
Issues in Software Cache Coherence

Leonidas I. Kontothanassis and Michael L. Scott
Department of Computer Science

University of Rochester
Rochester, NY 14627-0226fkthanasi,scottg@cs.rochester.edu

Abstract

Large scale multiprocessors can provide the computational power needed to solve some
of the larger problems of science and engineering today. Shared memory provides
an attractive and intuitive programming model that makes good use of programmer
time and effort. Shared memory however requires a coherence mechanism to allow
caching for performance and to ensure that processors do not use stale data in their
computation. Directory-based coherence, which is the hardware mechanism of choice
for large scale multiprocessors, can be expensive both in terms of hardware cost and in
terms of the intellectual effort needed to design a correct, efficient protocol. For scalable
multiprocessor designs with network-based interconnects, software-based coherence
schemes provide an attractive alternative. In this paper we evaluate a new adaptive
software coherence protocol, and demonstrate that smart software coherence protocols
can be competitive with hardware-based coherence for a large variety of programs. We
then discuss issues that affect the performance of software coherence protocols and
proceed to suggest algorithmic and architectural enhancements that can help improve
software coherence performance.

1 Introduction

It is widely believed that shared memory programming models are easier to use than message
passing models. This belief is supported by the dominance of (small-scale) shared memory
multiprocessors in the market and the effort by compiler and operating system developers to
provide programmers with a shared memory programming abstraction. On the high end market
however, shared memory machines have been scarce and with few exceptions restricted to research
projects in academic institutions. The main reason for this discrepancy is the difficulty of providing
an efficient shared memory abstraction on large scale multiprocessors. By far the most difficult

mls
Fourth Workshop on Scalable Shared Memory Multiprocessors,Chicago, IL, April 1994



problem that needs to be addressed is that of cache coherence. Shared memory machines use
caches to reduce memory latencies, and thus introduce the coherence problem—the need to ensure
that processors do not use stale data in their caches. For large scale multiprocessors with network
interconnects, the hardware alternative of choice seems to be directory-based coherence [1, 10],
but it is expensive both in terms of hardware cost and in terms of design time and intellectual
effort required to produce a correct and efficient implementation. It is therefore not uncommon for
technological progress to have rendered a machine outdated by the time it is completed.

Software coherence protocols provide an attractive alternative, with short design and implemen-
tation times, albeit at the expense of higher coherence management overheads. There are several
reasons to hope that software coherence protocols may be competitive with hardware coherence,
despite the higher overhead. First, trap-handling overhead is not very large in comparison to remote
communication latencies, and will become even smaller as processor improvements continue to
outstrip network improvements. Second, software may be able to embody protocols that are too
complicated to implement reliably in hardware at acceptable cost. Third the advent of relaxed
consistency models has helped mitigate the impact of false sharing which is caused by the large
coherence blocks (pages instead of cache lines) used by most software coherent systems. Finally,
programmers and compiler developers are becoming aware of the importance of locality of refer-
ence and are writing programs that attempt to minimize the amount of communication between
processors, consequently reducing their coherence overhead.

In this paper we explore several algorithmic alternatives in the design space of software cache
coherence, targeted for architectures with non-coherent caches and a globally-accessible physical
address space. We describe a new, scalable software coherence protocol and provide intuition
for algorithmic and architectural choices. We then proceed to show results comparing software
and hardware coherence and discuss the shortcomings of software cache coherence protocols. We
propose algorithmic and architectural enhancements that can help improve performance under the
software protocols and conclude that software coherence can be competitive with hardware for a
large variety of programs.

2 A Scalable Software Cache Coherence Protocol

In this section we outline a scalable algorithm for software cache coherence. Like most behavior-
driven (as opposed to predictive compiler-based) software coherence protocols, our algorithm
relies on address translation hardware, and therefore uses pages as its unit of coherence. The
algorithm has several similarities to directory-based hardware cache coherence but some important
differences as well. We make use of a directory (coherent map) data structure that maintains
caching information for all processors and pages. The coherent map is physically distributed and
information for a page is stored on the node where the page resides. Caching for the coherent map
itself is disabled.

Each page can be in one of the following four states:

Uncached – No processor has a mapping to this page. This is the initial state for all pages.

Shared – One or more processors have read-only mappings to this page.

Dirty – A single processor has both read and write mappings to the page.

Weak – Two or more processors have mappings to the page and at least one has both read and
write mappings to it.

When a processor takes an access fault that would cause a page to become weak it sends write



notices for this event to all sharing processors for that page. Here the similarities with directory-
based hardware coherence end. Write notices are not processed when they are received. They
are stored on a per processor list of notices (protected by a lock). When a processor performs
an acquire operation on a synchronization variable, it scans its local list and self-invalidates all
pages for which it has received notices. Due to the lack of synchrony between computation and
coherence management there is potential for the sending of notices to be a significant percentage
of a program’s execution time.

In order to eliminate the cost of sending write notices we take advantage of the fact that page
behavior is likely to remain constant for the execution of the program, or at least a large portion of
it. We introduce an additional pair of states, called safe and unsafe. These new states, which are
orthogonal to the others (for a total of eight disjoint states), reflect the past behavior of the page.
A page that has made the transition to weak repeatedly and is about to be marked weak again is
also marked as unsafe. Unsafe pages making the transition to the weak state do not require the
sending of write notices. Instead the processor that causes the transition to the weak state records
the change in the coherent map entry only, and continues. An acquiring processor must now check
the coherent map entry for all its unsafe pages and invalidate the ones that are also weak. A
processor knows which of its pages are unsafe by maintaining a local list of such pages when it
first maps them for access. Full details for the protocol can be found in a technical report [8].

We apply one additional optimization to the basic protocol. When a processor takes a page fault on
write to a shared page (and it is not the only processor that has a read-mapping to that page) we can
force the transition and post the write notices immediately or choose to wait until the subsequent
release operation for that processor; the semantics of release consistency do not requires us to make
writes visible before the next release operation. Delayed write notices have been introduced in the
context of Munin [4] but the benefits of their usage is not obvious in our environment. Waiting for
the subsequent release has the potential to slow things down by lengthening the critical path of the
computation (especially for barriers, in which many processors may want to post write notices for
the same page at roughly the same time, and will therefore serialize on the lock of the coherent
map entry). We have found, however, that delayed transitions are generally a win. They reduce
the number of invalidations needed in acquire operations, especially for applications with false
sharing.

3 Performance Results

3.1 Methodology

We use execution driven simulation to simulate a mesh-connected multiprocessor with up to 64
nodes. Our simulator consists of two parts: a front end, Mint [16], which simulates the execution
of the processors, and a back end that simulates the memory system. The front end calls the back
end on every data reference (instruction fetches are assumed to always be cache hits). The back
end decides which processors block waiting for memory and which continue execution.

We have implemented back ends that simulate memory systems for both a hardware and a software
coherent multiprocessor. Both modules are quite detailed, with finite-size caches, full protocol
emulation, distance-dependent network delays, and memory access costs (including memory con-
tention). The back end for software coherence includes a detailed simulation of TLB behavior
since it is the protection mechanism used for coherence and can be crucial to performance. To
avoid the complexities of instruction-level simulation of interrupt handlers, we assume a constant
overhead for page faults. Table 1 summarizes the default parameters used in both our hardware



System Constant Name Default Value
TLB size 128 entries
TLB fill time 24 cycles
Interrupt cost 140 cycles
Coherent map modification 160 cycles
Memory response time 20 cycles/cache line
Page size 4K bytes
Total cache per processor 128K bytes
Cache line size 32 bytes
Network path width 16 bits (bidirectional)
Link latency 2 cycles
Wire latency 1 cycle
Directory lookup cost 10 cycles
Cache purge time 1 cycle/line

Table 1: Default values for system parameters

and software coherence simulations.

Some of the transactions required by our coherence protocols would require a collection of the
operations shown in table 1 and would therefore incur the aggregate cost of their constituents. For
example a read page-fault on an unmapped page consists of the following: a) a TLB fault and
TLB fill, b) a processor interrupt caused by the absence of read rights, c) a coherent map entry
lock acquisition, and d) a coherent map entry modification followed by the lock release. Lock
acquisition itself requires traversing the network and accessing the memory module where the lock
is located. The total cost for the transaction is well over 300 cycles.

We report results for six parallel programs. Three are best described as computational kernels:
Gauss, sor, and fft. The remaining are complete applications: mp3d, water [15], and
appbt [2]. Due to simulation constraints the input data sizes for all programs are smaller than
what would be run on a real machine, a fact that may cause us to see unnaturally high degrees of
sharing. Since we still observe reasonable scalability for all our applications we believe that this
is not too much of a problem.

3.2 Results

Figures 1 and 2 compare the performance of our scalable software protocol to that of an eager
relaxed-consistency DASH-like hardware protocol on 16 and 64 processors respectively. The unit
line in the graphs represents the performance of a sequentially-consistent hardware coherence
protocol. In all cases the performance of the software protocol is within 45% of the performance of
the hardware protocol. In most cases it is much closer. For fft, the software protocol is actually
faster.

For all programs the best software protocol is our protocol described in section 2 with the delayed
write notice option. In some cases we have made minor changes to the applications to improve
their performance under software coherence. None of the changes required more than half a day
to identify and implement. The changes help improve the performance of the hardware protocols
as well but to a lesser extent. We believe that the results for mp3d could be further improved,
by restructuring access to the space cell data structure. It is surprising to see that the relaxed



hw-best
sw-best

    gauss     sor     water     mp3d     appbt     fft

0.0
0.5

1.0
1.5

Performance on 16 processors

No
rm

aliz
ed

 ex
ec

uti
on

 tim
e

Figure 1: Comparative SW and HW
performance on 16 processors

hw-best
sw-best

    gauss     sor     water     mp3d     appbt     fft

0.0
0.5

1.0
1.5

Performance on 64 processors

No
rm

aliz
ed

 ex
ec

uti
on

 tim
e

Figure 2: Comparative SW and HW
performance on 64 processors

consistency hardware protocol is only marginally better than the sequentially consistent one (the
best case is mp3d, where the difference is 11%) but the reader should keep in mind that the
applications have been restructured to improve locality of reference.

4 Discussion

There are several parameters, both algorithmic and architectural, that affect the performance of
software cache coherence. While we have been able to demonstrate performance competitive to
hardware cache coherence for a variety of applications, this was not done effortlessly. In this
section we summarize the most important issues that designers and programmers should keep in
mind in order to achieve good performance on such systems.

We have distributed our directory data structure (the coherent map), essentially eliminating it
as a source of memory and interconnect contention. Furthermore taking advantage of the fact
that coherence blocks exhibit similar behavior for the duration of a program, we have used the
safe/unsafe distinction to reduce the amount of interprocessor communication required to
signal the transition of a coherence block to an inconsistent state. We have seen reductions in
running time of well over 50% for our protocol when compared with similar software coherence
protocols that do not perform these optimizations [11]. A more detailed comparison of software
coherence protocols can be found in [8].

We have found the choice of cache architecture to also have a significant impact on the performance
of software cache coherence. Write-back caches provide the best performance for almost all cases,
however they require additional hardware for correctness. Our protocol writes modified data back
to memory on a release operation. Since we may have multiple writers for a cache line (due to false
sharing), we need a mechanism that allows us to successfully merge the modified lines. Per-word
dirty bits for write-back caches suffice to perform this function with only 3% cache space overhead.
The other alternatives include write-through caches, which keep main memory consistent all the
time but may cause high memory and interconnect traffic, and write-through caches with a write-
collect buffer [6]. The latter provide performance competitive to that of write-back caches with
reduced hardware cost.



Performance is also highly dependent on the sharing behavior exhibited by the program. Due to the
higher coherence overhead and the inability to overlap coherence management and computation,
software coherence is more sensitive to fine grain sharing (both temporal and spatial) than hardware
coherence. Furthermore the large coherence blocks used (pages) may introduce additional sharing
when compared to the amount of sharing seen by a hardware coherent system with smaller
coherence blocks. We have found that simple restructuring of applications to take into account
the larger coherence blocks can help improve performance by well over 50% in many cases. Such
program optimizations improve performance on hardware systems as well but to a lesser extent.

One of the most important problems with software coherent systems is the large granularity of
coherence blocks. Use of smaller pages can help alleviate this problem but may introduce higher
TLB overheads. However, as long as there is no TLB thrashing (i.e. the TLB entries can hold
the working set of the application) this does not pose significant problems. Additional methods
that can help designers use smaller coherence blocks include subpage valid bits, and injection of
consistency code before write instructions in the executable [13]. The latter can provide very fine
grained control at the expense of higher software overhead, since consistency code has to run for
all memory reference instructions as opposed to the ones that violate consistency. Apart from the
choice of coherence granularity, performance of software coherent systems is also dependent on
several architectural constants including: cache line size, interconnect and memory latency and
bandwidth, cache management instruction costs, interrupt handling costs, and tlb management
costs.

Another important deficiency of a software coherent system when compared to hardware is the
lack of overlap between coherence management and computation. It may be possible to hide some
of the cost of coherence management by performing coherence operations while waiting to acquire
a lock. While the acquiring processor will have to run the protocol again when it does acquire
the lock, it may not take as long: pages that have already been invalidated need not be considered
again. A protocol co-processor could also help reduce coherence management overhead, but in this
case the classification of the system as hardware or software coherent is no longer clear. Several
recent research projects [9, 12] are taking this intermediate approach, combining the flexibility of
software systems with the speed and asynchrony of hardware implementations.

We see the choice between static and dynamic coherence management as an important dimension
that affects large scale multiprocessor performance. Compiler inserted coherence directives are the
most efficient mechanism for coherence maintenance when the sharing pattern can be determined
(or guessed) ahead of time. Run-time coherence management can ensure correctness, allowing ag-
gressive compiler implementations. Unfortunately there is no agreement on the interface between
the static and dynamic coherence management layers. We are in the process of designing annota-
tions that will ease the co-operation between compiler and operating system or hardware coherence
layers. Under our scheme coherence could be under compiler or runtime control, annotations could
have a correctness impact or be purely performance oriented, or in the worst case the absence of
annotations could have a correctness impact on program execution. The entry consistency of the
Midway system [3] employs annotations that fall in this category.

The final dimension that we view as important in the domain of software coherence is the choice of
coherence mechanism. Write-invalidate has dominated in both software- and hardware-coherent
systems. Recent studies however seem to indicate that write-update may provide better performance
for certain sharing patterns and machine architectures. Furthermore for data structures with very
fine grain sharing it may be desirable to completely disable caching in order to eliminate coherence
overhead. The flexibility of software coherence provides designers with the ability to incorporate
all mechanisms in a single protocol and choose the one that best fits the sharing pattern at hand.



5 Related work

Our work is most closely related to that of Petersen and Li [11]: we both use the notion of weak
pages, and purge caches on acquire operations. The difference is scalability: we distribute the
coherent map, distinguish between safe and unsafe pages, check the weak bits in the coherent map
only for unsafe pages mapped by the current processor, and multicast write notices for safe pages
that turn out to be weak. We have also examined architectural alternatives and program-structuring
issues that were not addressed by Petersen and Li. Our work resembles Munin [4] and lazy release
consistency [7] in its use of delayed write notices, but we take advantage of the globally accessible
physical address space for cache fills and for access to the coherent map and the local weak lists.

Our use of remote reference to reduce coherence management overhead can also be found in
work on NUMA memory management [5]. However relaxed consistency greatly reduces the
opportunities for profitable remote data reference. In fact, early experiments we have conducted
with on-line NUMA policies and relaxed consistency have failed badly to determine when to use
remote reference.

On the hardware side our work bears resemblance to the Stanford Dash project [10] in the use of
a relaxed consistency model, and to the Georgia Tech Beehive project [14] in the use of relaxed
consistency and per-word dirty bits for successful merging of inconsistent cache lines. Both these
systems use their extra hardware to allow overlap of coherence management and computation
(possibly at the expense of extra coherence traffic) in order to avoid a higher waiting penalty at
synchronization operations.

6 Conclusions

In this paper we have shown that a shared memory programming model can be supported efficiently
without expensive hardware. We have demonstrated good performance on a variety of parallel
programs, with coherence maintained in software. We have discussed the factors that limit perfor-
mance for software coherent systems, and have proposed several optimizations and extensions to
our software coherence scheme to address these limitations. We believe that the increased flexibility
of software coherence can provide the custom protocols that each application may need, yielding
significant performance advantages. Furthermore the higher overhead of coherence management
in software becomes less significant as technology progresses. The main performance-limiting
factor is memory latency; thus miss rate, and not coherence overhead, will dictate the performance
of parallel programs in the near future. Lazy release consistency protocols can help keep miss
rates low. Their complexity however makes hardware implementations difficult, leaving software
and hybrid implementations as the better alternatives.

Acknowledgements

We want to thank Ricardo Bianchini and Jack Veenstra for their help and support with this work. This work
was supported in part by NSF Institutional Infrastructure grant no. CDA-8822724 and ONR research grant no.
N00014-92-J-1801 (in conjunction with the DARPA Research in Information Science and Technology—High
Performance Computing, Software Science and Technology program, ARPA Order no. 8930).

References

[1] Anant Agarwal and others. The MIT Alewife Machine: A Large-Scale Distributed-Memory



Multiprocessor. In M. Dubois and S. S. Thakkar, editors, Scalable Shared Memory Multi-
processors, pages 239–261. Kluwer Academic Publishers, 1992.

[2] David Bailey, John Barton, Thomas Lasinski, and Horst Simon. The NAS Parallel Bench-
marks. Report RNR-91-002, NASA Ames Research Center, January 1991.

[3] B. N. Bershad and M. J. Zekauskas. Midway: Shared Memory Parallel Programming with
Entry Consistency for Distributed Memory Multiprocessors. CMU-CS-91-170, Carnegie-
Mellon University, September 1991.

[4] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation and Performance of Munin.
In Proceedings of the Thirteenth ACM Symposium on Operating Systems Principles, pages
152–164, Pacific Grove, CA, October 1991.

[5] A. L. Cox and R. J. Fowler. The Implementation of a Coherent Memory Abstraction on a
NUMA Multiprocessor: Experiences with PLATINUM. In Proceedings of the Twelfth ACM
Symposium on Operating Systems Principles, pages 32–44, Litchfield Park, AZ, December
1989.

[6] N. Jouppi. Cache Write Policies and Performance. In Proceedings of the Twentieth Inter-
national Symposium on Computer Architecture, San Diego, CA, May 1993.

[7] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy Release Consistency for Software Dis-
tributed Shared Memory. In Proceedings of the Nineteenth International Symposium on
Computer Architecture, pages 13–21, Gold Coast, Australia, May 1992.

[8] Leonidas I. Kontothanassis and Michael L. Scott. Software Cache Coherence for Large
Scale Multiprocessors. TR 513, Computer Science Department, University of Rochester,
March 1994. Submitted for publication.

[9] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J. Chapin, D.
Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy. The FLASH
Multiprocessor. In Proceedings of the Twenty-First International Symposium on Computer
Architecture, pages 302–313, Chicago, IL, April 1994.

[10] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy, M. Horowitz,
and M. S. Lam. The Stanford Dash Multiprocessor. Computer, 25(3):63–79, March 1992.

[11] K. Petersen and K. Li. Cache Coherence for Shared Memory Multiprocessors Based on
Virtual Memory Support. In Proceedings of the Seventh International Parallel Processing
Symposium, Newport Beach, CA, April 1993.

[12] Steven K. Reinhardt, James R. Larus, and David A. Wood. Tempest and Typhoon: User-level
Shared-Memory. In Proceedings of the Twenty-First International Symposium on Computer
Architecture, pages 325–336, Chicago, IL, April 1994.

[13] Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt, James R. Larus, and
David A. Wood. Fine-grain Access Control for Distributed Shared Memory. In Proceedings
of the Sixth International Conference on Architectural Support for Programming Languages
and Operating Systems, San Jose, CA, October 1994 (to appear).

[14] G. Shah and U. Ramachandran. Towards Exploiting the Architectural Features of Beehive.
GIT-CC-91/51, College of Computing, Georgia Institute of Technology, November 1991.

[15] J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford Parallel Applications for
Shared-Memory. ACM SIGARCH Computer Architecture News, 20(1):5–44, March 1992.

[16] J. E. Veenstra. Mint Tutorial and User Manual. TR 452, Computer Science Department,
University of Rochester, July 1993.




