
Using Simple Page Placement Policies to Reduce the Cost of CacheFills in Coherent Shared-Memory Systems�Michael Marchetti, Leonidas Kontothanassis,Ricardo Bianchini, and Michael L. ScottDepartment of Computer ScienceUniversity of RochesterRochester, NY 14627-0226fmwm,kthanasi,ricardo,scottg@cs.rochester.eduSeptember 1994AbstractThe cost of a cache miss depends heavily on the location of the main memory that backs themissing line. For certain applications, this cost is a major factor in overall performance. Wereport on the utility of OS-based page placement as a mechanism to increase the frequency withwhich cache �lls access local memory in a distributed shared memory multiprocessor. Even withthe very simple policy of �rst-use placement, we �nd signi�cant improvements over round-robinplacement for many applications on both hardware and software-coherent systems. For most ofour applications, dynamic placement allows 35 to 75 percent of cache �lls to be performed locally,resulting in performance improvements of 20 to 40 percent.We have also investigated the performance impact of more sophisticated policies includinghardware support for page placement, dynamic page migration, and page replication. We weresurprised to �nd no performance advantage for the more sophisticated policies; in fact in mostcases performance of our applications su�ered.1 IntroductionMost modern processors use caches to hide the growing disparity between processor and memory(DRAM) speeds. On a uniprocessor, the e�ectiveness of a cache depends primarily on the hit rate,which in turn depends on such factors as cache and working set sizes, the amount of temporaland spatial locality in the reference stream, the degree of associativity in the cache, and the cachereplacement policy.�This work was supported in part by NSF Institutional Infrastructure grant no. CDA-8822724 and ONR researchgrant no. N00014-92-J-1801 (in conjunction with the ARPA Research in Information Science and Technology|HighPerformance Computing, Software Science and Technology program, ARPA Order no. 8930).1

mls
Tech. Rep. 535

Two additional factors come into play on a multiprocessor. First, we need a coherence protocol toensure that processors do not access stale copies of data that have been modi�ed elsewhere. Coherenceis required for correctness, but may reduce the hit rate (by invalidating lines in some caches whenthey are modi�ed in others), and can increase the cost of both hits and misses, by introducing extralogic into the cache lookup algorithm. Second, because large-scale machines generally distributephysical memory among the nodes of the system, the cost of a cache miss can vary substantially,even without coherence overhead.E�cient implementation of a coherent shared memory is arguably the most di�cult task facedby the designers of large-scale multiprocessors. Minimizing the cost of coherence is the overridingconcern. Given a good coherence protocol, however, the placement of data in the distributed mainmemory may still have a signi�cant impact on performance, because it a�ects the cost of cachemisses. A substantial body of research has addressed the development of good coherence protocols.This paper addresses the page placement problem. We focus our attention on behavior-driven OS-level migration of pages among processors. We limit our consideration to the class of machines inwhich each physical memory address has a �xed physical location (its home node), and in which thehardware cache controllers are capable of �lling misses from remote locations.Ideally, the compiler for a parallel language would determine the best location for each datum ateach point in time, and would place data accordingly. Compiler technology has not yet advanced tothe point where this task is feasible; the current state of the art assumes a user-speci�ed distributionof data among processors (e.g. as in HPF [14]). Moreover, there will always be important programsfor which reference patterns cannot be determined at compile time, e.g. because they depend oninput data [16]. Even for those applications in which compile-time placement is feasible, it still seemspossible that OS-level placement will o�er a simpler, acceptable solution.Our work shows that we can achieve e�ective page placement with no hardware support otherthan the standard address translation and page fault mechanisms. We also show that good placementis helpful regardless of whether coherence is maintained in hardware (on a CC-NUMA machine) orin kernel-level software (on a non-coherent NUMA machine). Finally we evaluate dynamic pagemigration and page replication (with invalidations for coherence) as further mechanisms to improvethe performance of coherent shared-memory systems, but observe little or no performance bene�tand often a performance loss for our application suite. We speculate that page replication may beuseful for programs with large data structures that are very infrequently written.By way of further introduction, we briey survey related work in section 2. We then present ouralgorithms and experimental environment in section 3. We present results in section 4 and concludein section 5.2 Related WorkPage migration and replication has also been used on cacheless NUMA multiprocessors in order totake advantage of the lower cost of accessing local memory instead of remote memory [3, 4, 6, 11,12]. By using e�cient block-transfer hardware to transfer page-size blocks, these \NUMA memorymanagement" systems reduce the average cost per reference. This paper addresses the question ofwhether similar policies are still e�ective on machines with per-processor caches.2

Cache-coherent shared memory multiprocessors fall into two basic categories, termed CC-NUMA(cache coherent, non-uniform memory access) and COMA (cache only memory architecture). CC-NUMA machines are characterized by local per-processor caches, distributed main memory, scalableinterconnection networks, and a protocol that maintains cache coherence. Examples of such machinesinclude the Stanford DASH [13] and the MIT Alewife [1]. COMA machines are similar to CC-NUMAs, except that the local portion of main memory is organized as a cache (named attractionmemory) and data is replicated to local memory as well as the cache on a miss. Examples of suchmachines include the commercially available KSR-1 [9] and the Swedish Data Di�usion Machine(DDM) [7].COMA multiprocessors have a signi�cant advantage over CC-NUMA multiprocessors when itcomes to servicing capacity and conict cache misses. Since the local memory of a node servesas a large secondary or tertiary cache, most such misses are satis�ed locally, incurring smaller misspenalties and less interconnection tra�c. CC-NUMAs can approach the behavior of COMA machinesif data are laid out intelligently in main memory so that most misses are satis�ed by a node's localmemory. Past work [18] has shown that with additional hardware, or programmer and compilerintervention, data pages can be migrated to the nodes that would miss on them the most, achievingperformance comparable to that of COMA machines. The advantages of this approach are itsrelative hardware simplicity and its lower overhead for data that are actively shared. Our approachis applicable to both NUMA machines with non-coherent caches and CC-NUMA machines, andrequires little or no additional hardware.Chandra et. al. have independently studied migration in the context of CC-NUMAs with eagerhardware cache coherence [5]. They simulated several migration policies based on counting cachemisses and/or TLB misses; some of the policies allowed a page to move only once, and othersallowed multiple migrations to occur. One of their policies (single move on the �rst cache miss) issimilar to our dynamic placement policy. They also found that a single-move policy can cause manycache misses to be performed locally, though our results are not directly comparable because weused di�erent applications. We extend their work by considering replication strategies, as well asinvestigating the e�ects of placement on both eager (hardware) and lazy (software) coherent systems.3 Algorithms and Experimental EnvironmentIn this section we describe our simulation testbed, the coherence protocols with which we started,the changes we made to those protocols to implement page placement, and the set of applicationson which we evaluated those changes.3.1 Simulation MethodologyWe use execution driven simulation to simulate a mesh-connected multiprocessor with up to 64 nodes.Our simulator consists of two parts: a front end, Mint [19, 20], which simulates the execution of theprocessors, and a back end that simulates the memory system. The front end calls the back end onevery data reference (instruction fetches are assumed to always be cache hits). The back end decideswhich processors block waiting for memory and which continue execution. Since the decision is madeon-line, the back end a�ects the timing of the front end, so that the control ow of the application,3

System Constant Name Default ValueTLB size 128 entriesTLB �ll time 100 cyclesInterrupt (page fault) cost 140 cyclesPage table modi�cation 320 cyclesMemory latency 12 cyclesMemory bandwidth 1 word / 4 cyclesPage size 4K bytesTotal cache per processor 16K bytesCache line size 64 bytesNetwork path width 16 bits (bidirectional)Link latency 2 cyclesRouting time 4 cyclesDirectory lookup cost 10 cyclesCache purge time 1 cycle/linePage move time approx. 4300 cyclesTable 1: Default values for system parameters, assuming a 100-MHz processor.and the interleaving of instructions across processors, can depend on the behavior of the memorysystem.The front end implements the MIPS II instruction set. Interchangeable modules in the back endallow us to explore the design space of software and hardware coherence. Our hardware-coherentmodules are quite detailed, with �nite-size caches, write bu�ers, full protocol emulation, distance-dependent network delays, and memory access costs (including memory contention). Our simulator iscapable of capturing contention within the network, but only at a substantial cost in execution time;the results reported here model network contention at the sending and receiving nodes of a message,but not at the intermediate nodes. Our software-coherent modules add a detailed simulation of TLBbehavior. To avoid the complexities of instruction-level simulation of interrupt handlers, we assumea constant overhead for page fault interrupt handling. The actual cost of a page fault is the sum ofthe interrupt, page table, and TLB overheads. Table 1 summarizes the default parameters used inour simulations.The CC-NUMA machine uses the directory-based write-invalidate coherence protocol of the Stan-ford DASH machine [13]. This protocol employs an eager implementation of release consistency.Our software-coherent NUMA machine uses a scalable extension of the work of Petersen andLi [15], with additional ideas from the work of Keleher et al. [8]. It employs a lazy implementationof release consistency, in which invalidation messages are sent only at synchronization release points,and processed (locally) only at synchronization acquire points.At an acquire, a processor is required to ush from its own cache all lines of all pages that havebeen modi�ed by any other processor since the current processor's last acquire. It is also required tounmap the page, so that future accesses will generate a page fault. At a release, a process is required4

to write back all dirty words in its cache.1To allow a processor to determine which pages to ush and un-map on an acquire, we maintaina distributed weak list of pages for which out-of-date cached copies may exist. When a processor�rst accesses a page (or accesses it for the �rst time after un-mapping it), the handler for theresulting page fault adds the page to the processor's page table and communicates with the page'shome node to maintain lists of processors with read-write and read-only mappings. If the onlypreviously-existing mapping had read-write permissions, or if the current fault was a write fault andall previously-existing mappings were read-only, then the page is added to the weak list. Full detailsof this protocol can be found in a technical report [10].3.2 Page Placement MechanismsThe changes required to add page placement to both the hardware and software coherence protocolswere straightforward. The basic idea is that the �rst processor to touch a given page of sharedmemory becomes that page's home node. To deal with the common case in which one processorinitializes all of shared memory before parallel computation begins, we created an executable \donewith initialization" annotation that programmers can call at the point at which the system shouldbegin to migrate pages. This annotation improves the performance of certain applications whichhave a single processor initialize shared data structures by preventing large amounts of shared datafrom migrating to that processor. To deal with the possibility that the pattern of accesses to sharedmemory might undergo a major change in the middle of execution, we also created a \phase change"annotation that programmers could call when the system should re-evaluate its placement decisions.At the beginning of execution, shared memory pages are unmapped (this was already true forthe software protocol, but not for the hardware one). The �rst processor to su�er a page fault ona page (or the �rst one after initialization or a phase change) becomes the page's home node. Thatprocessor requests the page from the current home, then blocks until the page arrives.Ideally, one would want to place a page on the processor that will su�er the most cache missesfor that page. Unfortunately, this is not possible without future knowledge, so we place a page basedon its past behavior. We simulated a policy, based on extra hardware, in which the �rst processor toperform n cache �lls on a page becomes the page's home node, but found no signi�cant improvementover the \�rst reference" policy. The �rst reference policy does not attempt to determine whichprocessor uses a page the most, but does ensure that no processor is home to pages that it does notuse.3.3 Application SuiteOur application suite consists of �ve programs. Two (sor and mgrid) are locally-written kernels.The others (mp3d, appbt, and water) are full applications.SOR performs banded red-black successive over-relaxation on a 640 � 640 grid to calculate thetemperature at each point of a at rectangular panel. We simulated 10 iterations.1Because there may be multiple dirty copies of a given line, non-dirty words must not be written back. To distinguishthe dirty words, we assume that the cache includes per-word dirty bits.5

sor appbt mgrid water mp3d
0

20

40

60

80

100

120

140

N
or

m
al

iz
ed

 T
im

e
(%

)

Execution times for hardware and software coherence, with and without dynamic placement
158 530 499

SW+migr
SW
HW+migr
HW

Figure 1: Normalized execution times, for 64 processors and 64-byte cache blocks.Mgrid is a simpli�ed shared-memory version of the multigrid kernel from the NAS Parallel Bench-marks [2]. It performs a more elaborate over-relaxation using multi-grid techniques to compute anapproximate solution to the Poisson equation on the unit cube. We simulated 2 iterations, with 5relaxation steps on each grid, and grid sizes from 64� 64� 32 down to 16� 16� 8.Mp3d is part of the SPLASH suite [17]. It simulates rare�ed uid ow using a Monte Carloalgorithm. We simulated 20,000 particles for 10 time steps.Appbt is from the NAS Parallel Benchmarks suite. It computes an approximate solution to theNavier-Stokes equations. It was translated to shared memory from the original message-based formby Doug Burger and Sanjay Mehta at the University of Wisconsin. We simulated a 16� 16� 16 gridfor 5 time steps.Water, also from the SPLASH suite, simulates the evolution of a system of water moleculesby numerically solving the Newtonian equations of motion at each time step. We simulated 256molecules for 5 time steps.These applications were chosen in order to encompass various common caching and sharing be-haviors. The input sizes we chose, although small (due to simulation constraints), deliver reasonablescalability for most of our applications. We deliberately kept the cache sizes small, so that the ratiobetween cache size and working set size would be about the same as one would expect in a full-sizemachine and problem. As we will show in the next section, most of the applications exhibit behaviorfor which dynamic page placement is bene�cial.4 Results4.1 Dynamic Page PlacementIn this section, we show that the \�rst reference" page placement scheme can result in signi�cantperformance improvements in both hardware- and software-coherent systems. Figure 1 shows theexecution time for each of the applications in our suite, under each of the coherence systems. Thetimes for each application are normalized so that the hardware-coherent system without dynamic6

sor appbt mgrid water mp3d
0

20

40

60

80

100

Lo
ca

l o
pe

ra
tio

ns
 (

%
)

Percentage of misses and writebacks performed locally after placement

SW−wbacks
HW−wbacks
SW−misses
HW−misses

Figure 2: Local cache activity, for 64 processors and 64-byte cache blocks.placement is at 100%. For most applications, placement improves performance by 20 to 40 percent,by allowing cache misses (and, secondarily, writebacks) to happen locally.The software and hardware coherence systems generally exhibit comparable performance bothwith and without migration. Our applications exhibit coarse grained sharing and therefore scalenicely under both coherence schemes. The one exception is mp3d, which requires several modi�cationsto work well on a software coherent system [10]. These modi�cations were not applied to the codein these experiments.Figure 2 shows the percentage of cache misses and writebacks that occur on pages that are localafter migration. Without dynamic placement, the applications in our suite satisfy less than twopercent of their misses locally, as would be expected from round-robin placement on 64 processors.Dynamic placement allows 35 to 75 percent of cache misses and 50 to 100 percent of writebacks tobe satis�ed locally.Figure 3 shows the average cache �ll time for each application under both hardware and softwarecoherence. Dynamic page placement reduces the average �ll time by 20 to 40 percent for the hardwarecoherent system, and 30 to 50 percent for the software coherent system.Mgrid and sor are statically block-scheduled, and exhibit pair-wise sharing. They obtain a bene�tfrom dynamic placement even for cache �lls and writebacks that are not satis�ed locally, becauseneighbors in the block-scheduled code tend to be physically close to one another in the mesh-basedinterconnection network.In most cases, the eager hardware-coherent system bene�ts more from dynamic placement thandoes the lazy software-coherent system. Our hardware-coherent system sends invalidation messagesimmediately at the time of a write, and waits for acknowledgments when a lock is released. Thesoftware system sends write notices at the time of a release, and invalidates written blocks at thetime of an acquire. As a result, the hardware system incurs more misses caused by false sharing, andtherefore exhibits a slightly higher miss rate. Thus, any reduction in the average cost of a miss hasa greater impact on the hardware system's performance.Our placement strategy seems to work well for a variety of cache block sizes. The performancegain from dynamic placement generally varies more with block size in the hardware coherent systemthan it does in the hardware-coherent system. 7

sor appbt mgrid water mp3d
0

100

200

300

400
A

ve
ra

ge
 fi

ll
tim

e
(c

yc
le

s)
Average cache fill time, with and without dynamic placement

SW+migr
SW
HW+migr
HW

Figure 3: Average �ll time, for 64 processors and 64-byte cache blocks.
sor appbt mgrid water mp3d

0

20

40

60

80

100

120

N
or

m
al

iz
ed

 T
im

e
(%

)

Execution time of HW with placement relative to HW alone (64 procs)

256 bytes
128 bytes
64 bytes
32 bytes
16 bytes

Figure 4: Normalized execution times for varying block sizes under hardware coherence.Figures 4 and 5 show the performance of the hardware and software-coherent systems for blocksizes ranging from 16 to 256 bytes. Each bar represents the execution time of an application for aparticular block size; the height of the bar is the execution time with dynamic placement relative tothe execution time without it for the same block size. For example, under both coherence systems,dynamic page placement provides more performance gain for sor when the cache blocks are small.For programs with good spatial locality, such as sor and water, increasing the block size decreasesthe miss rate, reducing the performance gain.For small block sizes, cold-start misses are signi�cant, as are evictions if the working set size isgreater than the cache size. Dynamic placement speeds up cold-start misses by making one blocktransfer over the network and then performing the misses locally. Eviction misses always access blocksthat were previously accessed; if the page containing those blocks is moved to the local memory, themisses can be serviced signi�cantly faster. This is most e�ective if the local processor will performmore cache �lls on the page than any other processor.Large cache blocks amortize the latency of a miss over a large amount of data, but are morelikely to su�er from false sharing and evictions. For programs with good spatial locality, fetching8

sor appbt mgrid water mp3d
0

20

40

60

80

100

120

N
or

m
al

iz
ed

 T
im

e
(%

)

Execution time of SW with placement relative to SW alone (64 procs)

256 bytes
128 bytes
64 bytes
32 bytes
16 bytes

Figure 5: Normalized execution times for varying block sizes under software coherence.large blocks reduces the miss rate but increases the cost of a miss. The miss rate is the dominante�ect, making large cache blocks a net win, but the increased cost of misses mitigates this to someextent, so dynamic placement remains worthwhile.4.2 Dynamic Migration and ReplicationThough dynamic placement provides a signi�cant performance gain for many applications, it seemedlikely that the reference behavior of some programs may vary signi�cantly during execution. There-fore we provided an executable \phase change" annotation which indicates to the operating systemor runtime that the program behavior has changed. In our simulations, the runtime system uses thisas a signal to discard all placement decisions and allow the pages to migrate to another processor.Most of our applications do not have well-de�ned phase changes. The exception is mgrid, becauseits access pattern changes as the grid size changes. Adding the phase change annotation was simple,involving only two lines of code. However, dynamic migration did not improve the performance ofmgrid; in fact, it reduced the performance by 13 percent. This is due to the fact that in mgrid,each phase uses eight times as much data as the previous (smaller) phase. Therefore data locality isprimarily determined by the last phase. The cost of migrating pages to local memory for the smallerphases, and migrating them again for larger phases, exceeds the cost of performing remote cache �llsfor the smaller phases.We have also investigated several policies for replicating pages of data. These are:� Time policy: if a page remains mapped for n cycles, copy it to local memory the next timeit is mapped.� Counter policy: if n cache �lls are performed on a page before it is unmapped, copy it tolocal memory copy the next time it is mapped. This requires some hardware support.� Counter-interrupt policy: if n cache �lls have been performed on a page since it wasmapped, copy it to local memory immediately. This also requires hardware support.9

sor water mp3d
0

20

40

60

80

100

120

N
or

m
al

iz
ed

 T
im

e
(%

)

Normalized execution time with replication

Figure 6: Normalized execution times undersoftware coherence with page replication.For our simulations, we selected several applications which we believed would be most likely tobene�t from replication. For these applications, the policy which performed best was the counterpolicy. Figure 6 shows the relative performance of our applications with page replication. SOR is theonly program for which we found a signi�cant performance gain from replication (13%).We believe that the failure of replication is a result of the sharing patterns exhibited by ourapplications. In particular, many replicated pages tended to be accessed very little before beingwritten again by another causally-related processor, invalidating the copy. Even assuming highnetwork and memory bandwidths (1 word per cycle), the high cost of replicating those pages causedperformance degradation. Additionally, the reference patterns of some applications may containfrequent writes, which will not allow very many pages to be replicated. Replication may still beuseful if it is limited to data structures that are mostly read, such as lookup tables written onlyduring initialization. We are considering the use of program annotations to identify such data.5 ConclusionsWe have studied the performance impact of simple behavior-driven page placement policies underboth hardware and software cache coherence. We �nd that for applications whose working sets do not�t entirely in cache, dynamic page placement provides substantial performance bene�ts, by allowingcapacity misses to be serviced from local memory, thus incurring reduced miss penalties. We havealso shown that a very simple policy su�ces to achieve good results and that complicated hardwareis not required in devising an e�ective page placement strategy. Finally we have investigated the per-formance impact of dynamic page migration and page replication on cache coherent multiprocessorsbut found no performance bene�ts for our application suite. We believe that the reference patternfavoring replication is uncommon in scienti�c applications, and that dynamic placement su�ces toimprove the miss penalties of the applications that run on these machines.10

References[1] A. Agarwal, D. Chaiken, G. D'Souza, K. Johnson, D. Kranz, J. Kubiatowicz, K. Kurihara, B.Lim, G. Maa, D. Nussbaum, M. Parkin, and D. Yeung. Directory-Based Cache Coherence inLarge-Scale Multiprocessors. In M. Dubois and S. S. Thakkar, editors, Scalable Shared MemoryMultiprocessors. Kluwer Academic Publishers, 1992.[2] D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS Parallel Benchmarks. ReportRNR-91-002, NASA Ames Research Center, January 1991.[3] W. J. Bolosky, R. P. Fitzgerald, and M. L. Scott. Simple But E�ective Techniques for NUMAMemory Management. In Proceedings of the Twelfth ACM Symposium on Operating SystemsPrinciples, pages 19{31, Litch�eld Park, AZ, December 1989.[4] W. J. Bolosky, M. L. Scott, R. P. Fitzgerald, R. J. Fowler, and A. L. Cox. NUMA Policies andTheir Relation to Memory Architecture. In Proceedings of the Fourth International Conferenceon Architectural Support for Programming Languages and Operating Systems, pages 212{221,Santa Clara, CA, April 1991.[5] R. Chandra, S. Devine, B. Verghese, A. Gupta, and M. Rosenblum. An Evaluation of OSScheduling and Page Migration for CC-NUMA Multiprocessors. In Fourth Workshop on Scal-able Shared Memory Multiprocessors, Chicago, IL, April 1994. Held in conjunction with ISCA'94.[6] A. L. Cox and R. J. Fowler. The Implementation of a Coherent Memory Abstraction on aNUMA Multiprocessor: Experiences with PLATINUM. In Proceedings of the Twelfth ACMSymposium on Operating Systems Principles, pages 32{44, Litch�eld Park, AZ, December 1989.[7] E. Hagersten, A. Landin, and S. Haridi. DDM|A Cache-Only Memory Architecture. Com-puter, 25(9):44{54, September 1992.[8] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy Release Consistency for Software DistributedShared Memory. In Proceedings of the Nineteenth International Symposium on ComputerArchitecture, pages 13{21, Gold Coast, Australia, May 1992.[9] Kendall Square Research. KSR1 Principles of Operation. Waltham MA, 1992.[10] L. I. Kontothanassis and M. L. Scott. Software Cache Coherence for Large Scale Multiproces-sors. TR 513, Computer Science Department, University of Rochester, March 1994. Submittedfor publication.[11] R. P. LaRowe Jr. and C. S. Ellis. Experimental Comparison of MemoryManagement Policies forNUMA Multiprocessors. ACM Transactions on Computer Systems, 9(4):319{363, November1991.[12] R. P. LaRowe Jr., M. A. Holliday, and C. S. Ellis. An Analysis of Dynamic Page Placementon a NUMA Multiprocessor. In Proceedings of the 1992 ACM SIGMETRICS InternationalConference on Measurement and Modeling of Computer Systems, Newport, RI, June 1992.11

[13] D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hennessy, M. Horowitz, andM. S. Lam. The Stanford Dash Multiprocessor. Computer, 25(3):63{79, March 1992.[14] D. B. Loveman. High Performance Fortran. IEEE Parallel and Distributed Technology, 1(1):25{42, February 1993.[15] K. Petersen and K. Li. Cache Coherence for Shared Memory Multiprocessors Based on VirtualMemory Support. In Proceedings of the Seventh International Parallel Processing Symposium,Newport Beach, CA, April 1993.[16] J. H. Saltz, R. Mirchandaney, and K. Crowley. Run-Time Parallelization and Scheduling ofLoops. IEEE Transactions on Computers, 40(5):603{612, May 1991.[17] J. P. Singh, W. Weber, and A. Gupta. SPLASH: Stanford Parallel Applications for Shared-Memory. ACM SIGARCH Computer Architecture News, 20(1):5{44, March 1992.[18] P. Stenstr�om, T. Joe, and A. Gupta. Comparative Performance Evaluation of Cache-CoherentNUMA and COMA Architectures. In Proceedings of the Nineteenth International Symposiumon Computer Architecture, pages 80{91, Gold Coast, Australia, May 1992.[19] J. E. Veenstra. Mint Tutorial and User Manual. TR 452, Computer Science Department,University of Rochester, July 1993.[20] J. E. Veenstra and R. J. Fowler. Mint: A Front End for E�cient Simulation of Shared-MemoryMultiprocessors. In Proceedings of the Second International Workshop on Modeling, Analysisand Simulation of Computer and Telecommunication Systems (MASCOTS '94), pages 201{207,Durham, NC, January {February 1994.

12

