
The Advantages of Multiple Parallelizations in Corn binatorial Search*

^Computer Science Department, Oregon State University, Corvallis, Oregon 97331-3202; and ^.Computer Science Department,
University of Rochester, Rochester, New York 14627-0226

Applications typically have several potential sources of parallel-
ism, and in choosing a particular parallelization, the programmer
must balance the benefits of each source of parallelism with the
corresponding overhead. The trade-offs are often difficult to ana-
lyze, as they may depend on the hardware architecture, software
environment, input data, and properties of the algorithm. An
example of this dilemma occurs in a wide range of problems that
involve processing trees, wherein processors can be assigned either
to separate subtrees, or to parallelizing the work performed on
individual tree nodes. We explore the complexity of the trade-offs
involved in this decision by considering alternative paralleliza-
tions of combinatorial search, examining the factors that deter-
mine the best-performing implementation for this important class
of problems. Using subgraph isomorphism as a representative
search problem, we show how the density of the solution space,
the number of solutions desired, the number of available proces-
sors, and the underlying architecture all affect the choice of an
efficient parallelization. Our experiments, which span seven dif-
ferent shared-memory multiprocessors and a wide range of input
graphs, indicate that relative performance depends on each of
these factors. On some machines and for some inputs, a sequential
depth-first search of the solution space, applying simple loop-level
parallelism at each node in the search tree, performs best. On
other machines or other inputs, parallel tree search performs best.
In still other cases, a hybrid solution, containing both parallel tree
search and loop parallelism, works best. We present a quantita-
tive analysis that explains these results and present experimental
data culled from thousands of program executions that validates
the analysis. From these experiences we conclude that there is no
one "best" parallelization that suffices over a range of machines,
inputs, and precise problem specifications. As a corollary, we
provide quantitative evidence that programming environments
and languages should not focus exclusively on flat data parallel-
ism, since nested parallelism or hybrid forms of parallelism may
be required for an efficient implementation of some applica-
tions. c 1994 Academic Press, Inc.

1. INTRODUCTION

Most applications exhibit many different sources of
parallelism that might be exploited by a given implemen-

* This research was supported under NSF CISE Institutional Infra-
structure Program Grant CDA-8822724, and ONR Contract N00014-92-
J-1801 (in conjunction with the DARPA HPCC program, ARPA Order
8930). Mark Crovella is supported by a DARPA Research Assistantship
in Parallel Processing administered by the Institute for Advanced Com-
puter Studies, University of Maryland.

tation. Examples include instruction-level parallelism
within basic blocks, loop-level data parallelism (as imple-
mented by many parallelizing compilers), nested in-
stances of data parallelism, and thread-based parallel im-
plementation of heterogeneous functions. The choice of
parallelization for a given application can be very com-
plex, since it involves balancing the costs and benefits of
the different sources of parallelism in the context of a
given system. Specific system characteristics that must
be considered include the number of available proces-
sors, the overhead of process (thread) management, the
cost of synchronization and communication, and the po-
tential for load imbalance.

Unfortunately, parallel programming environments,
languages, and machines often support only one kind of
parallelism, and thereby bias the choice of parallelization
at the outset. For example, vector processors can easily
exploit the parallelism inherent in processing an array of
data, but cannot exploit functional parallelism. Paralleliz-
ing compilers use dependency analysis to discover which
loop iterations may safely execute in parallel, but do not
in general focus on other sources of parallelism. Heavy-
weight processes implemented in the kernel of an operat-
ing system are appropriate only for coarse-grain parallel-
ism, since both process creation and context switching
tend to be prohibitively expensive.

The problem of choosing the proper parallelization oc-
curs in a wide range of applications that involve process-
ing trees. In these applications, processors can be as-
signed either to process separate subtrees, or they can be
assigned to parallelizing the processing of individual tree
nodes. In this paper we explore the complexity of the
tradeoffs involved in this decision by considering alterna-
tive parallelizations of combinatorial search on several
different shared-memory multiprocessors. We focus on
the problem of finding subgraph isomorphisms, and
present a quantitative analysis of the factors that deter-
mine the best-performing implementation for this impor-
tant class of problems. We show that the choice between
alternative parallelizations depends on the underlying ar-
chitecture, the number of processors, the expected den-
sity of the solution space, and the number of solutions
desired. On some machines and for some inputs, a se-
quential depth-first search of the solution space, applying
simple loop-level parallelism at each node in the search
tree, performs best. On other machines or other inputs,

0743-731.5194 $6.00
Copyright 0 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.

MULTIPLE PARALLELIZATIONS IN COMBINATORIAL SEARCH 111

parallel tree search performs best. For certain combina-
tions of parameters, we find that it pays to employ a
hybrid approach that mixes parallelizations.

We conclude that there is no one "best" parallelization
for this application that suffices for a range of machines
and inputs, and therefore any portable implementation
must encode multiple parallelizations. We also conclude
that neither straightforward loop-level parallelism (as
supported by most parallelizing compilers) nor thread-
based functional parallelism (as supported by most light-
weight thread packages) captures the full range of practi-
cal parallel algorithms, and that programming languages
and systems with a heavy bias toward only one style of
parallelization will be inadequate for this important class
of problem on large-scale parallel machines.

We present the problem of subgraph isomorphism, and
a parallel algorithm to solve it, in Section 2. Although the
algorithm has many sources of parallelism, we focus on
two particularly important ones: simple loop-level paral-
lelism over matrices at each node in a search tree, and
parallel tree search. Using results culled from thousands
of data points on seven different shared-memory ma-
chines, we argue the need for multiple parallelizations in
Section 3. We present the case for hybrid parallelizations
that combine loop-level parallelism and parallel tree
search in Section 4. We summarize our conclusions in
Section 5.

2. PROBLEM DESCRIPTION AND ANALYSIS

We will use subgraph isomorphism as an example
problem requiring combinatorial search. Given two
graphs, one small and one large, the problem is to find
one or more isomorphisms from the small graph to arbi-
trary subgraphs of the large graph. An isomorphism is a
mapping from each vertex in the small graph to a unique
vertex in the large graph, such that if two vertices are
connected by an edge in the small graph, then their corre-
sponding vertices in the large graph are also connected
by an edge. Though subgraph isomorphism is NP-com-
plete, techniques for pruning the search space often allow
solutions to be found in a reasonable amount of time.

2.1. An Algorithm for Finding Isomorphisms

Our algorithm is based on Ullman's sequential tree-
search algorithm [17]. This algorithm first postulates a
mapping from one particular vertex in the small graph to
a vertex in the large graph. This mapping constrains the
possible mappings for other vertices of the small graph:
they must map to distinct vertices in the large graph, and
must have the same relationship to the first vertex in both
graphs. (This notion of relationship is made more precise
below.) The algorithm then postulates a mapping for a

found, or until the constraints preclude such a mapping,
at which point the algorithm postulates a different map-
ping for an earlier vertex. The search for isomorphisms
takes the form of a tree, where nodes at level i corre-
spond to a single postulated mapping for vertices 1
through i in the small graph and a set of possible map-
pings for each vertex j > i, and where the mappings at
levels 1 through i constrain the possible mappings at
levels j > i.

We illustrate this algorithm with a simple example. The
small and large graphs are

a + b + c and 1 + 2 + 3 + 4 + 5 .

Each node in the search tree is a partial isomorphism,
which we represent by an S x L Boolean matrix, where S
is the number of vertices in the small graph, L is the
number of vertices in the large graph, and entry (i, j) is
true if we are still considering the possibility of mapping
vertex i of the small graph to vertex j of the large graph.
Each row represents a set of possible mappings for ver-
tex i. For example, the initial partial isomorphism for our
sample problem is

When all rows in the partial isomorphism contain exactly
one true element, then each vertex in the small graph has
a single postulated mapping and the isomorphism is com-
plete, When any row in the partial isomorphism contains
no true elements, then some vertex in the small graph has
no acceptable mapping, the isomorphism is invalid, and
we may prune that node from the search tree.

The children of a node are constructed by selecting one
possible mapping at the next level of the tree and then
removing any conflicting mappings. For example, we
may choose to map vertex a to vertex 2. Since vertex a
may map to only one vertex in the large graph, we re-
move all other mappings for vertex a. This yields the
partial isomorphism

In addition, no two vertices in the small graph may map
to the same vertex in the large graph, so we remove
vertex 2 from the possible mappings of all other small
graph vertices. This yields the partial isomorphism

Since the search space is very large, it is prudent to
eliminate possible mappings early, before they are postu-
lated in the search. We do this by applying a set of filters
to the partial isomorphisms, reducing the number of ele-

second vertex in the small graph, again constraining the ments i n each mapping set, and pruning nodes in the
possible mappings for the remaining vertices of the small search tree before they are visited. Though there is a
graph. This process continues until an isomorphism is large number of possible filters, each based on a relation-

112 CROWL ET AL.

ship between vertices within the small graph and between
vertices and their potential mappings, we apply only two
filters, vertex distance and vertex connectivity. These fil-
ters prune the search space enough to make the problem
tractable.

We define the distance from one vertex to another to
be the minimum number of edges in a directed path from
the first vertex to the second. If there exists no path
between the two vertices, the distance is infinite. The
distance filter uses precomputed distance matrices for the
two input graphs, which in our example are

00 2 and

The vertex distance filter eliminates mappings where the
distance between two vertices in the small graph is less
than the distance between two vertices in the large graph,
which implies that there is some edge in the small graph
that is not represented in the isomorphism. Formally, the
filter at node (i , j) in the search tree (that is, the node at
which we postulate a mapping from vertex i in the small
graph to vertex j in the large graph) removes entry (k, I)
of the matrix associated with that node if the distance
from i to k is less than the distance from j to 1. In our
example, the distance from vertex a to vertex b is 1,
which is less than the distance from vertex 2 to vertex 4,
and so we can remove (b, 4) from the partial isomor-
phism. Likewise, we can remove (b , 5) and (c , 5). This
yields the partial isomorphism

The vertex connectivity filter ensures that the possible
mappings of a vertex in the small graph are consistent
with the possible mappings of its neighbors.' Formally,
the filter at node (i, j) of the search tree removes entry
(k, 1) of the matrix when there is an edge from i to k, but
not an edge from j to 1. The result of this elimination is
simply the intersection of the mappings for k and the
neighbors ofj. In our example, i = a and j = 2; k = b is a
neighbor of i = a ; the neighbors of j = 2 are {I, 3}; the
current mappings for k = b are {I, 3}; and their intersec-
tion is { I , 3}. The partial isomorphism is therefore un-
changed by this filter in this case.

Since neither of the above filters eliminates all invalid
isomorphisms, we perform a final verification at each leaf

Our vertex connectivity filter resembles the one employed by Ull-
man, except that we do not iterate after eliminating a possible mapping
to see whether its elimination would allow us to eliminate additional
mappings.

TABLE I
Parallelism in Subgraph Isomorphism, from Coarsest to Finest

Label Source of parallelism
--

Tree Search children of the root node in parallel
Filter Apply multiple filters at a node in parallel
Loop Examine "relatives" of the postulated mapping in parallel
Vector Constrain mappings for each "relative" in parallel
Word Constrain mappings for each "relative" in parallel

node to ensure that every edge in the small graph is repre-
sented by an edge in the large graph, and therefore repre-
sents a valid isomorphism.

2.2. Sources of Parallelism

There are many ways to exploit parallelism in the im-
plementation of our algorithm for subgraph isomorphism.
(See Table I.) The coarsest granularity of parallelism oc-
curs in the tree search itself; we can search each subtree
of the root node in parallel (hereafter referred to as tree
parallelism), with depth-first, sequential search at the re-
maining level^.^ At each node of the tree, several filters
must be applied so as to prune the search tree, and this
set of filters could be executed in paralleL3 We can also
exploit parallelism when applying a filter to a candidate
mapping.

Each filter removes potential mappings based on some
relationship between the candidate vertex in the small
graph and other vertices in the small graph. For a given
candidate vertex, we can examine constraints on the re-
maining vertices of the small graph in parallel. We refer
to this source of parallelism as loop parallelism, since
both the granularity and structure of this source of paral-
lelism resembles a single parallel loop. A finer-grain
source of parallelism arises when removing mappings
that violate the constraints of a filter. Since the primitive
data elements in a mapping are of type Boolean, we can
pack many booleans into a single word and use word-
parallel bit operations, such as and and or. We refer to
this source of parallelism as word parallelism. In addi-
tion, multiple word-parallel operations could be per-
formed in parallel by a vector processor, thereby exploit-
ing vector parallelism. Although both vector and word
parallelism exploit the same source of parallelism (the
possible mappings of a given small vertex), they can be
used individually or in tandem.

In this paper, we focus on the tradeoffs between tree

We could choose to implement tree parallelism at any depth in the
tree, rather than at the root. A comparative evaluation of the alternative
implementations of tree parallelism is beyond the scope of this paper,
however.

Our implementation uses only two filters, but others are possible. In
general, we would expect combinatorial search problems to employ
many filters, so much so that this source of parallelism could prove
extremely valuable. However, in the experiments reported in this pa-
per, we do not exploit this source of parallelism.

MULTIPLE PARALLELIZATIONS IN COMBINATORIAL SEARCH

parallelism and loop parallelism. These two kinds of par-
allelism are particularly important because they occur in
many problems that have a similar structure: expression
evaluation [S], parallel quicksort [3], and the Barnes-Hut
multibody algorithm [14]. Although the presence of both
tree parallelism and loop parallelism in backtracking
search has been noted by other researchers [IS, 11, 9,
121, there has been little previous attention given to the
trade-offs between loop and tree parallelism as a function
of the particular machine, input, or problem. Since there
are many possible parallelizations of the subgraph iso-
morphism algorithm, resulting from varying processor al-
locations to loop and tree parallelism, it is difficult to
choose a particular parallelization without a better idea of
how the various problem parameters affect the choice.
Indeed, in an earlier study of subgraph isomorphism [4]
we chose to exploit tree parallelism because of its lower
synchronization costs, even though (in retrospect) the
problem parameters were such that tree parallelism was
not very effective.

We study the tradeoff between loop and tree parallel-
ism experimentally in Section 3, in which we show how
the best choice of parallelization depends on the precise
problem to be solved (that is, the number of isomor-
phisms to be found), the structure of the input graphs
(i.e., the density of the solution space), the number of
processors available, and the underlying architecture. In
order to lay the foundation for that discussion, the next
three subsections analyze the potential costs and benefits
of the two parallelizations in the context of our imple-
mentation.

2.3. The Benefits of Speculative Search

When searching for only one solution, tree parallelism
is speculative, in that we might not need to search every
subtree of the root in order to find the required number of
solutions. If the solution space is sparse, so that only
some subtrees of the root contain solutions (as in Fig. I),
then we might choose to search several subtrees in paral-
lel rather than apply loop parallelism during a sequential
depth-first search of a subtree that might contain no solu-
tions. On the other hand, when searching in a very dense
solution space (as in Fig. 2), we can reasonably expect
every subtree of the root to contain many solutions, and
therefore could expect better results by using loop paral-
lelism in an efficient depth-first search under a single
child of the root.

FIG. 2. A dense search tree.

Even when loop parallelism is more effective than tree
parallelism for a given input when searching for a single
isomorphism, the reverse may be true when searching for
multiple isomorphisms. This situation could occur be-
cause even a successful depth-first search of a single sub-
tree might not yield enough solutions. The choice de-
pends on the number of solutions desired, and the extent
to which solutions are clumped in the search tree. In
some cases, a combination of tree and loop parallelism
might provide the best performance, assuming we have
enough processors to implement loop parallelism within
the context of tree parallelism.

Thus, the potential benefits of speculation are highly
dependent on the nature of the search space. The remain-
der of this section describes the search space of our sam-
ple problem, and provides the necessary background to
evaluate the potential benefits of speculation as we vary
the input data.

We characterize the search problem in terms of the
number of isomorphisms we want to find and the struc-
ture of the two input graphs. In our experiments input
graphs are randomly generated from four parameters: the
size of the small and large graphs, and the probability for
each graph that a given pair of vertices will be joined by
an edge. We use 5' for the number of vertices in the small
graph, L for the number of vertices in the large graph,
and s and 1, respectively, for the edge probabilities in
each of the graphs. There are S 2 potential edges in the
small graph (the graphs are directed, and self-loops are
permitted). The expected degree of a vertex in the small
graph is (2 S - I) s; the expected degree of a vertex in the
large graph is (2 L - I)/.

As described above, the problem of finding isomor-
phisms can be reduced to searching a very bushy 5-level
tree of possible vertex matchings. In this bushy (un-
pruned) search tree, the L children of the root represent
the L associations of vertex 1 of the small graph with a
vertex of the large graph. The L - 1 children of a level-1
vertex represent the L - 1 associations of vertex 2 of the
small graph with one of the remaining vertices of the
larger graph, and so on. The total number of leaves in the
problem space tree is

FIG. 1. A sparse search tree. This number is very large; for 5 = 32 and L = 128 (the

114 CROWL ET AL.

size of our experiments), there are approximately 4 X

leaves. Brute-force search of this space is not feasi-
ble.

We define the density d of the search space to be the
probability that a randomly-selected leaf will be a solu-
tion. We can express this as

where S 2 is the number of potential edges in the small
graph and I - s + sl is the probability that a given poten-
tial edge will be successfully matched-that it will either
be missing in the small graph, or present in both graphs.
We assume that edge occurrences are independent
events in both graphs. In the experiments reported here,
we use this definition of density to characterize the input
graphs.

The search algorithm employs loop parallelism to
speed up the search along a single path through the tree,
and tree parallelism to search alternative paths. Which
approach can be expected to be most productive depends
in large part on the variance in the time required to find a
solution on different paths. The higher the variance, the
more likely that tree-parallel search of multiple paths will
turn up a solution sooner than loop-parallel search of a
single path.

From a qualitative point of view, this expectation is
consistent with the findings of Rao and Kumar [13], who
used the notion of solution density to describe the situa-
tions under which tree-parallel search exhibits superlin-
ear speedup in comparison to sequential search. Their
primary finding was that the expected speedup of tree-
parallel search is linear at worst, and superlinear when
the portions of the tree searched by different processors
have different solution densities, or when heuristic order-
ing of child nodes is wrong near the root of the tree. Since
our loop parallelism can display no more than linear
speedup, these are the situations in which one would
expect tree parallelism to dominate.

Unfortunately, the quantitative aspects of Rao and
Kumar's work do not apply directly to our work. They
consider two subcases. The first case assumes that the
algorithm does not prune, and that within the portion of
the tree searched by a single processor, the probability of
a given leaf being a solution is independent of the proba-
bilities of any other leaves being solutions. The second
case models both pruning and heuristic ordering of chil-
dren at each node of the tree. It assumes that the tree is
binary, and that the probability of pruning is uniform
throughout the tree. None of these assumptions apply to
the algorithm employed in our experiments.

Precisely analyzing the tradeoff between loop and tree
parallelism requires characterizing the behavior of the
filters, which is quite difficult. However, we can obtain
an intuitive understanding of the tradeoff between loop
and tree parallelism by considering the probability that
solutions lie in various subtrees of the search space.

Define a successful node to be one that (1) is the root
node or the child of a successful node and (2) whose
mapping of a vertex in the small graph to a vertex in the
large graph introduces no unsuccessful edges. A success-
ful edge is one which connects nodes in the small graph
that have allowable mappings (given the mappings postu-
lated by the current search) that are also connected. If
arbitrary children of successful nodes at most levels of
the tree are likely to have a solution under them, then
little backtracking can be expected to occur, and loop-
parallel exploration of a single path is likely to find a
solution faster than tree-parallel exploration of multiple
paths. If, on the other hand, at most levels of the tree an
arbitrarily chosen child is unlikely to have a solution be-
neath it, then significant amounts of backtracking are
likely, the variance in the solution-finding times of differ-
ent paths is likely to be high, and tree parallelism is likely
to work well.

Thus, we would like to estimate the probability that
children of a given successful node have at least one
solution under them. Assume the root is level 0. At a
successful node at level k of the tree, we will have suc-
cessfully matched k nodes and k2 potential edges in the
small graph with counterparts in the large graph. S - k
nodes and S 2 - k2 potential edges will remain. The prob-
ability that a randomly-chosen leaf below this point will
turn out to be a solution is therefore t s Z k 2 , where t = 1 -
s + sf. We cannot use this directly to answer our ques-
tion, because solutions are not independent. In fact, solu-
tions tend to come in clumps, since nearby leaves share
many successfully-matched ancestors; as a result, the
probability of finding a t least one solution in a given sub-
tree is much lower than it would be if solutions were
evenly distributed. Thus we must consider the structure
of a subtree in determining the likelihood that it contains
a solution.

Suppose that v is a leaf whose parent is successful. The
probability that v is a solution is ps = tZs-'. (2s - 1 is the
number of potential edges induced by matching the last
vertex.) Now suppose that v' is a node at level 5 - 1
whose parent is successful. The probability that v' itself
will be successful is t2(s2)+1. Assuming it is successful,
the probability that a given child of v' (a leaf) is not a
solution is 1 - tZs". Then the probability that no leaf
under v' is a solution is (1 - t2s-1)L-s+1, since v' has L -
S + 1 children. Finally, the probability that at least one
leaf under v' is a solution is ps-, = t2(s2)+1(l - (1 -
P ~) ~ - ~ + ~) .

In general, if we assume that the children of a success-
ful node have independent probabilities of being success-
ful (this is only an approximation above the final level),
we have

On the assumption that nodes are pruned iff they are not
successful, we can also compute the expected number of

MULTIPLE PARALLELIZATIONS IN COMBINATORIAL SEARCH 115

1

0.7

prob.
o f 2 1

soh. in
subtree

0.3

0

FIG. 3. Probability that a randomly-selected node at level k has at
least one solution under it, given that its parent is successful, for vari-
ous logs (base 10) of the solution space density.

nodes that will be visited in the process of searching for a
solution in various subtrees. This number turns out not to
be useful, however, because the filters eliminate the vast
majority of nodes before they are ever visited. For exam-
ple, when S = 32, L = 128, s = 0.9, and 1 = 0.2 (d =

our implementation visits only 105 nodes of the
more than nodes in the search tree, in the process of
determining that no isomorphisms exist. A search that
pruned only when nodes were unsuccessful would be ex-
pected to visit nearly 20,000 nodes.

Figure 3 plots pk against k for various values of d. At
densities greater than about l o 6 , the search has better
than even odds of finding a solution under an arbitrarily
chosen child all the way down to the leaves. Under these
circumstances, tree-parallel search of multiple paths in
the tree is unlikely to uncover a solution much faster than
sequential search on a single path, and probably much
slower than loop-parallel search on that path. By con-
trast, at densities lower than about the odds are
worse than 50-50 only five levels down in the tree. Ex-
tensive backtracking is likely, and the variance in the
amount of time required to find a solution on different
paths down the tree is likely to be high. Under these
circumstances, tree-parallel search is probably a very
good idea.

2.4. Implementing Tree and Loop Parallelism

To make our discussion of the remaining performance
effects concrete, we first describe our implementation of
tree and loop parallelism in subgraph isomorphism. Sub-
sequently, in Section 2.5, we describe the significant per-

formance effects other than speculation that relate to the
trade-off between loop and tree parallelism.

2.4.1. Tree Parallelism. In our experiments, the small
graph has 32 nodes, and the large graph has 128 nodes.
The root of the search tree therefore has 128 children (the
number of possible mappings between a particular vertex
in the small graph to a vertex in the large graph). To
implement tree parallelism, we place the 128 partial iso-
morphisms of the root node in a central work queue, and
create a single worker process on each processor. Each
worker process has a local copy of the source graphs and
the distance matrices. During its lifetime a worker pro-
cess removes an entry from the work queue, searches
that subtree of the root until a sufficient number of solu-
tions are found or the subtree is exhausted, and then
takes another partial isomorphism from the work queue.
The work performed by one worker process is entirely
independent of every other worker process, except that
all processes terminate when the desired number of solu-
tions has been found.

We used a central work queue so as to balance the load
among processors; the high variation in search time
among subtrees would likely cause load imbalance under
any static distribution of work. We did not bother to dis-
tribute the work queue, since access to the shared queue
is very infrequent. We maintain the number of solutions
found so far in a shared variable, which each worker
process examines after processing a node in the search
tree; we could increase the amount of braking loss (that
is, time spent continuing to search for solutions even
after all required solutions have been found) and de-
crease contention for this shared variable by examining
its value less frequently. Although each of these design
choices has slightly different costs on the different ma-
chines used in our study, the overall effect of the under-
lying architecture on these design decisions is not signifi-
cant.

The machines used in our experiments all had fewer
than 128 processors, and most program executions termi-
nated without any process retrieving several entries from
the work queue. As a result, no load imbalance occurred
using tree parallelism. However, on machines with a
larger number of processors, it would be possible for pro-
cessors to be idle due to an absence of work in the work
queue. In such cases, we could place second-level (or
even third-level) children of the root in the work queue,
so as to create enough parallelism to exploit all available
processors.

2.4.2. Loop Parallelism. Loop parallelism occurs in
the implementation of the filters that are applied at each
node in the search tree. Each filter iterates over the verti-
ces of the small graph in parallel, so loop parallelism
offers at most 32-way parallelism in our experiments. To
implement this parallelism, we create a single worker
process on each processor that is responsible for execut-
ing iterations of parallel loops. A single master process is -

116 CROWL ET AL.

responsible for copying the loop parameters into the local
memory of each worker process, and for synchronizing
all of the worker processes at the end of loop execution.
At the start of loop execution, we divide the n iterations
of the loop into blocks of size nip and assign each block
to a processor. This assignment of iterations to proces-
sors ensures that a processor always executes the same
loop iterations for every parallel loop. As described in
[lo], this technique avoids the need to load the rows of
the partial isomorphism matrix into local memory at the
start of loop execution, since the ith iteration of every
parallel loop is always executed by the processor whose
local memory or cache already contains the ith row of the
matrix.

There can be significant load imbalance among loop
iterations because the amount of work performed by a
filter depends on the number of potential isomorphisms in
a partial isomorphism; iterations with many active map-
pings do more work than iterations with few active map-
pings. In addition, an iteration of the connectivity filter,
which checks for consistency across postulated map-
pings, terminates if the corresponding vertex in the small
graph does not yet have a postulated mapping. Thus, the
variation in running time among iterations is high. When
using a small number of processors, we assign several
iterations to each processor, and the imbalance among
iterations tends to average out. However, as the number
of processors increases, the number of iterations per pro-
cessor decreases, and the imbalance among iterations be-
comes significant. As discussed below, dynamic schedul-
ing of loop iterations cannot eliminate this imbalance and
therefore we use static scheduling. We verified this
choice with experiments on a Silicon Graphics multipro-
cessor workstation, which showed that our static distri-
bution of blocks of iterations performed as well as or
better than dynamic self-scheduling of loops.

2.4.3. Combining Tree and Loop Parallelism. Some
of our experiments use both tree and loop parallelism
simultaneously. To implement this hybrid form of paral-
lelism we statically divide the available processors into
two categories: processors used for tree search and pro-
cessors used for loop parallelism. As before, we create a
worker process for tree search on each of the processors
dedicated to tree search; we create a worker processor
for parallel loops on the remaining processors. The im-
plementations of tree and loop parallelism within each
group of processors is the same as described above.

2.5. Evaluating Performance

In this section we identify the sources of overhead in
tree and loop parallelism and describe our methodology
for measuring these overheads during program execu-
tion.

2.5.7. Sources of Overhead. The primary source of
overhead in the implementation based on tree parallelism

is wasted speculation. Section 2.3 provides a quantitative
analysis of the benefit of speculative search, and an as-
sessment of how that benefit varies with the density of
the solution space. This analysis gives insight into the
potential benefits of speculation as we increase the num-
ber of processors, and is particularly appropriate for a
large number of processors. For a small number of pro-
cessors (on the order of 2-4), the benefit of speculation is
uncertain. We have observed that even in sparse solution
spaces, small numbers of processors do not usually ex-
ploit speculation effectively.

There are two primary sources of overhead under loop
parallelism: load imbalance and communication (and syn-
chronization) costs. Load imbalance is difficult to avoid:
the nature of the algorithm dictates that loop parallelism
is used within a large number of small loops that have
high variation in iteration running time. Since the loops
are small, any load imbalance is large in comparison to
the work done. Alternative loop scheduling schemes can-
not significantly improve load balance-there are too
few iterations available to allow load balancing to be suc-
cessful.

Scaling the size of the problem to decrease load im-
balance is not likely to be successful either. The number
of iterations in the loops is equal to the number of nodes
in the small or large graph, and the problem difficulty
increases exponentially in the sizes of these graphs. The
problem would become intractable well before the loops
could be made large enough to eliminate load imbalance.
As a result, we conclude that loop parallelism in sub-
graph isomorphism is inherently not scalable.

Communication costs are present under both forms of
parallelism, but are not significant under tree parallelism
since each task proceeds independently and no intertask
communication is necessary. Communication costs are
significant under loop parallelism, however, since even
very small loops require extensive coordination between
the master and worker processes. As a result, the cost of
communication in the underlying machine has a notice-
able effect on the performance of loop parallelism, but
has little effect on the performance of tree parallelism.

In summary, speculation is increasingly beneficial as
the number of processors increases, and as the solution
space grows more sparse. On small numbers of proces-
sors, speculation gives unreliable benefits, while loop
parallelism provides fairly predictable benefits. How-
ever, loop parallelism suffers from load imbalance and
communication overhead, which increase with an in-
crease in the cost of communication.

2.5.2. Measuring Overheads. To explore the relation-
ship between problem parameters and the performance of
different parallelizations, we measured the causes of
poor performance in each implementation of subgraph
isomorphism. Our goal was to gain understanding of the
way that machine characteristics, problem definition, and

MULTIPLE PARALLELIZATIONS IN COMBINATORIAL SEARCH 117

input choice affect the various kinds of overhead that can
occur in parallel combinatorial search.

To help develop insight, we assigned the various over-
head costs to categories that are meaningful to the pro-
grammer. The particular categories were chosen so as to
be complete and orthogonal. By completeness we mean
that in the absence of overheads in these categories, the
program would have exhibited linear speedup. This is
verified empirically: if, after measuring all overhead in a
multiprocessor execution, the remaining computation
equals that of the uniprocessor case, then the set is com-
plete for that execution. Our set was found to be com-
plete for all executions we measured. By orthogonal we
mean that no segment of a single processor's time can be
simultaneously assigned to two different overhead cate-
gories. This ensures that we can measure, add, and sub-
tract overhead values meaningfully.

The categories we used are Load Imbalance, Idling,
Synchronization Loss, Memory Loss, and Wasted Com-
putation. Load Imbalance is defined as the processor
cycles spent idling, while parallel tasks exist and are not
yet completed. Idling is defined as the processor cycles
spent idling, while there are no parallel tasks available.
Synchronization Loss is defined as the time spent execut-
ing synchronization instructions (e.g., waiting in a barrier
or spinning on a lock). Memory Loss is defined as time
processors spend stalled, waiting for memory to supply
needed operands. Finally, Wasted Computation is de-
fined as algorithmic work done by the program that did
not contribute to finding the problem solution(s). In com-
binatorial search, this category measures time spent
searching subtrees that do not contain solutions. In this
case, we refer to this category as wasted speculation.

We developed a uniform method for quantitatively
evaluating each of these overhead categories, and applied
it to our implementations of subgraph isomorphism. This
general approach to performance evaluation, along with
its implementation, is described in more detail in [5]. We
found that these categories provided the right level of
abstraction for examining how performance depends on
the underlying architecture, the structure of the input
graphs, and the number of desired isomorphisms, on a
range of shared-memory multiprocessors. The next sec-
tion presents the results of those examinations.

3. MULTIPLE PARALLELIZATIONS

In this section we show that good performance in the
subgraph isomorphism computation sometimes requires
that tree search be parallelizable, and sometimes requires
that filters be parallelizable. (Section 4 discusses situa-
tions for which parallelizing both search and filters is
useful.) As a result, good performance requires the abil-
ity to parallelize the problem using both loop parallelism
and tree parallelism.

This result holds no matter which aspect of the prob-

lem is varied. Both parallelizations are needed whether
one is concerned with:

1. porting a given problem and input to a different ma-
chine,

2. running a given problem on a given machine while
varying inputs, or

3. for a fixed input and machine, searching for a vary-
ing number of solutions.

We show multiple examples for each of these points
based on our implementation, which currently runs on
seven shared-memory multiprocessors. These machines
are as described in Section 3.1. We study four input data
sets: one in which solutions are extremely plentiful, two
in which solutions exist but are relatively rare (among all
leaf nodes), and one in which no solutions exist. The
problems we consider are: finding a single isomorphism,
finding 128 isomorphisms, and finding 256 isomorphisms.
We have collected data for these seven machines, four
classes of inputs, three problems, and several paralleliza-
tions, amounting to several thousand data points.

In this presentation, we will not address variability in
performance due to the number of processors used on a
given machine or the choice of whether or not to exploit
word parallelism. We report the minimum execution time
(in seconds) achieved over the entire range of processors
whether exploiting word parallelism or not.

3.1. Machines Used

Our implementation runs on seven shared-memory
multiprocessors, covering a range of processor and inter-
connect technologies. Table I1 summarizes them.

Three of the machines support a global coherent mem-
ory accessed through a shared bus. The Sequent Balance
uses the National Semiconductor 32032 processor. The
bus in the Balance has a sustained bandwidth of 26.7 MB/
s. Each processor has an 8-KB write-through cache. The
Sequent Symmetry uses Intel 80386 processors running
at 20 MHz, which are between 3 and 7 times faster than
the processors in the Balance. The bus has a sustained
bandwidth of 53.3 MBIs, and each processor has a 64-KB
write-back cache. The Silicon Graphics Iris uses 40 MHz
MIPS R3000 processors on a bus with 64 MB/s band-

TABLE I1
Shared-Memory Multiprocessors

Label
Number of
processors

Balance
Symmeti
Iris
Butterfly
TC2000
8CE
KSR 1

Machine

Sequent Balance
Sequent Symmetry
Silicon Graphics Iris
BBN Butterfly One
BBN Butterfly TC2000
IBM 8CE
Kendall Square Research 1

118 CROWL ET AL.

width. Each of the processors has a 64-KB first-level
cache and a 1-MB second-level cache.

Two of the machines are from the BBN Butterfly fam-
ily of scalable multiprocessors. The BBN Butterfly I uses
8-MHz Motorola 68000 processors connected by a 4-
MB/s (per link) Butterfly switch. Each processor has 1
MB of local memory, and a processor may access an-
other's memory through the switching network; there are
no data caches. The access time ratio between local and
non-local memory is 1 : 5. The BBN TC2000 uses Mo-
torola 88100 processors, which are about 60 times faster
than the processors used in the Butterfly I. The peak
switch bandwidth in the TC2000 is 38 MBIs (per link).
Although the TC2000 does have processor data caches,
these caches are not kept consistent automatically, and
therefore are not used for shared data. In our experi-
ments on the Butterfly I and the TC2000, data is moved
into local memory explicitly by the program.

The IBM 8CE is similar to the Butterfly family in that
each processor has its own local memory, and can access
the memory of every other processor. In addition, the
8CE has a single global shared memory. As in the Butter-
fly, there is no data cache, and the programmer (or oper-
ating system) must manage local and global memory ex-
plicitly. Access to nonlocal memory is through a shared
bus, and the access time ratio between local, global, and
remote memory is 1 : 2 : 5. The 8CE uses the ROMP-C
processor (as found in the IBM PCIRT).

The Kendall Square KSR 1 uses a custom 64-bit pro-
cessor, which is roughly twice as fast as the processors
used in the TC2000. All memory in the system is man-
aged as a set of caches, with each processor containing a
32-MB cache (i.e., local memory) and a 512-KB sub-
cache. Access times to the subcache, the local cache, and
a remote cache are in the ratio 1 : 9: 88. Cache block
movement uses a high-speed ring n e t ~ o r k . ~

3.2. Varying the Machine

For a given problem and input, each parallelization
outperforms the other on some machine(s). Here we
show two selected examples. In each example, loop par-
allelization is best for more than one machine, and tree

The KSR 1 has a multilevel ring architecture, but all our tests were
done on a single ring.

parallelization is best for more then one machine. This
shows that the differences we are noting are significant;
there are multiple machines in each category.

The first example in Table 111 is searching for multiple
solutions in a sparse solution space. (Specifically, looking
for 128 isomorphisms in a solution space with density
lop2'). We see that loop parallelism is best on two ma-
chines, tree parallelism is best on four other machines,
and one machine (the Balance) is a toss-up. For this and
subsequent tables, we underline the time taken by the
better parallelization in those cases where the difference
in execution time is ~ignificant.~

The second example in Table 111 is searching for multi-
ple solutions in a dense solution space (that is, looking
for 128 isomorphisms with solution space density l o 5) .
In this case, there are three machines for which loop
parallelism is best, and two for which tree parallelism is
best. The two parallelizations are a toss-up on the re-
maining two machines.

The first two lines in Table 111 show that in a sparse
solution space, loop parallelism outperforms tree paral-
lelism on the Iris and 8CE, while tree parallelism outper-
forms loop parallelism on the KSR 1, TC2000, Symme-
try, and Butterfly; the two parallelizations are
comparable (within 6%) on the Balance. This result is
somewhat surprising, given that the Balance, Symmetry,
and Iris have such similar architectures (all are coherent,
bus-based machines). We can determine why one paral-
lelization outperforms the other by using our perfor-
mance evaluation method, combined with considerations
of inherent scalability. To focus our discussion, we con-
centrate on the Iris and the KSR 1 as examples of archi-
tectures that favor one parallelization over the other.

Loop parallelism executes faster on the Iris than on the
KSR 1, while tree parallelism executes faster on the KSR
1 than on the Iris. As discussed in Section 2.5, the princi-
pal issues in comparing these two parallelizations are the
overhead of load imbalance and the benefit of specula-
tion. These factors interact with the number of proces-
sors available and the speed of those processors.

To understand why the Iris outperforms the KSR 1
under loop parallelism, we first note that the uniproces-
sor (sequential) running time of the program is 21.88 s on

We consider differences in running time significant if the slower
version takes at least 25% more time than the faster version.

TABLE I11
Time in Seconds when Searching for 128 Solutions, Varying Machines

8CE Butterfly Balance Iris Symmetry TC2000 KSR 1

Sparse Loop 24.6673 75.7317 91.6722 2.0559 29.7714 1 1.0429 10.68 -
Tree 36.0518 12.5988 86.7278 2.5880 15.8381 3.7843 2.24 - -

Dense Loop - 1.0644 4.0369 4.2056 0.0933 1.3143 0.5518 0.46 - -
Tree 1.5251 - 2.9804 6.5167 0.1087 1.6690 0.5177 0.26 -

MULTIPLE PARALLELIZATIONS IN COMBINATORIAL SEARCH 119

Fraction
of Cycles

Spent
in Load

Imbalance

Processors

FIG. 4. Increasing load imbalance in loop parallelism.

the KSR 1, while it is 8.66 s on the Iris. Although the Iris
is faster at solving this problem on a single processor, the
Iris only has 8 processors, while our KSR 1 configuration
has 32 processors (much larger machines are available).
Unfortunately our measurements of load imbalance show
that for this problem, on these machines, the degree of
load imbalance under loop parallelism grows quite large
with an increase in the number of processors. Figure 4
shows the fraction of total processor cycles lost due to
load imbalance for loop parallelism on this problem on
both machines. The figure indicates that beyond about 8
processors, the fraction of cycles lost due to load im-
balance grows very large. In fact, the benefit of adding
additional processors beyond this point is completely
counteracted by the increase in load imbalance, preclud-
ing the KSR 1 from benefiting from its larger supply of
processors.

On the other hand, the KSR 1 outperforms the Iris
under tree parallelism. As before, the single processor
case favors the Iris (7.03 s on the Iris, 18.86 s on the KSR
1). However, there is no load imbalance under tree paral-
lelism on this problem; the dominant source of overhead
is wasted computation due to speculation. Figure 5
shows the total time spent on wasted speculation for this
problem on both machines, in seconds. As the number of
processors increases, each time the line does not rise, the
program has benefited from an increase in processing
power; when the line stays flat, a constant amount of

Total
Seconds
Spent

in Wasted
Computation

0 2 4 6 8 10 12 14
Processors

FIG. 5. Decreasing wasted computation in tree parallelism.

work has been divided among a larger number of proces-
sors; and when the line drops, the program has found a
cheaper set of solutions via speculative parallelism. The
figure shows that increasing processors for this problem
continues to yield significant benefits beyond 8 proces-
sors; as a result, the KSR 1 is able to exploit its larger
number of processors to advantage and outperform the
Iris.

We can extend these observations to all of the ma-
chines in Table 111. On machines with large numbers of
processors (P 2 32-KSR 1 and Butterfly), tree parallel-
ism does much better than loop parallelism. On machines
with a small number of processors (P 5 8-8CE and Iris)
loop parallelism performs better than tree parallelism. On
machines with about 20 processors (Balance, Symmetry,
and TC2000) tree parallelism does better than loop paral-
lelism, although the difference between the two is smaller
than on the machines with more processors.

On this last set of machines (Balance, Symmetry, and
TC2000), the relative benefit of tree parallelism varies
considerably, even though all three machines have
roughly the same number of processors. On the Balance,
tree parallelism is only marginally better than loop, while
on the TC2000, tree parallelism is much better than loop.
This variation in the benefit of tree parallelism is due to
an increase in the cost of communication (relative to the
cost of computation) when moving from the Balance to
the Symmetry to the TC2000. As communication costs
rise, loop parallelism becomes less effective relative to
tree parallelism. As discussed in Section 2.5, this occurs
because only loop parallelism incurs any significant com-
munication.

The second set of data in Table I11 confirms our expec-
tation that the tradeoff between loop and tree parallelism
shifts in favor of loop parallelism when the solution space
is very dense. When the solution space density is l o 5 ,
the variance in search time among different subtrees is so
small that tree parallelism is preferable only on machines
with large numbers of processors (P s 32). As expected,
the benefits of loop parallelism depend on the relative
cost of communication, and are most significant on older
machines with relatively slow processors, low latency,
and high bandwidth (e.g., the Balance and Symmetry)
and less significant on recent machines with very fast
processors, high latency, or limited bandwidth (e.g., the
Iris and TC2000).

Thus we have shown that the relative performance of
the two parallelizations across machines depends on pro-
cessor speed, the relative cost of communication, and the
number of processors available. Given two machines
with a comparable number of processors, communication
costs can tip the balance from loop parallelism to tree
parallelism (as occurred with the Symmetry and TC2000
in a dense solution space). Given two machines with very
similar architectures but a different number of proces-
sors, beneficial speculation can cause tree parallelism to
dominate on the machine with more processors, while

120 CROWL ET AL.

TABLE IV
Time in Seconds Searching for One Solution, Varying Inputs

10-5 lo-" Empty

8CE Loop E 2 13.7951 163.8678 0.6636

Tree 1.1243 11.0926 3.0933 0.5906

Butterfly Loop 0.7298 33.7188 541.5130 1.7667 -
Tree 2.3331 3.7634 8.0026 1.4941 - -

Iris Loop 0.0227 1.0993 13.2450 0.0513

Tree 0.0753 0.7400 0.2407 0.0413 - -

loop parallelism performs better on the machine with
fewer processors (as occurred with the Symmetry and
Iris in a sparse solution space). These effects are the
result of the scalability of tree parallelism, the non-
scalability of loop parallelism, and the need for com-
munication in loop parallelism, as discussed in Sec-
tion 2.5.

3.3. Varying the Input

For a given machine and problem, each parallelization
outperforms the other on some inputs. We show selected
examples in Table IV. In the examples, we are searching
for one solution while varying the density of the solution
space (inputs). We see that for each machine, loop is best
in one case, tree is best in two cases, and one case is
about even.

Unlike the problems in the previous section, the results
in Table IV are consistent across all the machines we
studied. Thus we see that the best parallelization for the
"find multiple solutions" problem is machine-dependent,
yet the best parallelization for the "find one solution
problem" is not. This surprising result occurs because
tree parallelism is highly speculative when only a single
solution is required. The processor cycles spent on spec-
ulative computation are beneficial in a sparse solution
space, but are wasted in a dense solution space, and are
neutral in an empty solution space.

We can verify this by comparing the overheads experi-
enced on the Iris by loop and tree parallelism when seek-
ing one solution in a sparse (lop2') solution space. Figure
6 shows the three most significant sources of overhead
for both parallelizations, along with the amount of time
spent in productive computation. The figure shows total
time spent by all processors, so the height of the bar must
be divided by the number of processors to get the actual
running time. It shows that tree parallelism exploits spec-
ulation well, with cheaper solutions found when the third
and the sixth processors are added. It also shows that
increasing processors in the loop parallelization increases
communication and load imbalance enough that it cannot
compete with tree parallelization.

Tree

Number of Processors

Loop

1 2 3 4 5 6 7

Number of Processors

FIG. 6. Overheads of loop and tree parallelism, seeking one solu-
tion in a sparse solution space.

3.4. Varying the Problem

For a given machine and input, each parallelization
outperforms the other on some problems. As seen in Ta-
ble V, on each machine loop parallelization is best in at
least one category, and tree parallelization is best in at
least one category. The example is searching a dense
solution space

We can understand these performance figures by ex-
amining why tree parallelism outperforms loop parallel-
ism on the Iris when seeking many solutions in a dense
solution space. Figure 7 shows the three most significant
overheads for this case. It shows that, for tree parallel-
ism, the overhead due to communication stays roughly
constant as we increase processors, and that the in-
creased processing power is spent in useful computation.
For loop parallelism, it shows a large increase in com-
munication costs as we increase the number of proces-
sors. This occurs because node filtering is rapid in a
dense space; all nodes are likely to lead to solutions. As a
result, communication occurs more frequently as parallel
loops are entered and exited more quickly.

Here the cost and benefits of speculative parallelism
can be seen in another way; speculative parallelism

TABLE V
Time in Seconds Searching a Dense Solution Space,

Varying the Problem

Desire 1 Desire 128 Desire 256

Butterfly Loop 0.7298 4.0369 7.1970

Tree 2.3331 2.9804 3.2637 - -
0.3190 Symmetry Loop - 1.3143 2.3190 -

Tree 1.3214 1.6690 1 .8000 -
Iris Loop E 7 0.0933 0.1660

Tree 0.0753 0.1087 0.1320 -

MULTIPLE PARALLELIZATIONS IN COMBINATORIAL SEARCH 121

Tree

1 2 3 4 5 6 7

Number of Processors

1 2 3 4 5 6 7

Number of Processors

FIG. 7. Overheads of loop and tree parallelism, searching a dense
F ?ace for many solutions.

wastes cycles when searching for a few solutions in a
dense space, but when the number of solutions desired is
much greater than the number of processors, speculative
parallelism hurts very little, and loop parallelism incurs
additional communication costs. In other words, when
little processing power is wasted on speculation, tree par-
allelism excels because of its larger grain size.

3.5. Summary: Loop us Tree

The results in this section stand in sharp contrast to the
notion that one "best" parallelization exists for this
broad class of problems. We have shown that this notion
does not hold even if any two of the three computation
characteristics are held constant: machine, input, or
problem. We have not used any characteristics specific to
subgraph isomorphism in reaching this conclusion; the
performance effects that we show here are due to the
density of the solution space, simple variants of the prob-
lem definition, and the performance characteristics of the
machine being used.

The two kinds of parallelism used in this program, loop
parallelism and tree parallelism, are not often well sup-
ported in the same language and runtime environment.
These data argue that any language and runtime environ-
ment intended for use on this broad class of problems
should provide good support for both kinds of parallel-
ism.

4. HYBRID PARALLELIZATION

The previous section showed that, in parallel combina-
torial search, tree parallelism and loop parallelism are
both important and serve different roles. Loop parallel-
ism speeds descent of the search tree, while tree parallel-
ism helps find the best subtree as early as possible. The
data in the previous section suggest that, for some inputs
and problem spaces, a combination of both approaches
may perform better than either alone.

TABLE VI
Time in Seconds for Loop, Tree, and Hybrid Programs

Processors Loop Tree Hybrid

1 17.159 16.679 n/a
2 8.769 16.749 8.849
4 4.659 16.659 10.189
6 3.359 3.479 1.459
8 2.649 3.469 1.459

Such a hybrid algorithm would be expected to do best
on inputs and problems in which speculative parallelism
is beneficial, and time spent in searching subtrees is sig-
nificant. This type of problem could be considered mid-
way between inputs with a dense solution space, in which
speculation doesn't help, and inputs with a sparse or
empty solution space, in which the whole graph must be
searched and coarse grain size is most important.

We implemented such a hybrid algorithm to test this
hypothesis. Our implementation partitions processors
into groups of two; each group works together using loop
parallelism on a single subtree. We ran this hybrid pro-
gram on the Iris, using the graph inputs discussed in Sec-
tion 3. Table VI presents running times when searching
for a single solution in a sparse space (which benefits
from speculation). The table shows that the notable bene-
fit obtained from speculation when the sixth processor is
added is evident in both the tree and hybrid versions;
however, the hybrid version also benefits from loop par-
allelism, making it the best choice in this case.6

These results indicate that there are problems which
benefit from hybrid parallelism. To test our hypothesis
that these problems occur in the input ranges between
sparse and dense, but not near the endpoints, we ran the
hybrid program on the Iris for a larger set of input graphs.
The larger size of the input graphs helps show more
markedly the relative performance of the tree programs.
In these tests, we varied the density of the solution
space, starting out dense (where dense is approximately

for these larger graphs) and moving into the sparse
range (about The results are shown in Fig. 8. This
figure shows solution space density decreasing to the left.
As the solution space grows more sparse, loop parallel-
ism and tree parallelism both increase in running time.
However hybrid parallelism does not increase as fast as
the other two, because it is exploiting speculation (this
effect was verified by examining the raw data).

These data suggest that not only is there need for both
loop-parallel and tree-parallel versions of combinatorial
search programs, but that there is a need for both paral-
lelizations to be in use simultaneously. This suggests that

The increase in running time from two to four processors in the
hybrid case results from bus saturation interfering with loop parallel-
ism, without tree parallelism providing any benefit.

122 CROWL ET AL.

Time in
Seconds

tree parallelism -̂ Ã
loop parallelism + -

hybrid parallelism -E+

El -
I-

I
-65 -60 -55 -50 -45 -40 -35

Log Density of Solution Space

FIG. 8. Performance of the three approaches over varying solution
space densities.

any language or runtime environment supporting both
parallelizations should also be able to support their simul-
taneous use.

We have extended some hypotheses about when each
kind of parallelism is most useful in an application, but
there is more work to be done before this problem is well
understood. The inability to predict precisely in every
case which static allocation of processors will perform
best (all loop, all tree, or a hybrid) suggests the need for a
dynamic allocation of processing power at runtime. Such
an approach could exploit speculative parallelism when
looking for few solutions in a sparse graph, using some
measure such as nonuniformity of solutions in subtrees to
determine when a subtree is promising and should be
explored more quickly using loop parallelism. In a dense
graph, when many solutions are required, such a dy-
namic approach could search the top levels of the tree
quickly using loop parallelism, then descend the most
promising subtrees in parallel using tree parallelism.

5. CONCLUSION

Our experiences with combinatorial search for sub-
graph isomorphisms have shown that the best choice of
parallelization depends on several factors, including the
problem, the input, and the machine. In particular, the
choice between loop and tree parallelism can be difficult
to resolve, and yet the choice can have a significant im-
pact on performance. In some cases, the performance of
loop parallelism dominates the performance of tree paral-
lelism; varying the machine, the problem, or the input
can cause the opposite to occur. In other cases, a combi-
nation of loop and tree parallelism performs best.
Clearly, for this class of problem, there is no "best"
parallelization.

In addition, our results clearly show that flat data par-
allelism (which roughly corresponds to what we've called
loop parallelism) is not the sole source of parallelism, nor
even the best source of parallelism, for this class of prob-
lem. A data parallel programming environment lacking
support for nested parallelism would be unable to exploit

all the readily available parallelism in this problem. This
result is consistent with the observations in fl61.

In order to exploit the various types of parallelism
we've considered here, the language, compiler, or run-
time system must have the facilities necessary to express
(or find) each type of parallelism, and the mechanisms
needed to implement each form of parallelism efficiently.
The VCODE compiler for the Encore Multimax [2] and
the NESL compiler for the Connection Machine CM-2
[I] support nested data parallelism, which can be used to
express both types of parallelism in subgraph isomor-
phism. The Chores runtime system [8] and the paralleliz-
ing Fortran compiler for the iWarp [15] are recent exam-
ples of programming systems designed to support both
data parallelism (e.g., parallel loops) and task (or func-
tional) parallelism (e.g., tree search).

Our work with control abstraction in parallel program-
ming languages [7, 61 represents one approach to ex-
pressing and implementing multiple parallelizations
within a single source code program. A control construct
defined using control abstraction may have several differ-
ent implementations, each of which exploits different
sources of parallelism. Programmers can choose appro-
priate exploitations of parallelism for a specific use of a
construct on a given architecture by selecting among the
implementations. Using annotations, programmers can
easily select implementations of control constructs (and
hence the parallelism to be exploited) without changing
the meaning of the program.

Our experiences with subgraph isomorphism illustrate
the need for multiple parallelizations, and also indicate
the need to tune the parallelization based on the problem,
the input, or the machine. An approach that incorporates
multiple parallelizations within a single source program,
and allows the programmer (or compiler) to select alter-
native parallelizations easily, greatly simplifies the pro-
cess of developing an efficient implementation of combi-
natorial search.

ACKNOWLEDGMENTS

We thank Argonne National Laboratories for the use of their TC2000,
International Business Machines for providing the 8CE, Donna
Bergmark and the Cornell Theory Center for their assistance and the
use of their KSR 1 , and Sequent Computer Systems for providing the
Balance and Symmetry.

REFERENCES

1 . Blelloch, G. E., Chatterjee, S . , Hardwick, J. C., Sipelstein, J . , and
Zagha, M. Implementation of a portable nested data-parallel lan-
guage. In Proc. of the Fourth ACM SZGPLAN Symp. on Principles
and Practice of Parallel Programming, May 1993, pp. 102-1 1 1 .

2 . Chatterjee, S. Compiling nested data-parallel programs for shared-
memory multiprocessors. ACM Trans. Programming Languages
Systems 15, 3 (July 1993), 400-462.

3. Chen, J., Daglass, E. L . , and Guo, Y. Performance measurements
of scheduling strategies and parallel algorithms for a multiprocessor
quicksort. IEEE Proc. Part E 131, 2 (Mar. 1984), 45-54.

MULTIPLE PARALLELIZATIONS IN COMBINATORIAL SEARCH 123

4. Costanzo, J., Crowl, L. , Sanchis, L., and Srinivas, M. Subgraph
isomorphism on the BBN Butterfly multiprocessor. Butterfly Proj-
ect Report 14, Computer Science Department, Univ. of Rochester,
October 1986.

5. Crovella, M. E., and LeBlanc, T. J. Performance debugging using
parallel performance predicates. In Proceedings of the 3rd ACMl
ONR Workshop on Parallel and Distributed Debugging, May 1993,
pp. 140-150.

6. Crowl, L. A., and LeBlanc, T. J . Parallel programming with control
abstraction. Technical Report 93-60-15, Computer Science Depart-
ment, Oregon State Univ., June 1993, to appear in ACM TOPLAS.

7. Crowl, L. A, , LeBlanc, T. J. Control abstraction in parallel pro-
gramming languages. In Proc. 4th International Conference on
Computer Languages, April 1992, pp. 44-53.

8. Eager, D. L., and Zahorjan, J . Chores: Enhanced run-time support
for shared-memory parallel computing. ACM Trans. Comput. S y s -
tems 11 (Feb. 1993), 1-32.

9. Finkel, R., and Manber, U. DIB-A distributed implementation of
backtracking. ACM Trans. Programming Languages Systems 9, 2
(Apr. 1987), 235-256.

10. Markatos, E. P., and LeBlanc, T. J. Using processor affinity in loop
scheduling on shared-memory multiprocessors. In Proc. Super-
computing '92, November 1992, pp. 104-1 13.

1 1 . Natarajan, K . S. An empirical study of parallel search for con-
straint satisfaction problems. Technical Report RC 13320, IBM T.J.
Watson Research Center, Dec. 1987.

12. Nageshwara Rao, V. , and Kumar, V. Parallel depth-first search.
Internal. J . Parallel Process. 16, 6 (1989).

13. Nageshwara Rao, V., and Kumar, V. On the efficiency of parallel
backtracking. IEEE Trans. Parallel and Distributed Systems, 4 , 4
(Apr. 1993), 427-437.

14. Singh, J. P., Weber, W. D., and Gupta, A. SPLASH: Stanford
parallel applications for shared-memory. Comput. Architecture
News 20 (Mar. 1992), 5-44.

15. Subhlok, J., Stichnoth, J. M., O'Hallaron, D. R., and Gross, T.
Programming task and data parallelism on a multicomputer. In
Proc. of the Fourth ACM SIGPLAN Symp. on Principles and Prac-
tice of Parallel Programming, May 1993, pp. 13-22.

16. Tichy, W. F. , Phillippsen, M., and Hatcher, P. A critique of the
programming language C*, Comm. ACM, 35,6 (June 1992), 21-24.

17. Ullman, J. R. An algorithm for subgraph isomorphism. J . Assoc.
Comput. Mach. 23 (1976), 3 1-42.

18. Wah, B. W., Li, G. J . , and Yu, C. F. Multiprocessing of combinato-
rial search problems. IEEE Comput. (June 1985), 93-108.

LAWRENCE CROWL received his Ph.D. in computer science from
the University of Rochester in 1991. He then joined the faculty at Ore-
gon State University, where he is now an assistant professor of com-
puter science. His broad research area is parallel systems, including
programming techniques, programming languages, operating systems,
and their architectural support.

MARK CROVELLA is a Ph.D. candidate in computer science at the
University of Rochester, where he expects to complete his Ph.D. de-
gree in 1994. His research interests include operating systems and run-
time environments for parallel computers, architecture of multiproces-
SOTS, and performance evaluation. His thesis research is exploring the - ~

integration of performance measurement and prediction techniques to
reduce the development cost of efficient parallel applications. He is the . .
recipient of an ARPA fellowship in high performance computing.

TOM LEBLANC received his Ph.D. degree in computer science
from the University of Wisconsin at Madison in 1982. Upon graduation
he joined the faculty of the Computer Science Department at the Uni-
versity of Rochester, where he is now Professor and Chair of Computer
Science. In 1987 he was named an Office of Naval Research Young
Investigator. Professor LeBlanc's research interests broadly encom-
pass issues in the development of software systems for parallel pro-
gramming. Particular areas of interest include programming models and
runtime library packages for parallel programming, multiprocessor op-
erating systems, and debugging and performance analysis of parallel
programs.

MICHAEL SCOTT is an associate professor of computer science at
the University of Rochester. He received his Ph.D. in computer sci-
ences from the University of Wisconsin at Madison in 1985. His re-
search focuses on systems software for parallel computing, with an
emphasis on shared-memory programming models. He is the designer
of the Lynx distributed programming language and a co-designer of the
Psyche parallel operating system. His recent publications include pa-
pers on first-class user-level threads, single-address-space systems,
scalable synchronization algorithms, and the evaluation of memory ar-
chitectures. He received an IBM Faculty Development Award in 1986.

Received March 5, 1993; revised September 15, 1993; accepted October
26, 1993

