
Scalable Spin Locks for Multiprogrammed Systems

Robert W. Wisniewski, Leonidas Kontothanassis, and Michael L. Scott

bob, kthanasi, and scott@cs.rochester.edu

Department of Computer Science

University of Rochester

Rochester, NY 14627-0226

Abstract

Synchronization primitives for large shared-mem-

ory multiprocessors need to minimize latency and con-

tention. Software queue-based locks address these

goals, but suffer if a process near the end of the queue

waits for a preempted process ahead of it. To solve

this problem, we present two queue-based locks that re-

cover from in-queue preemption. The simpler, faster

lock employs an extended kernel interface that shares

information in both directions across the user-kernel

boundary. Results from experiments with real and syn-

thetic applications on SGI and KSR multiprocessors

demonstrate that high-performance software spin locks

are compatible with multiprogramming on both large-

scale and bus-based machines.

1 Introduction

Many parallel applications are written using mutual
exclusion locks. When processors are uniprogrammed,
or when the expected waiting time for a lock is less
than twice the context switch time, spinning in an-
ticipation of acquiring a lock is more efficient than
rescheduling. As a result, busy-wait (spinning) mu-
tual exclusion locks are widely used.

Unfortunately, spin locks suffer from two serious
problems: 1. Both the common test and set lock
and the read-polling test and test and set lock de-
grade badly as the number of competing processors
increases; 2. In multiprogrammed systems, a process
that is preempted during its critical section can delay
every other process that needs to acquire the lock.

This work was supported in part by National Science Foun-
dation Institutional Infrastructure grant no. CDA-8822724,
DARPA grant no. MDA972-92-J-1012, and ONR research grant
no. N00014-92-J-1801 (in conjunction with the DARPA Re-
search in Information Science and technology—High Perfor-
mance Computing, Software Science and Technical program,
ARPA Order no. 8930).

To address the first of these problems, several re-
searchers have devised queue-based locks in which ev-
ery process spins on a different, local location, essen-
tially eliminating contention [1, 6, 12]. To address
the second problem, several operating systems have
incorporated schemes in which applications communi-
cate with the kernel scheduler to prevent [5] or recover
from [2] preemption in a critical section, or to avoid
entering a critical section when preemption is immi-
nent [11]. What has not been clear from previous work
is how to solve both problems at once.

The various mechanisms for dealing with preemp-
tion can all be applied in a straightforward manner to
programs using (test and)test and set locks, re-
sulting in good performance, at least on small ma-
chines. Their application to programs using queue-
based locks is much less straightforward. None of [2],
[5], or [11] discusses queue-based locks, and [12] ex-
plicitly recommends non-queue-based locks for multi-
programmed environments. Our contribution in this
paper is to demonstrate that simple extensions to the
interface of a preemptive scheduler can be combined
with an appropriately-designed queue-based lock to
provide excellent performance on systems that are both

very large (with a high degree of competition for locks)
and multiprogrammed.

2 Related Work

When two processes spin on the same location, co-
herence operations or remote memory references (de-
pending on machine type) create substantial amounts
of contention for memory and for the processor-
memory interconnect. The key to good performance
is therefore to minimize active sharing.

The queue-based spin locks of Anderson [1] and
of Graunke and Thakkar [6] minimize active sharing
on coherently-cached machines by arranging for ev-
ery waiting processor to spin on a different element
of an array. Each element of the array lies in a sep-
arate cache line, which migrates to the spinning pro-

mls
IPPS '94

cessor. The queue-based spin lock of Mellor-Crummey
and Scott [12] represents its queue with a distributed
linked list instead of an array. Each waiting processor
uses a fetch and store operation to obtain the ad-
dress of the list element (if any) associated with the
previous holder of the lock. It then modifies that list
element to contain a pointer to its own element, on
which it then spins. Because it spins on a location of
its own choosing, a process can arrange for that loca-
tion to lie in local memory even on machines without
coherent caches.

The efficiency of synchronization primitives is also
dependent on the scheduling discipline used by the
operating system. A growing body of evidence [4, 10,
15, 17] suggests that throughput is maximized by a
processor-partitioned environment in which each ap-
plication runs exactly one process per processor. In
such an environment, the possibility arises that the
lock owning process will be preempted and other run-
ning processes will busy-wait for the release of the lock
held by the preempted process.

To address the possibility of preemption, several
researchers have invented forms of synchronization-
sensitive scheduling. The Scheduler Activation pro-
posal of Anderson et al. [2] allows a parallel applica-
tion to recover from untimely preemption. When a
processor is taken away from an application, another
processor in the same application is given a software
interrupt, informing it of the preemption. The second
processor can then perform a context switch to the
preempted process if desired, e.g. to push it through
its critical section. In a similar vein, Black’s work on
Mach [3] allows a process to suggest to the scheduler
that it be de-scheduled in favor of some specific other
process, eg. the holder of a desired lock.

Rather than recover from untimely preemption, the
Symunix system of Edler et al. [5] and the Psyche sys-
tem of Marsh et al. [11] provide mechanisms to avoid
or prevent it. The Symunix scheduler allows a process
to request that it not be preempted during a critical
section, and will honor that request, within reason.
The Psyche scheduler provides a “two-minute warn-
ing” that allows a process to estimate whether it has
enough time remaining in its quantum to complete a
critical section. If time is insufficient, the process can
yield its processor voluntarily, rather than start some-
thing that it may not be able to finish.

Applications that use locks to protect both long
and short critical sections can use on-line adaptive
algorithms to guess whether it is better to spin or
reschedule in a given situation [8]. The possibility of
preemption, however, introduces very high variance

in the apparent length of critical sections, and makes
past behavior an unreliable predictor of whether to
spin or block.

The approaches described above are adequate
for test and set and test and test and set locks,
where only preemption inside the critical section needs
to be addressed. For queue-based locks, however, it
is also crucial to consider the possibility of preemp-
tion while waiting to acquire the lock. FIFO order-
ing prevents processes down the queue from acquiring
the lock if any of their predecessors are preempted
even though they may not be in the critical section.
DASH [9] uses a timeout mechanism to detect pre-
emption and then chooses a different successor. In
this paper, we present a software version of the DASH
approach using the Symunix kernel interface and the
spinlock of Mellor-Crummey and Scott. We also ex-
tend the kernel-user interface and design a simpler
more efficient queue-based lock that also guarantees
no process waits for a process that is not running.

3 Algorithms

In this section we briefly describe one lock and
present the code for another. Both are extensions of
the list-based queuing lock of Mellor-Crummey and
Scott. Both employ the Symunix mechanism to pre-
vent preemption in a critical region. The first uses a
handshaking technique to avoid giving a lock to a pro-
cess that is not running. The second obtains simpler
and faster code by using an extended kernel interface.
The interface consists of user-readable flags specifying
whether a process is running and whether it desires
the no-preemption mode.

As originally proposed, the Symunix interface in-
cludes a pair of flags for every process. One flag is set
by the user and inspected by the kernel. It indicates
that the process desires not to be preempted. The ker-
nel honors this request whenever possible, deducting
the time it adds to the end of the current quantum
from the beginning of the next. The second flag is set
by the kernel and inspected by the user. It indicates
that the kernel wanted to preempt the user, but hon-
ored a request not to do so. Upon exiting a critical
section, the user should clear the first flag and vol-
untarily yield the processor if the second flag is set.
These conventions suffice to avoid preemption during
a critical section.

To avoid giving the lock to a preempted process
in the queue without extending the Symunix kernel
interface, we can employ a handshaking protocol. A
process releases a lock by notifying its successor pro-
cess in the queue. If the successor does not promptly

acknowledge the notification by setting a flag in the
releaser’s queue node, the releaser assumes that the
successor is blocked. It rescinds the successor’s notifi-
cation and proceeds to the following process. To avoid
a timing window, both the releaser and the succes-
sor access the successor’s notification flag with atomic
fetch and store instructions. If the successor sees its
notification just before the releaser attempts to rescind
it, the releaser can tell what happened by inspecting
the return value from its fetch and store. In either
case, the successor waits for a final ACK or NACK from
the releaser before proceeding. Further details on this
lock can be found in the technical report version of
this paper [16].

To handle preemption without handshaking, we can
extend the kernel interface. By accessing a multi-
value state variable with a compare and swap in-
struction, the kernel can atomically change a process
from preemptable to preempted. Similarly, the re-
leaser of a lock can atomically change a process from
preemptable to unpreemptable.

A lock that uses this mechanism appears in figure 1.
To close a timing window, we actually need four values
of the process state variable. Two of these distinguish
between a process that has made itself unpreemptable,
and a process that has been made unpreemptable by
its predecessor in the lock queue.

As before, the kernel maintains ultimate control of
the processor by refusing to honor a request for non-
preemption more than once per quantum. This im-
plies that critical sections need to be shorter than the
extension given to the process by the kernel.

type context_block = record

state : (preempted, preemptable,

unpreemptable_self, unpreemptable_other)

warning : Boolean

type qnode = record

self : ^context_block

next : ^qnode

next_done : Boolean

status : (waiting, success, failure)

type lock = ^qnode

private cb : ^context_block;

procedure acquire_lock(L : ^lock, I : ^qnode)

repeat

I->next := nil

I->self := cb

cb->state := unpreemptable_self

pred : ^qnode := fetch_and_store (L, I)

if pred = nil

return

I->status := waiting

pred->next := I

(void) compare_and_swap (&cb->state,

unpreemptable_self, preemptable)

repeat while I->status = waiting // spin

until I->status = success

procedure release_lock (L : ^lock, I : ^qnode)

shadow : ^qnode := I

candidate : ^qnode := shadow->next

if candidate = nil

if compare_and_swap (L, shadow, nil)

return // no one waiting for lock

candidate := shadow->next

loop

while candidate = nil // spin; prob non-local

candidate := shadow->next

// order of following checks is important

if compare_&_swap (&candidate->self->state,

unpreemptable_self, unpreemptable_other)

or compare_&_swap (&candidate->self->state,

preemptable, unpreemptable_other)

candidate->status := success

exit // leave loop

// else candidate seems to be blocked

shadow := candidate

candidate := shadow->next

shadow->status := failure

if candidate = nil

if compare_and_swap (L, shadow, nil)

exit // leave loop

cb->state := preemptable

if cb->warning

yield

Figure 1: Code for the Smart-Q Lock

A caveat with both of the locks just described is
that they give up the FIFO ordering of the original
list-based queuing lock. It is thus possible (though
unlikely) that a series of adverse scheduling decisions
could cause a process to starve. If this became a prob-
lem it would be possible to modify our algorithm to
leave preempted processes in the queue, rather than
removing them. The drawback of this approach is that
preempted processes might be checked many times be-
fore actually acquiring the lock. Alternatively, tak-
ing our lead from Black’s work, we could have the
releaserer of a lock give its processor to its succes-
sor in the lock queue, if that successor were currently
blocked. The drawback of this approach is that it
entails additional context switches, and violates pro-
cessor affinity [14].

4 Experiments and Results

We studied each lock implementation on three dif-
ferent programs. The first was a synthetic program
that allowed us to explore the parameter space exten-
sively. To verify results from this program, we also
ran two real applications: the Cholesky program from
the SPLASH suite [13] and a multiprocessor version
of Quicksort. These applications were good candi-
dates for testing because they synchronize only with
locks. The rest of this section describes the exper-
imental environment, the different types of locks we

implemented, and the performance results for differ-
ent parameter values.

4.1 Methodology

We implemented eight different locks:

TAS B – A standard test and test and set lock
with exponential backoff that polls a lock’s value and
attempts to acquire it when it is free (on the SGI this
is the native lock with backoff).

TAS B-no preempt – A test and test and set

lock with exponential backoff. The critical section
is marked non-preemptable using the Symunix ap-
proach.

Queued – A queued lock with local-only spinning.

Queued-no preempt – An extension to the
queued lock that prevents preemption while in the
critical section.

Queued-Handshaking – Our extension to the
queued lock that uses the Symunix kernel interface,
and employs handshaking to ensure the lock is not
transferred to a preempted process.

Smart-Q – Our better queued lock, with two-way
sharing of information between the kernel for simpler
code and lower overhead than the queued-handshaking
lock.

Native – A lock employing machine-specific hard-
ware (extra cache states on the KSR). This is the
standard lock that would be used by a programmer
familiar with the machine’s capabilities.

Native-no preempt – An extension to the native
lock that prevents preemption while in the critical sec-
tion.

We would expect the locks developed using the no-

preempt capability to out-perform all other options
on these two machines, and our experiments bear this
out.

The machines we used were a Silicon Graph-
ics Challenge, with 12 processors, and a Kendall
Square Research KSR1, with 64 processors. The Na-

tive lock on the SGI is a test and test and set

lock implemented using the load linked and
store conditional instructions of the R4400 micro-
processor. The KSR1 incorporates a cache line lock-
ing mechanism that provides the equivalent of queued
locks in hardware. The queuing is based on physi-
cal proximity in a ring-based interconnection network,
rather than on the chronological order of requests.
While we would not expect software queuing to out-
perform (scheduler-sensitive use of) the native locks
on the KSR, our goal was to come close enough to
argue that special-purpose hardware is not crucial for
scalable locks in multiprogrammed systems.

The queued locks require both fetch and store

and compare and swap, primitives not available on
the SGI or KSR. We implemented a software ver-
sion of these atomic instructions using the native spin-
locks. We also used the native spinlocks to implement
test and set. This approach is acceptable as long as
the time spent in the critical section protected by the
higher-level lock is longer than the time spent simu-
lating the execution of the atomic instruction. This
was true for all the experiments we ran, so the re-
sults should be comparable to what would happen
with hardware fetch and Φ instructions.

Each process in our synthetic program executes a
simple loop containing a critical section. The total
number of loop iterations is proportional to the num-
ber of executing processes. When using the synthetic
program we were able to control four dimensions of the
parameter space: multiprogramming level, number of
processors, relative size of critical and non-critical sec-
tions, and quantum size. The first two parameters
were found to have the greatest impact on perfor-
mance; they are the focus of the next two sections.

In all the experiments an additional processor (be-
yond the reported number) is dedicated to running a
user-level scheduler. The scheduler preempts a pro-
cess by sending it a Unix signal. Each worker process
catches this signal; the handler spins on a per-process
flag, which the scheduler clears at the end of the
“de-scheduled” interval. Implementation of our ideas
in a kernel-level scheduler would be straightforward,
but was not necessary for our experiments. (We also
lacked the authorization to make kernel changes on the
KSR.) To reduce the possibility of lock-step effects,
we introduced a small amount of random variation in
quantum lengths and the lengths of the synthetic pro-
gram’s critical and non-critical code sections.

The multiprogramming level reported in the experi-
ments indicates the number of processes per processor.
A multiprogramming level of 1.0 indicates one worker
process for each available processor. A multiprogram-
ming level of 2.0 indicates one additional (simulated)
process on each available processor. Fractional mul-
tiprogramming levels indicate additional processes on
some, but not all, of the processors.

4.2 Varying the Multiprogramming Level

Figures 2 and 3 show the running time for a fixed
number of processors (11 on the SGI and 63 on the
KSR) while varying the multiprogramming level.

On the SGI, the scheduling quantum is fixed at 20
ms, the critical section length at approximately 15 µs,
and the non-critical section length at approximately
210 µs. Because the ratio of critical to non-critical

20

30

40

50

60

70

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
multiprogramming level

Simple QQ no_preempt
Ticket

Handshake Q

Smart Q

Native

Native no_preempt

TAS_B

TAS_B no_preempt

Ticket no_preempt

time

Figure 2: Varying Multiprogramming Levels on a 11-
processor SGI Challenge.

work is 1:14, while only 11 processors are running,
the critical section does not constitute a bottleneck.
Processes are able to use almost all of their cycles for
“useful” work, rather than waiting for the lock, and
completion time has a tendency to increase linearly
with an increase in the multiprogramming level, as
processes receive smaller and smaller fractions of their
processors. The Queued and Queued-no preempt

locks, however, show much greater degradation, as
processes begin to queue up behind a de-scheduled
peer. Preventing preemption in the critical section
helps a little, but not much: preemption of processes
waiting in the queue is clearly the dominant problem.
Much better behavior is obtained by preventing crit-
ical section preemption and ensuring that the lock is
not given to a blocked process waiting in the queue:
the Queued-Handshaking and Smart-Q locks per-
form far better than the other Queued locks, and also
outperform the Native and TAS B locks at mul-
tiprogramming levels of 2 and above. The Native

and TAS B-no preempt locks display the best re-
sults, though they presumably generate more bus traf-
fic than the Smart-Q lock, and might be expected to
interfere more with “legitimate” memory traffic. (The
synthetic program does not capture this effect; it op-
erates entirely out of registers during its critical and
non-critical sections.)

On the KSR, 63 processors were available, so a 1:14
ratio of critical to non-critical wok would lead to an
inherently serial program. We therefore dropped the
ratio far enough to eliminate serialization. Quantum
length remained the same. The results show a some-
what different behavior from that on the SGI. The
Queued and Queued-no preempt locks suffer an
enormous performance hit as the multiprogramming
level increases. The Queued-Handshaking lock im-

0

50

100

150

200

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
multiprogramming level

Simple Q
Q no_preempt
Ticket

Handshake Q

Smart Q

Native
Native no_preempt

Ticket-no_preempt

TAS_B

TAS_B no_preempt

time

Figure 3: Varying Multiprogramming Levels on a 63-
processor KSR1.

proves performance considerably since it eliminates
both the critical section and queue preemption prob-
lems. Unfortunately, it requires a significant num-
ber of high-latency remote references, resulting in a
high steady level of overhead. The Smart-Q lock
lowers this level by a third, but is still somewhat
slower than the TAS B-no preempt lock, and sub-
stantially slower than the native lock, from which all
the others are constructed. The TAS B and Native

locks perform well when the multiprogramming level
is low, but deteriorate as that level increases.

4.3 Varying the Number of Processors

Increasing the number of processor working in par-
allel can result in a significant amount of contention
especially if the program needs to synchronize fre-
quently. Previous work has shown that queue locks
improve performance in such an environment, but as
indicated by the graphs in figures 2 and 3 they can
experience difficulties under multiprogramming. The
graphs in figures 4 and 5 show the effect of increasing
the number of processors on the different locks at a
multiprogramming level of 2.0.

The synthetic program runs a total number of loop
iterations proportional to the number of processors,
so running time does not decrease as processors are
added. Ideally, it would remain constant, but con-
tention and scheduler interference can cause it to in-
crease. With quantum size and critical to non-critical
ratio fixed as before, results on the SGI again show
the Queued and Queued-no preempt locks per-
forming very badly, as a result of untimely preemp-
tion. The performance of the TAS B and Native

locks also degrades with additional processors, either
because of increased contention, or because of the in-
creased likelihood of preemption in the critical sec-

30

35

40

45

50

2 3 4 5 6 7 8 9 10 11
Number of processors

time

Simple Q

Ticket
Q no_preempt

Handshake Q

Smart Q

Native

Native no_preempt

Ticket no_preempt

TAS_B

TAS_B no_preempt

Figure 4: Varying the Number of Processors on the
SGI Challenge with a multiprogramming level of 2
(one unrelated process per processor).

tion. The Smart-Q degrades more slowly, but also
appears to experience contention. Contention does not
seem to affect the TAS B-no preempt and Native-

no preempt locks until there are more than about 8
processors active.

The results on the KSR resemble those on the SGI.
Contention continues to rise with increases in the num-
ber of processors, and the locks that avoid preemp-
tion out-perform their naive counterparts. The na-
tive lock, with our modification to avoid critical sec-
tion preemption, is roughly twice as fast as the near-
est competition, presumably because of the hardware
queuing effect. Among the all-software locks, TAS B-

no preempt performs best, but TAS B and Smart-

Q are close.
It should be noted that backoff constants for the

TAS B locks must be determined via trial and er-
ror. The best values differ from machine to machine,
and even from program to program. The queued locks
are in some sense more portable. As noted above, we
would expect contention on both machines to become
a serious problem sooner if the code in the critical and
non-critical sections generated memory traffic. Be-
cause their traffic is deterministic, the queued locks
should suffer less from this effect.

4.4 Results for Real Applications

To verify the results obtained from the synthetic
program, and to investigate the effect of “legitimate”
memory traffic, we measured the performance of a
pair of real lock-based applications. Figure 6 shows
the completion times of these applications, in seconds,
when run with a multiprogramming level of 2.0 using
11 processors on the SGI and 63 processors on the
KSR. As with the synthetic program, naive queuing of

0

20

40

60

80

100

120

10 20 30 40 50 60
number of processors

Simple Q
Q no_preempt
Ticket

Handshake Q

Smart Q

Native

Native no_preempt

TAS_B

TAS_B no_preempt

Ticket no_preempt

time

Figure 5: Varying the Number of Processors on the
KSR1 with a multiprogramming level of 2 (one unre-
lated process per processor).

preemptable processes is disastrous. This time, how-
ever, with real computation going on, the Smart-Q

lock is able to tie the performance of the TAS B-

no preempt and Native-no preempt locks on the
SGI, and to out-perform the former in the Quicksort
program on the KSR.

5 Conclusions

The ability to implement our locks testifies to the
flexibility of fetch and Φ instructions. The ease with
which such instructions can be implemented, and
their utility in other areas (e.g. wait-free data struc-
tures [7]) makes them a very attractive alternative to
special-purpose synchronization hardware. The na-

0 10 20 30

Cholesky SGI

0 10 20 30 40 50

>10m

>10m

KSR

0 10 20 30

932.6

742.5

Quicksort

0 20 40 60 80 100

>10m

>10m

Native

Native-np

TAS-B

TAS-B-np

Queue

Queue-np

Queue-HS

Smart-Q

Native

Native-np

TAS-B

TAS-B-np

Queue

Queue-np

Queue-HS

Smart-Q

Figure 6: Completion time (in seconds) of real ap-
plications on a 11-processor SGI Challenge and a 63-
processor KSR1 (multiprogramming level = 2).

tive locks of the KSR1, for example, are faster than
the Smart-Q lock, but not by very much. Whether
they are worth the effort of implementation probably
depends on the extent to which they complicate the
construction of the machine. For machines without
queued locks in hardware (e.g., the BBN TC2000), our
locks are likely to outperform all previous alternatives
in the presence of multiprogramming.

This paper makes three primary contributions.
First, it demonstrates the need for queue-based locks
to be extended to environments with both high levels
of contention and preemption due to multiprogram-
ming. Second, it describes an algorithm based on the
Symunix model that accomplishes this by preventing
critical section preemption and by ensuring that a lock
is not given to a preempted process in the queue (one
of the referees points out that this same technique
could be used to skip over processes that have chosen
to block instead of spin, as described by Karlin et al.)
Third, it shows that by sharing appropriate informa-
tion between the scheduler and application processes,
we can make the lock simpler and faster.

Our work suggests the possibility of using kernel-
user sharing for additional purposes. We are inter-
ested, for example, in using it to help manage re-
sources such as memory. We are also interested in
studying the effect of scheduler information in systems
where priorities are important, i.e., real-time applica-
tions.

Acknowledgements

We would like to thank Donna Bergmark and the
Cornell Theory Center for the use of their KSR1.

References

[1] T. E. Anderson. The Performance of Spin Lock
Alternatives for Shared-Memory Multiprocessors.
IEEE Transactions on Parallel and Distributed Sys-

tems, 1(1):6-16, Jan. 1990.
[2] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and

H. M. Levy. Scheduler Activations: Effective Kernel
Support for the User-Level Management of Paral-
lelism. ACM Transactions on Computer Systems,
10(1):53-79, Feb. 1992.

[3] D. L. Black. Scheduling Support for Concurrency
and Parallelism in the Mach Operating System.
Computer, 23(5):35-43, May 1990.

[4] M. Crovella, P. Das, C. Dubnicki, T. LeBlanc, and E.
Markatos. Multiprogramming on Multiprocessors. In
Proc. of the Third IEEE Symposium on Parallel and

Distributed Processing, pages 590-597, Dec. 1991.
[5] J. Edler, J. Lipkis, and E. Schonberg. Process Man-

agement for Highly Parallel UNIX Systems. In Proc.

of the USENIX Workshop on Unix and Supercom-

puters, Pittsburgh, PA, Sep. 1988.
[6] G. Graunke and S. Thakkar. Synchronization Algo-

rithms for Shared-Memory Multiprocessors. Com-

puter, 23(6):60-69, June 1990.
[7] M. Herlihy. Wait-Free Synchronization. ACM Trans-

actions on Programming Languages and Systems,
13(1):124-149, Jan. 1991.

[8] A. R. Karlin, K. Li, M. S. Manasse, and S. Ow-
icki. Empirical Studies of Competitive Spinning for a
Shared-Memory Multiprocessor. In Proc of the Thir-

teenth ACM Symposium on Operating Systems Prin-

ciples, pages 41-55, Pacific Grove, CA, Oct. 1991.
[9] D. Lenoski, J. Laudon, K. Gharachorloo, W. We-

ber, A. Gupta, J. Hennessy, M. Horowitz, and M. S.
Lam. The Stanford Dash Multiprocessor. Computer,
25(3):63-79, Mar. 1992.

[10] S. T. Leutenegger and M. K. Vernon. Performance
of Multiprogrammed Multiprocessor Scheduling Al-
gorithms. In Proc. of the 1990 ACM SIGMETRICS

International Conference on Measurement and Mod-

eling of Computer Systems, Boulder, CO, May 1990.
[11] B. D. Marsh, M. L. Scott, T. J. LeBlanc, and E. P.

Markatos. First-Class User-Level Threads. In Proc.

of the Thirteenth ACM Symposium on Operating

Systems Principles, pages 110-121, Pacific Grove,
CA, Oct. 1991.

[12] J. M. Mellor-Crummey and M. L. Scott. Al-
gorithms for Scalable Synchronization on Shared-
Memory Multiprocessors. ACM Transactions on

Computer Systems, 9(1):21-65, Feb. 1991.
[13] J. P. Singh, W. Weber, and A. Gupta. SPLASH:

Stanford Parallel Applications for Shared-Memory.
ACM SIGARCH Computer Architecture News,
20(1):5-44, Mar. 1992.

[14] M. S. Squillante. Issues in Shared-Memory Multipro-
cessor Scheduling: A Performance Evaluation. Ph.
D. dissertation, TR 90-10-04, Department of Com-
puter Science and Engineering, University of Wash-
ington, Oct. 1990.

[15] A. Tucker and A. Gupta. Process Control and Sched-
uling Issues for Multiprogrammed Shared-Memory
Multiprocessors. In Proc. of the Twelfth ACM Sym-

posium on Operating Systems Principles, pages 159-
166, Litchfield Park, AZ, Dec. 1989.

[16] R. W. Wisniewski, L. Kontothanassis, and M. L.
Scott. Scalable Spin Locks for Multiprogrammed
Systems. TR 454, Computer Science Department,
University of Rochester, Apr. 1993.

[17] J. Zahorjan and C. McCann. Processor Schedul-
ing in Shared Memory Multiprocessors. In Proc.

of the 1990 ACM SIGMETRICS International Con-

ference on Measurement and Modeling of Computer

Systems, pages 214-225, Boulder, CO, May 1990.

