KSR using 57 processors
(multiprogramming level = 2)

Tree - Mellor-Crummey and Scott's tree barrier with flag wakeup [30]. This algorithm
associates processes with nodes (both internal and leaves) in a static 4-ary fan-in
tree. After waiting for their children (if any) and signaling their parent (if any) in
the arrival tree, processes spin on locally-cached copies of a single, global wakeup flag.
The last arriving process sets this flag. On KSR's ring-based topology, the resulting
invalidations and reloads approximate hardware broadcast.

Com-tree - A competitive variant of the Tree barrier, in which processes spin for only a
bounded amount of time, as in the C-sp-blk algorithm of the previous section.

Scal-SC - A scalable scheduler-conscious barrier that uses the C-sched barrier among the
processes on a given processor and a scalable tree barrier across processors. Code for
this algorithm appears in figures 11 and 12. The code actually run on the KSR differs
from the figures in that a process simply yields the processor, rather than blocking on
a semaphore, when it discovers that it is not the last arriving process on its processor.
If processes can do their inter-barrier work in any order, and if the scheduler does
not re-run a process until its peers have had a chance to run, then yielding results in
no more context switches than blocking, and saves the last arriving process on each
processor from having to do a series of V operations. For correctness, the yield calls
are embedded in a loop that re-tests globaLsense.

Barriers based on a centralized counter do not scale well to larger machines for two
reasons. First, their critical path length is linear in the number of processors; second, the
centralized counter can become a significant source of contention. Given that processes do
not migrate among processors, the Scal-SC algorithm avoids these problems while making
optimal spin versus block decisions.

liil!;lIl'<'"2S cOlllpar('s 111(' p('rrOrlliallC<' or 111(' variolls barri(,rs ill 0111' sovllll1('lic applicalioll

Oil 111(' I\SI{ I, \\Oill1 a 1IIIIIliprol!;ralllillilll!; l('v('1 or 1\\°0, alld \\Oill1 varovilll!; 1I111l1b('rs or pro­

c('ssors. I{('parliliollilll!; d('cisiolls \\0(,1'<' IlIad(' al Oll('-s('colld illl('rvais. :\s call b(' S(,(,II rrolll

111(' I!; ra.p II , 111(' '1'1'('(' barri(,r is r(,lId('r('d IIs('I('ss \\Oill1 111(' i 1l1rod lIc1iOIl or 1IIIIIli prol!;ralllill i III!;.

11s p('rrOrlliallC<' d('l!;rad('s dll(, 10 111(' larl!;(' II 11111 b('r or cOlll('xl s\\Oit.cll('s r('qllir('d ill ord(,r 10

I!;o 111 rolll!;l1 a barri(,r ('pisod(', alld 111(' alllOlllll or li 111(' \\Oasl('d b(,rol'<' ('acll cOlll('xl s\\Oit.c1l

('qllal 10 111(' proc('ss' qllallll11l1. 11 is slirprisilll!; 10 S('(' ll1al (,V(,II 111(' "spill 111('11 block"

1I(,lIrislic or 111(' ('0111-11'<'(' barri(,r p('rrOrlliS qllil(' bad 1o\' ill 111(' PI'<'S('IIC<' or 1lIlIlliprol!;rallllllilll!;.

II

While processes do not have to waste a quantum before yielding their processors they still
have to suffer the large number of context switches that degrade performance. The Scal-SC
barrier improves performance by an order of magnitude compared to its closest competitor
the Com-tree barrier. It requires the minimum number of context-switches necessary, while
still maintaining the logarithmic path length and low contention properties of the Tree
barrier.

As we mentioned in section 4, the Scal-SC barrier can be sensitive to the frequency
of scheduling decisions. We ran experiments to determine the level of sensitivity. Fig­
ure 29 shows that if the time between repartition decisions is very small, performance de­
grades quite sharply. We believe, however, that repartitioning will be a rare event on large
machines-as rare as the arrival and departure of jobs from the system. For repartition
intervals greater than 500 ms, the Scal-SC barrier performs well.

To validate the synthetic results, we ran a barrier-based version of Gaussian elimina­
tion on 57 KSR processors.lO The results appear in figures 30 and 31. In the absence of
multiprogramming the Scal-SC barrier is only slightly worse than the Tree barrier, and sig­
nificantly better than the Com-tree barrier. The introduction of multiprogramming renders
the Tree barrier useless; its performance degrades by at least an order of magnitude. At
the same time, the Scal-SC barrier outperforms Com-tree by more than 50%.

6 Conclusions

In this paper we presented solutions to the problem of synchronization on multi programmed
multiprocessors, for both small and large-scale machines. We identified the main sources
of performance loss for the two most common types of synchronization algorithms: locks
and barriers. We also demonstrated that the scalable versions of synchronization algo­
rithms are particularly sensitive to multiprogramming. We then proceeded to define an
extended kernel interface allowing communication of process state information between the
user and the kernel and we used this interface to construct scheduler-conscious versions of
several synchronization algorithms. We demonstrated that these algorithms perform well
in the absence of multiprogramming and provide significant performance advantages in a
multi programmed environment.

We have also found that increasing the multiprogramming level decreases the contention
observed by the application since the number of processes accessing a synchronization vari­
able concurrently is reduced. As a result, the scalable synchronization algorithms are some­
times inferior to centralized ones in multi programmed environments. Future increases in
machine size are likely to increase the number of contending processors in multi programmed
environments, making scalable synchronization algorithms more desirable. Moreover, it is
likely that coherence protocols on future machines will lack the ability to efficiently keep
track of a large number of processors sharing a common variable. As a result, the cost of
coherence management for the data structures of centralized synchronization algorithms is
likely to be unacceptably high.

lOWe used pthreads to express parallelism in our barrier experiments. Due to limitations in the pthreads
environment on the KSR only 57 of the 64 processors in the partition could be utilized.

42

Further extensions to the kernel-user interface may allow even greater performance gains
to be achieved. Such extensions might include allowing the kernel to run user-supplied
functions in response to particular kernel events, or choosing the partition size based on
the application's characteristics. For example, it does not make sense to remove a single
processor from a 64-processor barrier-based application: the application would run almost as
fast on 32 processors. We believe that as large-scale multiprocessors become more common
they will inevitably be multiprogrammed, and the importance of exchanging information
across the kernel-user boundary will increase.

Acknow ledgements

Our thanks to Hiroaki Takada for discovering a subtle timing window in our scalable queue
algorithm [43] , to Donna Bergmark and the Cornell Theory Center for their help with the
KSR 1, and to Maged Michael for his careful reading and helpful suggestions.

References

[1] T. E. Anderson. The Performance of Spin Lock Alternatives for Shared-Memory
Multiprocessors. IEEE Transactions on Parallel and Distributed Systems, 1 (1) :6-16,
January 1990.

[2] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy. Scheduler Activa­
tions: Effective Kernel Support for the User-Level Management of Parallelism. ACM
Transactions on Computer Systems, 10(1):53-79, February 1992. Originally presented
at the Thirteenth ACM Symposium on Operating Systems Principles, October 1991.

[3] N. S. Arenstorf and H. Jordan. Comparing Barrier Algorityhms. Parallel Computing,
12:157-170, 1989.

[4] T. S. Axelrod. Effects of Synchronization Barriers on Multiprocessor Performance.
Parallel Computing, 3:129-140, 1986.

[5] D. L. Black. Scheduling Support for Concurrency and Parallelism in the Mach Oper­
ating System. Computer, 23(5):35-43, May 1990.

[6] P. Brinch Hansen. Distributed Processes: A Concurrent Programming Concept. Com­
munications of the ACM, 21(11):934-941, November 1978.

[7] M. Crovella, P. Das, C. Dubnicki, T. LeBlanc, and E. Markatos. Multiprogramming
on Multiprocessors. In Proceedings of the Third IEEE Symposium on Parallel and
Distributed Processing, pages 590-597, December 1991.

[8] J. Edler, J. Lipkis, and E. Schonberg. Process Management for Highly Parallel UNIX
Systems. In Proceedings of the USENIX Workshop on Unix and Supercomputers,
Pittsburgh, PA, September 1988.

43

[9] G. Graunke and S. Thakkar. Synchronization Algorithms for Shared-Memory Multi­
processors. Computer, 23(6):60-69, June 1990.

[10] A. Gupta, A. Tucker, and S. Urushibara. The Impact of Operating System Scheduling
Policies and Synchronization Methods on the Performance of Parallel Applications.
In Proceedings of the 1991 ACM SIGMETRICS International Conference on Mea­
surement and Modeling of Computer Systems, pages 120-132, San Diego, CA, May
1991.

[11] D. Hensgen, R. Finkel, and U. Manber. Two Algorithms for Barrier Synchronization.
International Journal of Parallel Programming, 17(1):1-17,1988.

[12] M. Herlihy. Wait-Free Synchronization. ACM Transactions on Programming Lan­
guages and Systems, 13(1):124-149, January 1991.

[13] M. Herlihy. A Methodology for Implementing Highly Concurrent Data Objects.
ACM Transactions on Programming Languages and Systems, 15(5):745-770, Novem­
ber 1993.

[14] D. V. James, A. T. Laundrie, S. Gjessing, and G. S. Sohi. Scalable Coherent Interface.
Computer, 23(6):74-77, June 1990.

[15] E. H. Jensen, G. W. Hagensen, and J. M. Broughton. A New Approach to Exclusive
Data Access in Shared Memory Multiprocessors. Technical Report UCRL-97663,
Lawrence Livermore National Laboratory, November 1987.

[16] A. R. Karlin, K. Li, M. S. Manasse, and S. Owicki. Empirical Studies of Competitive
Spinning for a Shared-Memory Multiprocessor. In Proceedings of the Thirteenth ACM
Symposium on Operating Systems Principles, pages 41-55, Pacific Grove, CA, October
1991.

[17] L. Kontothanassis and R. Wisniewski. Using Scheduler Information to Achieve Op­
timal Barrier Synchronization Performance. In Proceedings of the Fourth A CM Sym­
posium on Principles and Practice of Parallel Programming, May 1993.

[18] D. Kranz, K. Johnson, A. Agarwal, J. Kubiatowicz, and B. Lim. Integrating Message­
Passing and Shared-Memory: Early Experience. In Proceedings of the Fourth ACM
Symposium on Principles and Practice of Parallel Programming, San Diego, CA, May
1993.

[19] O. Krieger, M. Stumm, and R. Unrau. A Fair Fast Scalable Reader-Writer Lock. In
Proceedings of the 1993 International Conference on Parallel Processing, St. Charles,
IL, August 1993.

[20] C. A. Lee. Barrier Synchronization over :\1ultistage Interconnection Networks. In
Proceedings of the Second IEEE Symposium on Parallel and Distributed Processing,
pages 130-133, Dallas, TX, December 1990.

44

[21] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hennessy, M.
Horowitz, and M. S. Lam. The Stanford Dash Multiprocessor. Computer, 25(3) :63-
79, March 1992.

[22] S. T. Leutenegger and M. K. Vernon. Performance of Multiprogrammed Multipro­
cessor Scheduling Algorithms. In Proceedings of the 1990 ACM SIGMETRICS Inter­
national Conference on Measurement and Modeling of Computer Systems, Boulder,
CO, May 1990.

[23] B. Lim and A. Agarwal. Reactive Synchronization Algorithms for Multiprocessors.
In Proceedings of the Sixth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 25-35, San Jose, CA, October
1994.

[24] B. G. Lindsay and others. Computation and Communication in R*: A Distributed
Database Manager. ACM Transactions on Computer Systems, 2(1):24-28, February
1984.

[25] B. Lubachevsky. Synchronization Barrier and Related Tools for Shared Memory Par­
allel Programming. In Proceedings of the 1989 International Conference on Parallel
Processing, pages 11:175-179, August 1989.

[26] P. Magnussen, A. Landin, and E. Hagersten. Queue Locks on Cache Coherent Multi­
processors. In Proceedings of the Eighth International Parallel Processing Symposium,
Cancun, Mexico, April 1994.

[27] E. P. Markatos. Multiprocessor Synchronization Primitives with Priorities. In Pro­
ceedings of the Eighth IEEE Workshop on Real- Time Operating Systems and Soft­
ware, pages 1-7, Atlanta, GA, May 1991. Held in conjunction with the Seventeenth
IFAC/IFIP Workshop on Real-Time Programming, and published in the Newsletter
of the IEEE Computer Society Technical Committee on Real- Time Systems 7:4 (Fall
1991).

[28] E. Markatos, M. Crovella, P. Das, C. Dubnicki, and T. LeBlanc. The Effects of
Multiprogramming on Barrier Synchronization. In Proceedings of the Third IEEE
Symposium on Parallel and Distributed Processing, pages 662-669, December 1991.

[29] B. D. Marsh, M. L. Scott, T. J. LeBlanc, and E. P. Markatos. First-Class User-Level
Threads. In Proceedings of the Thirteenth A CM Symposium on Operating Systems
Principles, pages 110-121, Pacific Grove, CA, October 1991.

[30] J. M. Mellor-Crummey and M. L. Scott. Algorithms for Scalable Synchronization on
Shared-Memory Multiprocessors. ACM Transactions on Computer Systems, 9(1):21-
65, February 1991.

[31] J. M. Mellor-Crummey and M. L. Scott. Scalable Reader-Writer Synchronization for
Shared-Memory Multiprocessors. In Proceedings of the Third ACM Symposium on
Principles and Practice of Parallel Programming, pages 106-113, Williamsburg, VA,
April 1991.

45

[32] J. M. Mellor-Crummey and M. L. Scott. Synchronization Without Contention. In
Proceedings of the Fourth International Conference on Architectural Support for Pro­
gramming Languages and Operating Systems, pages 269-278, Santa Clara, CA, April
1991.

[33] M. Noakes, D. Wallach, and W. Dally. The J-Machine Multicomputer: An Archi­
tectural Evaluation. In Proceedings of the Twentieth International Symposium on
Computer Architecture, San Diego, CA, May 1993.

[34] J. K. Ousterhout, D. A. Scelza, and P. S. Sindhu. Medusa: An Experiment in Dis­
tributed Operating System Structure. Communications of the ACM, 23(2):92-105,

February 1980.

[35] J. K. Ousterhout. Scheduling Techniques for Concurrent Systems. In Proceedings of
the Third International Conference on Distributed Computing Systems, pages 22-30,
October 1982.

[36] C. D. Polychronopoulos and D. J. Kuck. Guided Self-scheduling: A Practical Schedul­
ing Scheme for Parallel Supercomputers. IEEE Transactions on Computers, C-
36(12):1425-1439, December 1987.

[37] M. L. Scott, T. J. LeBlanc, and B. D. Marsh. Multi-Model Parallel Programming in
Psyche. In Proceedings of the Second A CM Symposium on Principles and Practice of
Parallel Programming, pages 70-78, Seattle, WA, March 1990.

[38] M. L. Scott and J. M. Mellor-Crummey. Fast, Contention-Free Combining Tree Bar­
riers. International Journal of Parallel Programming, 22(4) :449-481, August 1994.
Earlier version available as TR 429, Computer Science Department, University of
Rochester, June 1992.

[39] J. P. Singh, W. Weber, and A. Gupta. SPLASH: Stanford Parallel Applications for
Shared-Memory. ACM SIGARCH Computer Architecture News, 20(1):5-44, March
1992.

[40] J. W. Stamos and D. K. Gifford. Remote Evaluation. ACM Transactions on Pro­
gramming Languages and Systems, 12(4) :537-565, October 1990.

[41] A. Tucker and A. Gupta. Process Control and Scheduling Issues for Multiprogrammed
Shared-Memory Multiprocessors. In Proceedings of the Twelfth ACM Symposium on
Operating Systems Principles, pages 159-166, Litchfield Park, AZ, December 1989.

[42] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active Messages:
a Mechanism for Integrated Communication and Computation. In Proceedings of the
Nineteenth International Symposium on Computer Architecture, pages 256-266, Gold
Coast, Australia, May 1992.

[43] R. W. Wisniewski, L. Kontothanassis, and M. L. Scott. Scalable Spin Locks for Mul­
tiprogrammed Systems. In Proceedings of the Eighth International Parallel Processing

46

Symposium, pages 583-589, Cancun, Mexico, April 1994. Earlier but expanded ver­
sion available as TR 454, Computer Science Department, University of Rochester,
April 1993.

[44J H. Yang and J. H. Anderson. Fast, Scalable Synchronization with Minimal Hardware
Su pport (extended abstract). In Proceedings of the Twelfth A CM Symposium on
Principles of Distributed Computing, August 1993.

[45J P. Yew, N. Tzeng, and D. H. Lawrie. Distributing Hot-Spot Addressing in Large-Scale
Multiprocessors. IEEE Transactions on Computers, C-36(4) :388-395, April 1987.

[46J J. Zahorjan, E. D. Lazowska, and D. L. Eager. Spinning Versus Blocking in Par­
allel Systems with Uncertainty. In Proceedings of the International Symposium on
Performance of Distributed and Parallel Systems, December 1988.

[47J J. Zahorjan and C. McCann. Processor Scheduling in Shared Memory Multiproces­
sors. In Proceedings of the 1990 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, pages 214-225, Boulder, CO, May
1990.

[48J J. Zahorjan, E. D. Lazowska, and D. L. Eager. The Effect of Scheduling Discipline on
Spin Overhead in Shared Memory Parallel Systems. IEEE Transactions on Parallel
and Distributed Systems, 2(2) :180-198, April 1991.

47

