
Scalable Atomic Primitives for DistributedShared Memory Multiprocessors(Extended Abstract)Maged M. MichaelDepartment of Computer ScienceUniversity of RochesterRochester, NY 14627-0226USA Michael L. ScottDepartment of Computer ScienceUniversity of RochesterRochester, NY 14627-0226USAAbstractOur research addresses the general topic of atomic update of shared datastructures on large-scale shared-memory multiprocessors. In this paperwe consider alternative implementations of the general-purpose single-address atomic primitives fetch and �, compare and swap, load linked,and store conditional. These primitives have proven popular on small-scale bus-based machines, but have yet to become widely available onlarge-scale, distributed shared memory machines. We propose several al-ternative hardware implementations of these primitives, and then analyzethe performance of these implementations for various data sharing pat-terns. Our results indicate that good overall performance can be obtainedby implementing compare and swap in the cache controllers, and by pro-viding an additional instruction to load an exclusive copy of a cache line.1 INTRODUCTIONDistributed shared memory combines the scalability of network-based architecturesand the intuitive programming model of shared memory. To ensure the consistencyof shared objects, processors perform synchronization operations using hardware-supported primitives. Synchronization overhead (especially for atomic update) isconsequently one of the major obstacles to scalable performance on shared memorymachines.

mls
Fourth Workshop on Scalable Shared Memory Multiprocessors,Chicago, IL, April 1994

Several atomic primitives have been proposed and implemented on DSM architec-tures. Most of them are special-purpose primitives designed to support particularsynchronization operations. Examples include test and set with special semanticson the Stanford DASH [9], the QOLB primitives of the Wisconsin Multicube [3]and the IEEE Scalable Coherent Interface [10], the full/empty bits of the MITAlewife [1], and the primitives for locking and unlocking cache lines on the KendallSquare KSR1 [8].General-purpose primitives such as fetch and �, compare and swap, and the pairload linked/store conditional can easily and e�ciently implement a wide vari-ety of styles of synchronization (e.g. operations on wait-free and lock-free objects,read-write locks, priority locks, etc.). These primitives are easy to implement in thesnooping protocols of bus-based multiprocessors, but there are many tradeo�s to beconsidered when developing implementations for a DSM machine. Compare and -swap and load linked/store conditional are not provided by any of the majorDSM multiprocessors, and the various fetch and � primitives are provided by onlya few.We propose and evaluate several implementations of these general-purpose atomicprimitives on directory-based cache coherent DSM multiprocessors, in an attemptto answer the question: which atomic primitives should be provided on future DSMmultiprocessors and how should they be implemented?Our analysis and experimental results suggest that the best overall performancewill be achieved by compare and swap, with comparators in the caches, a write-invalidate coherence policy, and an auxiliary load exclusive instruction.In section 2 we present several implementation options for the primitives understudy on DSM multiprocessors. Then we present our experimental results anddiscuss their implications in section 3, and conclude with recommendations andfuture directions in section 4.2 IMPLEMENTATIONSThe main design issues for implementing atomic primitives on cache coherent DSMmultiprocessors are:1. Where should the computational power to execute the atomic primitives belocated: in the cache controllers, in the memory modules, or both?2. Which coherence policy should be used for atomically accessed data: nocaching, write-invalidate, or write-update?3. What auxiliary instructions, if any, can be used to enhance performance?We consider three implementations for each of the primitives. The implementationsare categorized according to the coherence policy used for atomically-access data(the same or a di�erent policy could be used for other data):1. EXC (EXClusive): Computational power located in the cache controllers, witha write-invalidate coherence policy. The main advantage of this implementationis that once the data is in the cache, subsequent atomic updates are executedlocally, so long as accesses by other processors do not intervene.

2. UPD (UPDate): Computational power located at the memory, with a write-update policy. The main advantage of this implementation is a high read hitrate, even in the case of alternating accesses by di�erent processors.3. NOC (NO Caching): Computational power located at the memory, withcaching disabled. The main advantage of this implementation is that it elimi-nates the coherence overhead of the other two policies, which may be a win inthe case of high contention or even the case of no contention when updates bydi�erent processors alternate.For fetch and � and compare and swap, EXC obtains an exclusive copy of thedata and performs the operation locally. NOC sends a request to the memory toperform the operation on uncached data. UPD also sends a request to the memoryto perform the operation, but retains a shared copy of the data in the local cache.The memory sends updates to all the caches with copies.In the EXC implementation of load linked/store conditional, each processingnode has a reservation bit and a reservation address register, which function muchas they do in implementations for bus-based machines. Store conditional fails ifthe reservation bit is invalid. It succeeds locally if the bit is valid and the line iscached exclusively. Otherwise it sends a request to the home node. If the directoryindicates that the line is exclusive or uncached, store conditional fails, otherwise(the line is shared) store conditional succeeds, an exclusive copy is acquired, andinvalidations are sent to the holders of other copies.In the NOC implementation of load linked/store conditional, each memorylocation (at least conceptually) has a reservation bit vector of size equal to the to-tal number of processors. Load linked reads the value from memory and sets theappropriate reservation bit to valid. Any write or successful store conditionalto the location invalidates the reservation vector. Store conditional checks thecorresponding reservation bit and succeeds or fails accordingly. Various space op-timizations are conceivable for practical implementations. In the UPD implemen-tation, load linked requests have to go to memory even if the data is cached, inorder to set the appropriate reservation bit. Similarly, store conditional requestshave to go to memory to check the reservation bit.We consider two auxiliary instructions. Load exclusive reads a datum but acquiresexclusive access. It can be used with EXC instead of an ordinary atomic load whenreading data that is then accessed by compare and swap. The intent is to make itmore likely that compare and swap will not have to go to memory. Load exclusiveis also useful for ordinary operations on migratory data. Drop copy can be used todrop (self-invalidate) a cached datum, to reduce the number of serialized messagesrequired for subsequent accesses by other processors.3 EXPERIMENTAL RESULTSThe experimental results were collected using an execution-driven simulator thatuses MINT [13] as a front end. The back end simulates a 64-node multiproces-sor with directory-based caches, 32-byte blocks, memory that queues conictingaccesses, and a 2-D worm-hole mesh network.

8 16 24 32 40 48 56 64
0

10

20

30

40

50

60

70

80

Level of Contention

Per
cen

tag
e o

f A
cce

sse
s

LocusRoute p=64

- . - EXC
--- NOC
- - UPD

8 16 24 32 40 48 56 64
0

10

20

30

40

50

60

70

80

Level of Contention

Per
cen

tag
e o

f A
cce

sse
s

Cholesky p=64

- . - EXC
- - UPD
--- NOC

Figure 1: Histograms of the level of contention in LocusRoute and Cholesky.We used two sets of applications, real and synthetic, to achieve di�erent goals.We studied two lock-based applications from the SPLASH suite [11]|LocusRouteand Cholesky|in order to identify typical sharing patterns of atomically accesseddata. The synthetic applications|lock-free, test-and-test-and-set lock-based, andMCS lock-based access to a counter|served to explore the parameter space and toprovide controlled performance measurements.3.1 SHARING PATTERNSPerformance of atomic primitives is a�ected by two main sharing patterns, con-tention and average write-run length [2]. In this context, the level of contentionis the number of processors that concurrently try to access an atomically accessedshared location. Average write-run length is the average number of consecutivewrites (including atomic updates) by a processor to an atomically accessed sharedlocation without intervening accesses (reads or writes) by any other processors.Our experiments indicate that the average write run length for atomically accesseddata in LocusRoute and Cholesky is very small: on 64 processors with di�erentcoherence policies it ranged from 1.59 to 1.83. Figure 1 con�rms the expectationthat the no-contention case is the common one, for which performance should beoptimized. At the same time, it indicates that the low and moderate contentioncases do arise, so that performance for them needs also to be good. High contentionis rare: reasonable di�erences in performance among the primitives can be toleratedin this case.3.2 RELATIVE PERFORMANCE OF IMPLEMENTATIONSFigure 2 shows the performance results for the lock-free counter application. (Thisapplication uses a fetch and increment instruction or an atomic load/compare -and swap or load linked/store conditional pair to increment a counter; resultsfor the other synthetic applications imply the same conclusions.) The bars representthe elapsed time averaged over a large number of counter updates. The graphsto the left represent the no-contention case with di�erent numbers of consecutive

Table 1: Serialized network messages for a lock-free shared counter update withoutcontention. fa� ll/sc cas ldx/casEXC to cached exclusive 0 0 0 0EXC to remote exclusive 4 6 6 4EXC to uncached 2 4 4 2UPD to cached 3 5 3 -UPD to uncached 2 4 4 -NOC 2 4 4 -accesses by each processor without intervention from the other processors. Thegraphs to the right represent di�erent levels of contention. The bars in each graphare categorized according to the three coherence policies used in the implementationof atomic primitives. In EXC and UPD, there are two subsets of bars. The bars tothe right represent the results when using the drop copy instruction, while thoseto the left are without it. In each of the two subsets in the EXC category, thetwo bars for compare and swap represent, from left to right, the results for theimplementations without and with load exclusive, respectively.3.2.1 Coherence PolicyWith no contention and short write runs, NOC implementations of the three prim-itives perform nearly as well as their corresponding cached implementations. Thereare two reasons for this result. First, a write miss on an uncached line takes two seri-alized messages, while a write miss on a remote exclusive or remote shared line takes4 or 3 serialized messages respectively (see Table 1). Second, NOC does not incurthe overhead of invalidations and updates as EXC and UPD do. Furthermore, withcontention (even very low), NOC outperforms the other policies (with the excep-tion of EXC load exclusive/compare and swap when simulating fetch and �),as the e�ect of avoiding excess serialized messages, and invalidations or updates,is more evident as ownership of data changes hands more frequently. The EXCload exclusive/compare and swap pair for simulating fetch and � is an excep-tion as the timing window between the read and the write in the read-modify-writecycle is narrowed substantially, thereby reducing the e�ect of contention by otherprocessors. Also, in the EXC implementation, successful compare and swap's afterload exclusive's are mostly hits, while all NOC accesses are misses.As write-run length increases, EXC increasingly outperforms NOC and UPD, be-cause subsequent accesses in a run length are all hits. Comparing UPD to EXC, we�nd that EXC is always better in the common case of no and low contention. Thisis due to the excessive number of useless updates incurred by UPD.3.2.2 Atomic PrimitivesNOC fetch and add yields superior performance over the other primitives and im-plementations, especially with contention. The exception is the case of long write-runs, which are not the common case. We conclude that NOC fetch and add

0

500

1000
p=64 c=1 a=1

 NOC EXC UPD

A
ve

ra
ge

 C
yc

le
s FAP

LLSC
CAS

0

500

1000
p=64 c=1 a=1.5

 NOC EXC UPD

A
ve

ra
ge

 C
yc

le
s FAP

LLSC
CAS

0

500

1000
p=64 c=1 a=2

 NOC EXC UPD

A
ve

ra
ge

 C
yc

le
s FAP

LLSC
CAS

0

500

1000
p=64 c=1 a=3

 NOC EXC UPD

A
ve

ra
ge

 C
yc

le
s FAP

LLSC
CAS

0

500

1000
p=64 c=1 a=10

 NOC EXC UPD

A
ve

ra
ge

 C
yc

le
s FAP

LLSC
CAS

0

500

1000
p=64 c=2

 NOC EXC UPD

A
ve

ra
ge

 C
yc

le
s FAP

LLSC
CAS

0

500

1000
p=64 c=4

 NOC EXC UPD
A

ve
ra

ge
 C

yc
le

s FAP
LLSC
CAS

0

500

1000
p=64 c=8

 NOC EXC UPD

A
ve

ra
ge

 C
yc

le
s FAP

LLSC
CAS

0

500

1000
p=64 c=16

 NOC EXC UPD

A
ve

ra
ge

 C
yc

le
s FAP
LLSC
CAS

0

500

1000
p=64 c=64

 NOC EXC UPD

A
ve

ra
ge

 C
yc

le
s FAP

LLSC
CAS Figure 2: Average time per counter update for the lock-free counter application(p denotes processors, c contention, and a the average number of non-intervenedcounter updates by each processor).

is a useful primitive to provide for supporting shared counters and other specialcases. Because it is limited to only certain kinds of algorithms, however, we recom-mend it only in addition to a universal primitive [6] (compare and swap or load -linked/store conditional).EXC compare and swap almost always bene�ts from load exclusive, becausecompare and swap's are hits in the case of no contention and load exclusivehelps minimize the failure rate of compare and swap as contention increases. EXCload linked cannot be designed to acquire an exclusive copy of data; otherwiselivelock is likely to occur. UPD compare and swap is always better than UPDload linked/store conditional, as most of the time compare and swap is pre-ceded by an ordinary read, which is most likely to be a hit with UPD. Load linkedrequests have to go to memory even if the data is cached locally, as the reservationhas to be set in a unique place that has the most up-to-date version of data|inmemory in the case of UPD.3.2.3 Auxiliary InstructionsLoad exclusive enhances the performance of EXC compare and swap in the com-mon case of no contention. With an EXC policy and an average write-run lengthof one with no contention, drop copy improves the performance of fetch and �and load exclusive/compare and swap, because it allows the atomic primitive toobtain the needed exclusive copy of the data with only 2 serialized messages (re-questing node to home and back) instead of 4 (requesting node to home to currentowner to home and back to requesting node).4 CONCLUSIONSBased on the experimental results and the relative power of atomic primitives [6],we recommend implementing compare and swap in the cache controllers of futureDSM multiprocessors, with a write-invalidate coherence policy. We also recommendsupporting load exclusive to enhance the performance of compare and swap, inaddition to its bene�ts in e�cient data migration. Finally, we recommend sup-porting drop copy to allow programmers to enhance the performance of compare -and swap/load exclusive in the common case of no or low contention with shortwrite runs. Although we do not recommend it as the sole atomic primitive, we�nd fetch and add to be useful with lock-free counters (and with many other ob-jects [4]). We recommend implementing it in uncached memory as an extra atomicprimitive.Our plans for future research include extending this study to cover multiple-addressatomic primitives such as transactional memory [5] and the Oklahoma update [12],and other alternatives for atomic update of multiple-address objects such as Her-lihy's lock-free methodology [7], function shipping (active messages [14]), andspecial-purpose concurrent lock-based and lock-free implementations.

References[1] A. Agarwal, B.-H. Lim, D. Kranz, and J. Kubiatowicz. APRIL: A ProcessorArchitecture for Multiprocessing. In Proceedings of the 17th Annual Interna-tional Symposium on Computer Architecture, pages 104{114, New York, June1990.[2] S. J. Eggers and R. H. Katz. The E�ect of Sharing on the Cache and BusPerformance of Parallel Programs. In Proceedings of the Third InternationalConference on Architectural Support for Programming Languages and Operat-ing Systems, pages 257{270, Boston, MA, April 1989.[3] J. R. Goodman, M. K. Vernon, and P. J. Woest. E�cient SynchronizationPrimitives for Large-Scale Cache-Coherent Multiprocessors. In Proceedings ofthe Third International Conference on Architectural Support for ProgrammingLanguages and Operating Systems, pages 64{75, April 1989.[4] A. Gottlieb, B. D. Lubachevsky, and L. Rudolph. Basic Techniques for theE�cient Coordination of Very Large Numbers of Cooperating Sequential Pro-cessors. ACM Trans. on Programming Languages and Systems, 5(2):164{189,April 1983.[5] M. Herlihy and J. Moss. Transactional Memory: Architectural Support forLock-Free Data Structures. In Proceedings of the 20th International Symposiumon Computer Architecture, pages 289{300, San Diego, CA, May 16-19, 1993.[6] M. P. Herlihy. Wait-Free Synchronization. ACM Trans. on Programming Lan-guages and Systems, 13(1):124{149, January 1991.[7] M. P. Herlihy. A Methodology for Implementing Highly Concurrent Data Ob-jects. ACM Trans. on Programming Languages and Systems, 15(5):745{770,November 1993.[8] KSR1 Principles of Operation. Kendall Square Research Corporation, 1991.[9] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D.Weber, A. Gupta, J. Hennessy,M. Horowitz, and M. S. Lam. The Stanford DASH Multiprocessor. Computer,25(3):63{79, March 1992.[10] IEEE Standard for Scalable Coherent Interface (SCI). IEEE, Inc., 1993.[11] J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford Parallel Appli-cations for Shared-Memory. Computer Architecture News, 20(1):5{44, March1992.[12] J. M. Stone, H. S. Stone, P. Heidelberger, and J. Turek. Multiple Reservationsand the OklahomaUpdate. IEEE Parallel and Distributed Technology, 1(4):58{71, November 1993.[13] J. E. Veenstra and R. J. Fowler. MINT: A Front End for E�cient Simulationof Shared-Memory Multiprocessors. In Proceedings of the Second InternationalWorkshop on Modeling, Analysis, and Simulation of Computer and Telecom-munication Systems, pages 201{207, 1994.[14] T. von Eicken, D. E. Culer, S. C. Goldstein, and K. E. Schauser. ActiveMessages: A Mechanism for Integrated Communication and Computation. InProceeedings of the 19th International Symposium on Computer Architecture,pages 256{266, Gold Coast, Australia, May 1992.

