
Fast, Contention- Free Combining Tree
Barriers for Shared- Memory
M ultiprocessorsl

Michael L. Scott2 and John M. ello or-Crummey3

Received July 1992; revised Febuury 1994

In a previous article,"' Gupta and Hill introduced an ucluptiw fmnbittit~g tree
algorithm for busy-wait barrier synchronization on shared-memory multipro-
cessors. The intent of the algorithm was to achieve a barrier in logarithmic time
when processes arrive simultaneously, and in constant time after the last arrival
when arrival times are skewed. A fuzzy'" version of the algorithm allows a
process to perform useful work between the point at which it notifies other pro-
cesses of its arrival and the point at which it waits for all other processes to
arrive. Unfortunately, adaptive combining tree barriers as originally devised
perform a large amount of work at each node of the tree, including the acquisi-
tion and release of locks. They also perform an unbounded number of accesses
to nonlocal locations, inducing large amounts of memory and interconnect
contention. We present new adaptive combining tree barriers that eliminate
these problems. We compare the performance of the new algorithms to that of
other fast barriers on a 64-node BBN Butterfly 1 multiprocessor, a 35-node
BBN TC2000. and a 126-node KSR 1. The results reveal scenarios in which our

'At the University of Rochester, this work was supported in part by NSF Institutional Infra-
structure grant number CDA-8822724 and ONR research contract number N00014-92-J-1801
(in conjunction with the ARPA Research in Information Science and Technology-High Per-
formance Computing, Software Science and Technology program, ARPA Order No. 8930).
At Rice University, this work was supported in part by NSF Cooperative Agreements
CCR-88096 15 and CCR-9 120008.

'Computer Science Department, University of Rochester, Rochester, NY 14627-0226.
E-mail:scott(o)cs.rochester.edu.

'Computer Science Department, Rice University. P.O. Box 1892, Houston, TX 77251.
E-mail:johnmc(y;cs.rice.edu.

450 Scott and Melior-Crummey Fast, Contention-Free Combining Tree Barriers 451

algorithms outperform all known iiltcrni~tivcs, iinil suggest thiit both iiil;iptiition
iind the conihini~tion of fuzziness with tree-style sy~iclirotiiziitioii will be of
increasing importance on future generations of shared-memory multiprocessors.

KEY WORDS: Synchronization; scalability; fuzzy barriers; adaptive com-
bining trees.

1. INTRODUCTION

A barrier is a synchronization mechanism that ensures that no process
advances beyond a particular point in a computation until all processes
have arrived at that point. Barriers are widely used to delimit algorithmic
phases; they might guarantee, for example, that all processes have finished
updating the values in a shared matrix in step t before any processes use
the values as input in step t + 1. If phases are brief (as they are in many
applications), barrier overhead may be a major contributor to execution
time; fast barrier implementations are thus of great importance. This paper
focuses on busy-wait (spinning) barrier implementations for shared-
memory multiprocessors.

In the simplest barrier algorithms, each process increments a shared,
centralized counter as it reaches a barrier, and spins until that counter (or
a flag set by the last arriving process) indicates that all processes are
present. Such centralized algorithms suffer from several limitations:

Linear asymptotic latency. On a machine without hardware combin-
ing of atomic instructions, achieving a barrier requires time linear in
the number of processes, P. Specifically, it requires a sequence of 0 (P)
updates to the central counter followed (in the absence of broadcast or
fast multicast) by 0 (P) reads.
Contention. Because processes access a central location, traditional
centralized barriers can generate contention for memory and for the
processor-memory interconnection network. Such contention degrades
the performance of any process that initiates references involving the
network or a saturated memory bank.
Unnecessary waiting. Processes that arrive at a barrier early (to
announce to their peers that they have completed some critical com-
putation) must wait for their peers to arrive as well, even if they have
other work they could be doing that does not depend on the arrival
of those peers.

To improve asymptotic latency, several barriers have been developed
that run in time 0(log P). Most use some form of tree to gather and scatter
information" "; the butterfly and dissemination barriers of Brooks"' and

of Hensgen PI ~ 1 . ~ ~ use ii symmetric pattern of synchronization operations
that resembles an FFT or parallel prefix computation. The butterfly and
dissemination barriers perform a total of 0 (P log P) writes to shared loca-
tions, but only O(log P) on their critical paths. The various tree-based
barriers perform a total of 0 (P) writes to shared locations, with O(log P)
on their critical paths. On most machines, logarithmic barriers can be
designed to eliminate contention by having processes spin only on locally-
accessible locations (either in a local coherent cache, or in a local portion
of shared memory).(5)

To reduce unnecessary waiting at barriers, Gupta introduced the
notion of a fuzzy barrier.(2) Such a barrier consists of two distinct phases.
In the first phase, processes announce that they have completed all the
work on which their peers depend. In the second phase they wait until all
their peers have made similar announcements. A traditional centralized
barrier can be modified trivially to implement these two phases as separate
enter-barrier and exit-barrier routines. Unfortunately, none of
the logarithmic barriers mentioned above has such an obvious fuzzy
version. In the butterfly and dissemination barriers, no process knows that
all other processes have arrived until the very end of the algorithm. In a
static tree barrier,(') and in the tournament barriers of Hensgen et a/.") and
Luba~hevsky,(~) static synchronization orderings force some processes to
wait for their peers before announcing that they have reached the barrier.
In all of the tree-based barriers, processes waiting near the leaves cannot
discover that the barrier has been achieved until processes higher in the
tree have already noticed this fact.

Logarithmic barriers also introduce an additional problem:

Lack of amortization. The critical path requires O(log P) writes to
shared locations after the arrival of the last process before any process
can continue. In a traditional centralized barrier, the last arriving
process discovers that the barrier has been achieved in constant time
(ignoring possible delay due to contention).

To address this problem, Gupta and Hill'') introduced the concept of
an adaptive combining tree barrier. Each process arriving at an adaptive
combining tree barrier performs a local modification to the tree that allows
later arrivals to start their work closer to the root. Given sufficient skew in
the arrival times of processes, the last arriving process performs only a
constant amount of work before discovering that the barrier has been
achieved. To address unnecessary waiting, Gupta and Hill also devised a
fuzzy version of their algorithm, with a separate tree traversal for the
wakeup phase of the barrier. Both the regular and fuzzy versions use per-
tree-node locks to ensure that updates to the structure of the tree arc

452 Scott and Mellor-Crummey Fast, Contention-Free Combining Tree Barriers

viewed consistently by all processes. Unfortunately, the scheme for main-
taining consistency requires that processes spin on non-local locations, and
can be expected to lead to contention.

Our contribution is to demonstrate that adaptivity and fuzziness can
be achieved without nonlocal spinning, and that the resulting algorithms
are of practical utility.

We review Gupta and Hill's adaptive combining tree barrier in
Section 2, providing fixes for several bugs in the fuzzy version of their algo-
rithm. We present new algorithms in Section 3, and examine their perfor-
mance in Section 4. Our algorithms avoid locking tree nodes by performing
their updates in an asynchronous, wait-free fashion. They also spin on
locally-accessible locations. In our performance experiments, we consider
the new algorithms, Gupta and Hill's algorithms, and the fastest pre-
viously-known centralized and logarithmic barriers, using two of BBN's
NUMA machines (the Butterfly 1 and the TC2000), and Kendall Square's
cache-coherent KSR 1. [NUMA = Non-Uniform Memory Access. NUMA
machines have shared memory-a single physical address space-but the
memory is distributed among the nodes of the machine, and is not
coherently cached.] Our results indicate that fuzziness is valuable on all
three machines, and that adaptation pays off on the KSR 1, where the cost
of a remote operation is comparatively high. There are scenarios in which
the new algorithms outperform all known alternatives on the TC2000 and
the KSR 1, and architectural trends suggest that their relative performance
will increase on future machines. Section 5 reviews these conclusions and
provides recommendations for practitioners and architects.

2. PREVIOUS ALGORITHMS

Gupta and Hill's adaptive combining tree barrier ilppeilrs in Fig. 2.
The algorithm employs two instances of the barrier data structure for use
in alternating barrier episodes. An initialization routine (not shown) estab-
lishes each data structure as a binary tree of nodes, with one leaf for every
process. The r e i n i t ial i ze routine (called but not shown) restores the
l e f t , r i g h t , p a r e n t , v i s i t e d , and n o t i f y fields of a node to
their original values.

To take part in a barrier episode, a process starts at its leaf and
proceeds upward, stopping at the first node (w) that has not been visited
by any other process. [A program that wishes to change the set of pro-
cesses that are to take part in a given barrier episode must modify the
barrier's data structures accordingly. The complexity of these modifications
is a weakness shared by all of the logarithmic time barriers.] It then
modifies the tree (see Fig. 1) so that w's other child (0, the child through

Fig. 1. Naming of nodes
in the adaptive combining
tree barrier.

which the process did not climb) is one level closer to the root. Specifically,
the process changes 0's parent to be p (the parent of w) and makes o a
child of p. A process that reaches p through w's sibling will promote o
another level, and a later-arriving process, climbing through o, will traverse
fewer levels of the tree than it would have otherwise.

A process that finds that its leaf has a nil parent knows that it is the
last arrival, and can commence a wave of waveups. It sets the n o t i f y flag
in the root of the tree. The process waiting at the root then sets the
n o t i f y flags in the root's children, and so on. Each process on its way out
of the tree reinitializes its leaf and the node at which it waited. Two instan-
ces of the barrier data structure are required to ensure that no process
can get to the next barrier episode and see nodes that have not yet been
reinitialized in the wake of the previous episode.

The key to the correctness of Gupta and Hill's algorithm is its syn-
chrony: no two processes ever see changes to the tree in an inconsistent
order. In the initial loop, for example, one might think that a process that
finds that w has already been visited could simply proceed to w's parent.
Allowing it to do so, however, would mean that a process might discover
that the barrier has been achieved while some of its peers are still adapting
nodes farther down in the tree. These adaptations could then interfere with
node reinitializations during wakeup. In a similar vein, the lock on o in the
second ("adapt t r e e ") loop ensures that 0's pointer to p and p's pointer
to o are changed mutually and atomically. Both loops release any node
(w or o) that is found to have been visited already, in the knowledge that
some other process will replace the pointer to it with a pointer to some
unvisited node. There is no guarantee how quickly the replacement will
occur, however, so there is no bound on the number of times that either
loop may execute.

To construct a fuzzy version of their adaptive combining tree
barrier, Gupta and Hill observed that a simple separation of the arrival
and wakeup phases does not suffice to minimize unnecessary waiting:
processes may not call e x i t - b a r r i e r in the same order they called
en t e r -bar r i e r. Processes that acquired nodes near the fringe of the tree

Scott and Mellor-Crummey

type node = record
lock : volatile syncvar := free

/ / Volatile fields are changed only by a process that holds the lock,
/ / and are always changed consistently.

visited : volatile (no, left, right) := no
/ / Has this node been visited, and if so, from which child?

root, binleft, binright, bin-parent : "node : = / / tree
left, right, parent : volatile "node := bin-left, bin-right, binsarent
notify : volatile Boolean := false

/ / Notify will eventually become true once the barrier is achieved.

type instance = record
my-leaf : 'node := / / as appropriate, in tree

private instances : array [0..11 of instance
private current-instance : "instance := &instances[O]

procedure barrier 0
n : "node := currentinstance".myleaf
1 oop

w : "node := na.parent
if w = nil / / We are the last arrival

n".roote.notify := true
reinitialize (n)
goto rtn;

acquire (wA.lock)
if wA.visited = no

exit loop
release (wA.lock)
/ / continue; n's parent pointer will eventually change,
/ / and we'll get a new w.

reinitialize (n)
if we.left = n

wS.visited := left
else

wA.visited := right
release (wA.lock)

/ / adapt tree:
loop

if wA.visited = left
o : "node := wh.right

else
o : "node := we.left

acquire (oA.lock)
if oA.visited = no

exit loop
release to".lock)
/ / continue; w's right or left pointer will eventually change,
/ / and we'll get a new o.

p : "node := wA.parent
if p <> nil

if pe.left = w
ph.left := o

else
p".right : = o

/ / ThI 6 P t i r t t l Q o I 0 1," , l o f t i t 1 L > " . 1 I Q l t l I I l A y a I I n W . 4 l ~ u L l > e l ~ t l 0 1 ' 0 B 6

/ / to break out of the second loop above.
oA.parent := p

/ / This may allow another process to break out of the first loop above.
release (o'.lock)

Fast, Contention-Free Combining Tree Barriers

/ / wait for barrier to be achieved:
repeat until we.notify / / spin

/ / Root".notify is set at line 5 of this procedure;
/ / other nodes".notify are set by code below.

/ / notify descendants:
w".bin_leftA.notify := true / / unnecessary but harmless if
w".binright'.notify := true / / children are leaves
reinitialize (w)

rtn:
if currentinstance = &instances[lI

current-instance := &instances[O]
else

currentinstance := &instances[lI

Fig. 2. Gupta and Hill's adaptive combining tree barrier.

in enter-barr ier, but which call exi t-barrier early might have to
wait (needlessly) for processes that acquired nodes near the root of the tree
in enter-barr ier, but which call exi t-barri er relatively late. The
solution to this problem is to employ a separate tree traversal in the
wakeup phase of the algorithm, so that processes that call exit-barrier
early busy-wait on nodes that are close to the root.

Code for a modified version of Gupta and Hill's fuzzy adaptive com-
bining tree barrier appears in Fig. 3. We have broken out the recursive part
of the wakeup phase as a separate routine to make the use of alternating
trees explicit. We have also introduced changes to address some subtle
bugs in the original version that are not obvious on paper, but which
emerged in the course of experimentation:

(1) set n's occupied flag in the first if statement of rec-exit,
even if n's not i fy flag is already set. This prevents a process
from entering a node and setting the notify flags of children

type node = record
lock : volatile syncvar := free

/ / Volatile fields are changed only by a process that holds the lock,
/ / and are always changed consistently.

visited : volatile (no, left, right) := no
/ / Has this node been visited in enterbarrier,
/ / and if so, from which child?

last-visitor : volatile pid := none
/ / Last process to visit this node in rec-exit.
/ / Modified only by a process that holds locks both on this node
/ / and on the child through which it reached this node.

root, binleft, binright, bin~arent : "node := / / tree
left, right, parent : volatile "node := bin-left, bin-right, binjarent
leftnotify, rightnotify : volatile Boolean := false, false

/ / a t l i l o t l L o ~ $ 1 o v o t t t . m i i 1 L l [i l a not 1 f t a u
notify, occupied : volatile Boolean := false, false

/ / Notify will eventually become true once the barrier is achieved.
/ / Occupied is true iff some process has ended its search at this nod
/ / in rec-exit, and will not continue until the notified bit is set.

Scott and Mellor-Crummey

type instance = record
my-leaf : "node := / / as appropriate, in tree

private instances : array [0..11 of instance
private currentinstance : 'instance := &instances[O]

procedure enterbarrier 0
n : "node := current_instanceA.myleaf
loop

w : "node := n*.parent
if w = nil / / We are the last arrival.

nA.root".notify : = true
return

acquire (w".lock)
if wA.visited = no

exit loop
release (w'.lock)
/ / Continue; n's parent pointer will eventually change,
/ / and we'll get a new w.

if w'.left = n
we.visited := left

else
wA.visited := right

release (we. lock)

/ / adapt tree:
loop

if wA.visited = left
o : "node : = we.right

else
o : "node := wA.left

acquire (o".lock)
if oA.visited = no

exit loop
release (oA.lock)
/ / Continue; w's right or left pointer will eventually change,
/ / and we'll get a new o.

p : "node := wA.parent

if p <> nil
if pA.left = w

pA.left : = o
else

pe.right : = o
/ / This change to pn.left or pe.right may allow another process
/ / to break out of the second loop above.

oa.parent := p
/ / This may allow another process to break out of the first loop above.

release (oA.lock1

procedure rec-exit In : 'node)
/ / nA.lock is held, and n'.lastvisitor = rny-pid

if ne.notify
n".occupied := true I / missing in original
release In". lock)

else
p : "node : = nA.bin_parent
if p = nil / / n is the root

nm.occupied := true
release (nA.lock1
repeat until nA.notify / / spin

/ / root".notify is set at line 5 of enter-barrier;
/ / other nodesA.notify are set by code below.

Fast, Contention-Free Combining Tree Barriers

else
acquire (pe.lock1
if not pa.occupied

p".last_visitor := myjid
release (n'.lock) / / before previous line in original
rec-exit (pl / / recursive call

else
release (pa.lock1
n".occupied := true
release (ne.lock)
repeat until nA.notify / / spin

/ / rootA.notify is set at line 5 of enter-barrier;
/ / other nodesA.notify are set by code below.

/ / At this point we know the barrier has been achieved.
/ / Each process is responsible for notifying any not-yet-notified children
/ / of nodes along the path between its leaf and the node it occupied.
/ / Each process also is responsible for re-initializing each node that it
/ / was the last to visit on that path.
if not leaf (n)

/ / signal children ONCE AND ONLY ONCE:
acquire (n*.bin_left".lockl
if n".lastvisitor = myjid and n".left_notiÂ£ = false

nA.leftnotify := true
n'.binleft'.notify := true

release (n".binleft".lockl
acquire (nA.bin_right".lock1
if n'.lastvisitor = myjid and ne.right-notify = false

nA.right_notify := true
n'-.bin_righta.notify := true

release [n".binright".lock)
/ I The left_notiÂ£ and right-notify flags prevent multiple notifies
/ / of the same child, which could otherwise lead to an infinite wait.

/ / At this point if nA.last_visitor = myjid it will stay so,
/ / because the children have been notified while their locks were held
/ / by the most recent process to climb through n.
if n".lastvisitor = myoid

reinitialize (nl
else

repeat while n".notify / / spin
/ / Wait until reinitialized; that way we don't return into a child
/ / and reinitialize it before its notify flag gets set.
/ / This line was originally before the sets of child notify flags.

procedure exit-barrier 0
n : "node : = currentinstance".my_leaf
acquire (n".lock)
nA.last_visitor := mysid
rec-exit (n)
if currentinstance = &instances[11

current-instance := &instances[0]
else

currentinstance := &instances[ll

Fig. 3. Gupta and Hill's fuzzy adaptive combining tree barrier (modified).

Scott and Meilor-Crummey Fast, Contention-Free Combining Tree Barriers 459

when some other process has already returned from that node
and reinitialized one of the children.

set p's l a s t - v i s i t o r field in the third if statement of
rec -ex i t , prior to releasing the lock on n and moving (recur-
sively) up the tree. This ensures that when a process makes
a recursive call up into a parent node, no other process will
reinitialize that node out from under it (the other process must
first acquire the locks on the children).

introduce lef t-notify and right-notify flags to ensure
that no node is notified more than once. Without these flags it is
possible for a process to climb into a node, notice that it has
been notified, reinitialize it, and return, while another process
higher in the tree is about to notify it again. If the second process
then returns into the re-notified node, it will enter an infinite
wait, expecting some other process to clear the notify flag.

wait for n to be reinitialized by a more recently-arriving process
only after l a s t - v i s it o r has stabilized. After the series of
nested e l s e s in r e c - e x i t we know that the barrier has been
achieved. After the if n o t leaf clause near the end of
r e c - e x i t we know that no other process will climb through
node n in the future. If no other process has climbed through
after us, then we can safely reinitialize n. Otherwise, we wait for
the last process that got through to reinitialize it. It is safe to
execute the last i f statement after n has been reinitialized:
n * . l a s t - v i s i t o r will be unequal to anybody's pid, and
n ' . n o t i f y will be false.
In the original version of the algorithm, the wait for reinitializa-
tion appeared in a separate i f n". l a s t - v i s i t o r () pid
clause immediately after the nest elses-before the setting of
child n o t i f y flags. The wait could inadvertently be skipped if a
later-arriving process had not yet set n " . l a s t - v i s i t o r ; we
could therefore return into a child and reinitialize it before the
late-arriving process set the child's n o t i f y flag.

3. NEW ALGORITHMS

It is well known that contention for memory locations and processor-
memory interconnect bandwidth seriously degrades the performance of
traditional busy-wait synchronization algorithms. Previous work has
shown how to eliminate this contention for mutual exclusion locks, reader-
writer locks, and bi~rriers.""' ' " The key is for every process to spin on

separate locally-accessible flag variables, and for some other process to ter-
minate the spin with a single remote write operation at an appropriate
time. Flag variables may be locally-accessible as a result of coherent
caching, or by virtue of allocation in the local portion of physically dis-
tributed shared memory. Our experience indicates that the elimination of
remote spinning can yield dramatic performance improvements.

We present our barriers in pseudo-code below; complete C versions
for the Butterfly 1, TC2000, and KSR 1 can be obtained via anonymous ftp
from cs.rochester.edu (directory pub/scalable-synchladaptive).

3.1. A Local-Spinning Adapt ive Combining Tree Barrier

To eliminate remote spinning in the (non-fuzzy) adaptive combining
tree barrier of Fig. 2, we must address three sources of spinning on remote
locations:

(1) While waiting for the barrier to be achieved, processes spin on a
flag in a dynamically-chosen tree node. (This is a problem on
NUMA machines, though not on machines with coherent
caches.)

(2) In order to ensure consistent modifications to the tree, processes
acquire and release test-and-set locks in every node they
visit.

(3) In both the original search for a parent node at which to wait,
and in the subsequent search for a sibling node whose parent
should be changed, processes spin until they succeed in locking
the node they are looking for and find it to be unvisited.

For NUMA machines, we eliminate the first type of remote spinning by
using a statically-allocated per-process flag, and storing a pointer to this
flag in the dynamically-chosen tree node. [On the KSR 1, we spin on flags
in the tree nodes themselves, and rely on coherent caching to bring the flag
into local memory.] We eliminate the second and third types of remote
spinning by using fetch-and-store instructions to modify the tree in
an asynchronous, wait-free fashion.(I4) [Fe tch-and-s tore (L , V)
returns the value in location L and replaces it with V, as a single atomic
operation.] Contention-free spin locks(5' would eliminate the second kind
of remote spin, but not the third. With the third kind of spin, the number
of remote references per processor in a barrier episode has no fixed bound.
The wait-free solution leads to a fixed upper bound on the number of
remote references as well as achieving higher concurrency and lower per-
noilc overhead than the locking alternative.

Scott and Mellor-Crummey

shared pseudodata : Boolean

type node = record
/ / Volatile fields may change spontaneously; there are no locks.
visitor : volatile "Boolean := &pseudodata

/ / first process to visit this node; may be temporarily inconsistent,
/ / but will stabilize before being dereferenced

bin-left, bin-right, binjarent : "node := / / tree
left, right, parent : volatile "node := binleft, bin-right, binparent
depth, inorder : integer := I 1 as appropriate, in unmodified tree;

/ / inorder allows us to determine left and right descendancy.

type instance = record
f : Boolean := false
root, my-leaf, rny-internalnode : "node := / / as appropriate, in tree

/ / myinternalnode is used only for reinitialization.

private instances : array [0..21 of instance
/ / separate copy for each process, but allocated
/ / in memory accessible to other processes

private currentinstance : 'instance := &instances101
private previousinstance : "instance := &instances[2]

procedure barrier 0
/ / find place to wait:
n : "node := currentinstance".myleaf
loop

w : "node := ne.parent
if w = nil

/ / signal achievement of barrier:
current_instance".root".visitor" := true

/ / may unblock a process at the spin below
goto rtn

x : "node := fetch-and-store (&w".visitor, ¤tinstance".f)
if x = &pseudodata

exit loop
we.visitor := x / / already visited; put it back
n := w / / continue up the tree

/ / adapt tree:
if nA.inorder < wA.inorder

o : "node := wA.right
else

o : "node := wA.left
p : "node := wA.parent
if p = nil

o" .parent := nil
else

/ / update down pointer:
if w'.inorder < pe.inorder

pa.left := o
else

pA.right := o
/ / update up pointer:
loop

t : "node := fetch-and-store (&oa.parent, p)
if t <> nil and then te.depth > p".depth

exit loop / / swap was a good thing
/ / else some other process linked o even higher in the tree;
/ / continue loop to undo our poorer update
p : = t

Fast, Contention-Free Combining Tree Barriers

/ / await notification and pass on the news:
repeat until currentinstanceA.f / / spin

I / set at the root by line 7 of this procedure;
I / set at other nodes by the code below

w".bin_left".visitorA :Â¥ true
w".bin_right".visitor" := true

rtn:
reinitialize (previous-instance)
previous-instance := current-instance
if current-instance = &instances[21

current-instance := &instances[Ol
else

current-instance := current-instance + 1

Fig. 4. An adaptive combining tree barrier with local-only spinning,

Code for a (nonfuzzy) adaptive combining tree barrier with local-only
spinning appears in Fig. 4. In general form, it mirrors Fig. 2. The code to
eliminate remote spinning while waiting for notification is more or less
straightforward. Rather than set a visited flag, a process uses
f etch-and-store to set a visitor pointer. The atomicity of the
operation enables it to determine if another process has already acquired
the node, in which case it puts that process's pointer back.

By using a more powerful compare-and-swap ins t r~ct ion~ '~ ' we
could eliminate the need to re-write pointers that are erroneously over-
written. [Compare-and-swap (L , 0 , N) compares the value in location
L to 0 and, if they are equal, replaces 0 with N, as a single atomic opera-
tion. It returns true if it performed the swap, and false otherwise.]
A similar optimization is also possible on the KSR 1; see Section 4. We
have presented the algorithms with fetch-and-store because it is
available on a wide variety of machines, including the Butterfly 1 and the
TC2000. There is no correctness problem induced by re-writing pointers,
since the values of visitor fields are not used (except to compare them
to &pseudodata) until after the barrier is achieved, and all mistakenly
overwritten values are restored before that time.

The code required to eliminate per-node locks and to avoid the spins
while looking for unvisited parent and sibling nodes is more subtle. With
simple f etch-and-@ instructions we cannot change child and parent
pointers in a consistent fashion in one atomic step. We have therefore
resorted to an asynchronous approach in which processes may see changes
to the tree in different orders. In particular, if a process finds that the
parent p of w has already been visited, we allow it to proceed immediately
to w's grandparent, even though some other process must of necessity be
about to change the pointer form w to p. With sufficient skew in the arrival
times of processes, changes to the tree occur in the same order as they do

Highlight

Sticky Note
This code should read:
 if t <> nil and then (p = nil or else t^.depth > p^.depth)

Thanks to Alexander Malkis for identifying this error and suggesting the fix.

462 Scott and Mellor-Crummey

in Fig. 2. When processes arrive at about the same time, however, the
''winner" may follow more than one parent pointer to reach, and visit, the
root.

When splicing a sibling o into its grandparent p (see Fig. l) , we
change p's child field first, before changing 0's parent field. In between,
there is a timing window when a process climbing up through w's sibling
may find o and attempt to splice it into its great-grandparent. Because
the updates to 0's parent field are unsynchronized, we must take care
to recover in the event that they occur in the incorrect order.
[Compare-and-swap does not help in this case; one can read the pointer
to determine whether it is desirable to overwrite it, but even an
immediately subsequent compare-and-swap may fail because some
other process has overwritten the pointer in the interim.] Depth fields in
each node enable us to discover whether the new value of a parent field
is an improvement on the old, and to restore the old value if necessary.
I t is possible for ;I process to climb up through a node when its parent
pointer has just been overwritten with an out-of-date value, and before the
better value is restored, but no correctness problems result: the process
simply follows more pointers than it would have if it had missed the timing
window. (The situation is analogous to what occurs in a concurrent f i I i n k
tree, when a newly inserted node becomes available via a pointer from its
left sibling, but not yet from its parent.(''

A t first glance, i t would appear that a potentially unbounded number
of remote references might be performed while executing the loop to update
0's parent field. This would violate our claim of performing only a bounded
number of remote references per barrier episode. Fortunately, the number
of loop iterations is bounded by depth(o) - I, since each iteration sees o's
parent link move at least one step closer to the root. Moreover, the worst
case is very unlikely; in practice one would expect to see a single iteration.

One might suspect that recovery might also be required when we
update pointers to children, but in fact these updates are serialized. If w is
initially the left child of p, then initially only the process that visits w (call
this process X) can change p's left child field. Moreover only process X can
cause any node to the left of p (other than w) to point to p as parent, so
no other process will acquire the ability to modify p's left child field until
after X has first made p point to o, and then made o point to p. In order
traversal numbers allow us to determine whether a given node is to the left
or the right of its parent without inspecting the parent's (possibly incon-
sistent) child pointers.

Because of the asynchrony with which processes climb the tree, a slow
process can still be modifying pointers when all of its peers have left the

Fast, Contention-Free Combining Tree Barriers 463

barrier and continued other work. We are therefore unable to reinitialize
nodes on the way out of the barrier, as did Gupta and Hill in Fig. 2.
Instead, we employ three sets of data structures. We reinitialize the one
that was used before the current barrier episode, and that will not be used
again until after the next episode. Each process takes responsibility for
reinitializing its own leaf and one (statically determined) internal node.

3.2. The Fuzzy Variant

To eliminate remote spinning from the fuzzy barrier code in Fig. 3. we
replace n o t i f y flags with pointers to local flags, eliminate t e s t-and-s e t
locks, and adapt the tree asynchronously, just as we did in the nonfuzzy
version. Code to enter the barrier and adapt the tree can be taken almost
verbatim from Fig. 4. In e x i t - b a r r i e r , however, we must find a way for
processes to climb to the highest unoccupied node without the double-lock-
ing of the original fuzzy algorithm. In Fig. 3, a process retains the lock on
a child node while locking and inspecting its parent. If the parent is unoc-
cupied, the process releases the child. If the parent is already occupied, the
process occupies the child. Our solution is again to adopt an asynchronous
approach, in which each process writes a pointer to its wakeup flag into
every node that appears to be unoccupied on the path from its leaf to the
root. [Because i t may end up occupying more than one node, a process
must store pointers to a local flag, even on the KSR 1; there is no one tree
node in which it could spin on a flag.]

Code for a fuzzy adaptive combining tree barrier with local-only spin-
ning appears in Fig. 5. With sufficient skew in arrival times, processes will
write pointers to their wakeup flags into distinct nodes of the tree. ending
at the same nodes at which they would have ended in Fig. 3. If processes
arrive at about the same time, however, more than one of them may write
a pointer to its wakeup flag into the same node. Since every process begins
by writing its pointer into a leaf, at least one of the pointers will never be
overwritten. As an optimization, each process is informed at wakeup time
of the node at which its pointer was found. It must perform wakeup opera-
tions along the path back down from this node, but can skip any higher-
level nodes at which its pointer was overwritten.

For the sake of space and time efficiency, we have written e x i t -
b a r r i e r as a nonrecursive routine. As in our nonfuzzy barrier, we employ
three sets of data structures to cope with the asynchrony of tree adapta-
tions and reinitialization. By reinitializing the data structures of the
previous barrier instance, we eliminate the need for the l a s t - v i s i t o r
fields, which account for much of the complexity of Fig. 3.

Scott and Mellor-Crummey

shared pseudodata : 'node

type node = record
/ / Volatile fields may change spontaneously; there are no locks.
visited, notified : volatile Boolean := false, false

/ / visited = true iff some process has visited this node in
/ / enterbarrier.
/ / notified will eventually become true once the barrier is achieved.

owner : volatile "node := / / address of appropriate f field for leaves,
/ / &pseudodata for internal nodes

/ / address of f field of a recent visitor in exitbarrier
/ / (not necessarily the *most* recent)

bin-left, binright, binparent : "node := / / tree
depth, inorder : integer := / / as appropriate, in unmodified tree;

/ / inorder allows us to determine left and right descendancy.
left, right, parent : volatile "node := bin-left, bin-right, binparent

type instance = record
f : "node := nil / / node at which we were awakened
root, myleaf, myinternalnode : "node := / / as appropriate, in tree

/ / my-internalnode is used only for reinitialization.

private instances : array [0..21 of instance
/ / separate copy for each process, but allocated
/ / in memory accessible to other processes

private currentinstance : "instance := &instances[Ol
private previousinstance : "instance := &instances[2]

procedure enterbarrier 0
n : "node : = current_instance".my-leaf
loop

w : "node := nA.parent
if w = nil

/ / signal achievement of barrier:
current.instance".root".notified := true
currentinstance".root".owner" : = currentinstance".root

/ / may unblock a process at the spin in exit-barrier
/ / LnfotmLng it t h n t w e woke It up nl Llie loo l

return,
if fetch-and-store (&n".visited, true) = false

exit loop
n : = w / / continue up the tree

/ / adapt tree:
if ne.inorder < w".inorder

o : "node := w*.right
else

o : "node := wA.left
p : "node := wA.parent
if p = nil

oA.parent := nil
else

/ / update down pointer:
if wm.inorder < peinorder

pe.left := o
else

pA.right : = o

Fast, Contention-Free Combining Tree Barriers

/ / update up pointer:
loop

t : "node := fetch-and-store (&o".parent, p)
if t <> nil and then te.depth > ph.depth

exit loop / / swap was a good thing
/ / else some other process linked o even higher in the tree;
/ / continue loop to undo our poorer update
p := t

procedure exit-barrier 0
n : "node := currentinstance".myleaf
if ne.notified

goto rtn

p : "node := na.binparent
loop

if p".owner = dpseudodata
pA.owner := ¤t_instance".Â
if pA.notified

exit loop
else if pA.bin_parent = nil

repeat
p := current_instance".f

until p <> nil / / spin
/ / set at root by line 7 of enterbarrier;
/ / set at other nodes by the code below

exit loop
else

p := ph.bin_parent
else if p".notified

exit loop
else

repeat
p : = current-instanceh.f

until p <> nil / / spin
/ / set at root by line 7 of enter-barrier;
/ / set at other nodes by the code below

exit loop

/ / work way back down to leaf, giving notifications:
while p <> current_instance".my_leaf~

if nA.inorder < ph.inorder
o := pA.bin-right
p := pA.bin-left

else
o := pe.bin_left
p := pe.bin_right

oA.notified := true
o.owner := o

/ / may unblock a process in the spin above,
/ / informing it that we woke it up at o

rtn:
reinitialize (previousinstance)
previous-instance := currentinstance
if currentinstance = &instances[2]

current-instance : = &instancest01
else

current-instance := current-instance + 1

Fig. 5. A fuzzy adaptive combining tree barrier with local-only spinning.

466 Scott and Mellor-Crummey Fast, Contention-Free Combining Tree Barriers 467

4. PERFORMANCE RESULTS

We have compared the performance of the various forms of combining
tree barrier with that of the centralized and logarithmic barriers found to
perform best in previous experiment^.*^' After describing our experimental
environment in Section 4.1, we consider latency for nonfuzzy barriers in
Section 4.2, focusing in particular on the impact of skew in arrival times.
We then consider the utility of fuzzy algorithms in Section 4.3, with an
emphasis on the cross-over points at which the saving in needless spinning
makes up for additional overhead.

4.1. Experimental Environment

Our timing tests employed three different machines: Rochester's BBN
Butterfly 1 multiprocessor, a more modern BBN TC2000 machine at
Argonne National Laboratory, and the Kendall Square KSR 1 at the
Cornell Theory Center.

The Butterfly 1 employs MC68000 processors clocked at 8 MHz, with
up to four megabytes of memory (one on our machine) located at each
processor. There are no caches, coherent or otherwise. Each processor can
access its own memory directly, and can access the memory of any node
through a log4-depth switching network. Transactions on the network are
packet-switched and nonblocking. If collisions occur at a switch node, one
transaction succeeds and all of the others are aborted, to be retried at a
later time (in firmware) by the processors that initiated them. In the
absence of contention, a remote memory reference (read) takes about 4 us,
roughly 5 times as long as a local reference.

The TC2000 is architecturally similar to the Butterfly 1, but employs
20 MHz MC88100 processors with (noncoherent) caches and a faster logg-
depth switching network based on virtual circuit connections rather than
packet switching. With caching disabled, a remote memory reference takes
about 1.9 us, slightly over 3 times as long as a local reference, and about
13 times as long as a cache hit. Experiments by Markatos and LeBlanc'"'
indicate that while the TC2000 has relatively good switch bandwidth and
latency, it is starved for shared memory bandwidth, and hence vulnerable
to contention. One would expect the centralized barriers to perform com-
paratively badly on the TC2000; our results confirm this expectation.

The KSR 1 is a cache-only machine constructed of custom 64-bit two-
way superscalar processors clocked at 20 MHz, and connected by a two-
level hierarchy of rings. Each lower-level ring houses 32 processing nodes
and an interface to the (single) upper-level ring. The memory at each pro-
cessing node is organized as a 32 = MB secondary cache, with a 512 = KB

"subcache." Access time ratios for the subcache, the local (secondary)
cache, a remote cache in the same ring, and a remote cache in a different
ring are approximately 1:9:88:300, making remote operations substantially
more expensive than on the Butterfly 1 or the TC2000. A hardware coherence
protocol maintains sequential consistency across the caches of all processors.

The Butterfly 1 supports a 16-bit atomic fetch-and-clear-then_
add operation in firmware. This operation takes three arguments: the
address of the destination operand, a mask, and a source operand. For the
locks in Figs. 2 and 3 we perform a test-and-set by specifying a mask
of OxFFFF and an addend of 1. For the central barriers we perform a
fetch-and-increment by specifying a mask of 0 and an addend of 1;
for the other barriers we perform a fetchÃ‘and-stor by specifing a
mask of OxFFFF and an addend of the value to be stored. In comparison
to ordinary loads and stores, atomic operations are relatively expensive on
the Butterfly 1; f etch-and-clear-then-add takes slightly longer than
a call to a null procedure.

The TC2000 supports the MC88100 XMEM(fetcLand-store)
instruction in hardware, at a cost comparable to that of an ordinary
memory reference. It provides additional atomic operations in software, but
these must be triggered in kernel mode: they make use of a special
hardware mechanism that locks down a path through the switch to
memory. They are available to user programs only via kernel calls, and as
on the Butterfly 1 are relatively expensive. For Gupta and Hill's algorithms
(Figs. 2 and 3), XMEM can be used directly to implement test-and-set.
The expense of the kernel-mediated fetch-and-increment contributes
to the poor performance of the centralized barriers.

The KSR 1 supports atomic operations only via the "locking" of lines
("subpages") in a subcache. The acquire-subpage operation brings a
copy of a specified line into the local subcache and sets a special state bit.
It fails (setting a condition code) if any other processor currently has the
state bit set. The release-subpage operation clears the bit and permits
it to be set in the next requesting processor in ring-traversal order. (There
is an alternative form of acquire-subpage that stalls until the bit can
be set, but Dunigan reports,(I9) and our experience confirms, that this
stalling version performs worse than polling in a loop for all but very small
numbers of processors.) By following a programming discipline in which
modifications to a given word are made only when its line has been
acquired, one can implement the equivalent of arbitrary f e t c Land-@
operations.

For Gupta and Hill's algorithms, acqui re-subpage and
release-subpage provide the equivalent of t es t-and-se t locks. For
the new algorithms (Figs. 4 and 5), we use these operations to bracket

468 Scott and Mellor-Crummey

code sequences that read a pointer, decide if it should be changed, and if
so change it, atomically, without the need to re-write mistakenly-swapped
locations. Similar code could be written (albeit with the possibility of some
remote spinning) for machines based on the MIPS R4000 or DEC Alpha
architectures, which provide l o a d - l i n k e d and s t o r e - c o n d i t i o n a l
instructions. [Load-l inked reads a memory location and saves some
status information in the local cache controller. S t o r e - c o n d i t i o n a l
writes the location read by a previous l o a d - l i n k e d , provided that no
other processor has performed an intervening write to the same location,
and that various possible interfering operations have not occurred on the
local processor.]

The barriers included in our timing tests are listed in Fig. 6, together
with an indication of their line types for subsequent graphs. We have used
solid lines for nonfuzzy algorithms, and dotted lines for fuzzy algorithms.
When one algorithm has fuzzy and nonfuzzy variants, they share the same
tick marks.

The dissemination barrier is due to Hensgen et As mentioned in
Section 1, it employs floga P I rounds of synchronization operations in a
pattern that resembles a parallel prefix computation: in round k, process i
signals process (i+2*) mod P. The total number of synchronization
operations (remove writes) is O(P1og P) (rather than 0 (P) as in other
logarithmic time barriers) but as many as log P of these operations can
proceed in parallel, when using non-overlapping portions of the intercon-
nection network.

Our previous experiments(5' found the dissemination barrier to be the
fastest alternative on the Butterfly 1. The static tree barrier was a close
runner-up. It has a slightly longer critical path, but less overall communica-
tion, and might be preferred when the impact of interconnect contention on
other applications is a serious concern. Each process in the static tree

central flag
fuzzy central flag
dissemination
static tree
original adaptive combining tree
fuzzy original adaptive combining tree
local-spinning non-adaptive combining tree
fuzzy local-spinning non-adaptive combining tree
local-spinning adaptive combining tree
fuzzy local-spinning adaptive combining tree
KSR pthread barrier

Fig. 6. Barrier algorithms tested.

Fait, Contention-Free Combining Tree Barriers 469

barrier is assigned a unique tree node, which is linked into a 4-ary arrival
tree by a parent link, and into a binary wakeup tree by a set of child links.
Upon arriving at the barrier, each process spins on a local word whose
four bytes are set, upon arrival, by the process's children. It then sets a byte
in its parent and spins on another local word awaiting notification from its
parent. The root process starts a downward wave of notifications when it
discovers that all of its children have arrived.

The centralflag barrier and its fuzzy variant employ a central counter
and wakeup flag. On the Butterfly 1 and the TC2000, they pause after an
unsuccessful poll of the flag for a period of time proportional to the
number of processes participating in the barrier. Our previous experiments
found this technique to be more effective at reducing contention (and
increasing performance) than either a constant pause or a linear or expo-
nential backoff strategy. On the KSR 1, processors can spin on copies of
the flag in their local cache, and backoff is not required.

All of the other barriers were introduced in Sections 2 and 3. The
original adaptive combining tree and fuzzy original adaptive combining tree
are from Figs. 2 and 3. The local-spinning adaptive combining tree and fuzzy
local-spinning adaptive combining tree are from Figs. 4 and 5. The locul-
spinning nonadaptive combining tree and fuzzy local-spinning nonadaptive
combining tree are from Figs. 4 and 5, but without the block of code that
begins with "adapt tree." As noted in Section 3.1, our code for the (non-
fuzzy) adaptive and nonadaptive local-spinning combining tree barriers on
the KSR 1 spins on flags in the tree nodes themselves, rather than using
pointers to statically-allocated local flags.

For comparison purposes, we have included the barrier synchroniza-
tion algorithm provided with KSR's p t h r e a d s library. In addition, all of
the tree-based barriers on the KSR 1 were modified to use a central flag for
the wakeup phase of the algorithm. Previous experiments'') on the cache-
coherent Sequent Symmetry found the combination of the arrival phase of
the static tree barrier with a central wakeup flag to be the best-performing
barrier on more than 16 processors. Experiments on the KSR 1 confirm
that all of the tree-based barriers run faster with a central wakeup flag (see
Fig. 8). The KSR 1 does not have broadcast in the same sense as bus-based
machines, but it can perform a global invalidation with a single transit of
each ring, and many of the subsequent reloads can occur in parallel.

For each of our timing tests we ran 1000 barrier episodes and
calculated the average time per episode. On the Butterfly 1 and the
TC2000, we placed each process on a different processing node and ran
with timeslicing disabled, to avoid interference from the scheduler. We
observed that timings were repeatable to three significant digits. On the
KSR 1, we were unable to disable the scheduler, but it usually arranged for

470 Scott and Mellor-Crummey Fast, Contention-Free Combining Tree Barriers

each process to run without interference on a separate processor. To
accommodate the occasional interruption, we averaged each experiment
over at least three separate program runs, throwing out any data points
that seemed unusually high with respect to other runs.

In many of the tests we introduced delays between barrier episodes, or
between enter-barrier and exi t-barrier calls in fuzzy tests. The
delays were implemented by iterating an appropriate number of times
around a loop whose execution time was calibrated at 10 us. In some cases
the number of iterations was the same in every process. In other cases we
introduced random fluctuations. A figure caption indicating a delay of,
say, I ms Â 400 us indicates that the number of iterations of the 10 ,us
delay loop was chosen uniformly in the closed interval 50.. 150. Random
numbers were calculated off-line prior to the tests. In order to obtain a
measure of synchronization cost alone, we subtracted delays and loop over-
head from the total measured time in each test. On the KSR 1, each tree
node was split among two cache lines, with all read-only fields in one line,
and all mutable fields in the other.

4.2. Basic Barrier Latency

Figure 7 plots the time required to achieve a barrier against the num-
ber of processes (and hence processors) participating in the barrier, with no
inter-episode or fuzzy delays. We can observe that the explicit locking and
nonlocal spinning of the original adaptive combining tree barriers (0)
impose a large amount of overhead. We can also see the impact of conten-
tion: the performance of the centralized barriers (0) degrades markedly on
all three machines as the number of processes increases. The curves for the
original adaptive combining tree barriers also lose their logarithmic shape
and assume a roughly linear upward trajectory around 20 processes on the
TC2000 and (less dramatically) around 30 processes on the Butterfly 1.
Contention in the centralized barriers on the TC2000 is severe enough,
even with exponential backoff, to make the curves appear highly erratic.
Timings are repeatable, however; the number of processes is simply not the
dominant factor in performance. More important is the interconnection
network topology and the assignment of processes and variables to par-
ticular processing nodes.

The dotted (fuzzy) and solid (regular) curves for the local-spinning
combining tree barriers (x and A) show that fuzziness is a small net loss;
the extra overhead is pointless in the absence of fuzzy computation,
particularly on the Butterly 1, with its expensive atomic operations. [In
Fig. 8, fuzziness is a net loss on the KSR 1 for the local-spinning adaptive
combining tree barrier without flag weakeup, but a small net win for its

Time

Per
barrier

(PSI

I
I I

0 50 100
Processors (tight loop)

Fig. 7. Basic barrier performance on the Butterfly 1 (top), TC2000 (middle), and
KSR 1 (bottom).

Scott and Melior-Crummey Fast, Contention-Free Combining Tree Barriers 473

Time
2000.

Per
barrier

7 I I
0 50 100

Processors (tight loop)

Fig. 8. Basic barrier performance on the KSR 1 , without a central flag for wakeup in
the tree-based algorithms.

nonadaptive cousin. The difference is clearly related to the number of
invalidations of tree nodes by f etch-and-s tore operations on
visitor fields, but we have been unable to track it down precisely.]

The fastest algorithms on the NUMA machines are the dissemination
barrier (a) and static tree barrier (m) . None of the combining tree barriers
come close in this "tight loop" case. The fastest algorithm on the KSR 1 is
the static tree with flag wakeup (m), followed by the barrier from KSR's
p t h r ead s libary (*) and the local-spinning adaptive (x) and nonadaptive
(A) combining tree barriers. The dissemination barrier does not perform
as well on the KSR 1 as it does on the BBN machines. It requires O(n log n)
remote operations (as opposed to 0 (n) for the tree-based barriers), and
fewer of these operations can take place in parallel with the KSR topology.

Comparing the bottom of Fig. 7 to the graph in Fig. 8 reveals that the
pseudo-broadcast capability of the KSR 1 makes flag wakeup a clear per-
formance win. At the same time, comparing the three graphs in Fig. 7
reveals that the NUMA machines are able to synchronize much faster than
the KSR 1. The fastest 64-node barrier on the Butterfly 1 takes 151 us; the
fastest 64-node barrier on the KSR 1 takes 587 ,us. These numbers are in
rough proportion to the maximum no-contention remote reference times
on the two machines (4 and 15,us, respectively). The KSR 1 is a decade
newer, but pays dearly for cache coherence.

Any real program, of course, will have some inter-episode delay; Fig. 7
represents the (unrealistic) limiting case. Graphs similar to Fig. 7, but with
significant inter-episode delays and skew, display much less contention in

the centralized and original adaptive combining tree barriers. They also
show the local-spinning adaptive combining tree barriers gaining a small
advantage over their nonadaptive counterparts on the NUMA machines.
(The adaptive versions are always better on the KSR 1.) On the KSR 1, the
local-spinning adaptive combining tree barrier (with flag wakeup) becomes
the best-performing algorithm, though again several others are close.

Figure 9 displays these effects by plotting time per barrier against the
maximum random fluctuation in inter-episode delay, with 64 processes on
the Butterfly 1, 35 processes on the TC2000, and 126 processes on the
KSR 1. Point (x, y) represents the time y per barrier episode, with an inter-
episode delay of 1 ms Â x p s. (Delays may differ by at most 2x.) In the dis-
semination barrier (a) , the static tree barrier (m), and the nonadaptive
combining tree barrier (A) , the time to achieve the barrier rises roughly
with the skew in arrival time. The slope is gentler for machines with a
longer remote memory access delay, since this delay serves to hide a por-
tion of the skew in arrival times: the reader of a value can be as much as
one remote delay behind the writer before it will notice the skew.

Line-crossings between the local-spinning adaptive (x) and nonadap-
tive (A) combining tree barriers suggest that adaptation serves to mitigate
the increase in synchronization time due to increased arrival skew, but
only to a very small extent, [The dissimination barrier also appears to be
able to cope with modest amounts of skew on the KSR 1; we're not sure
why.] Much more pronounced is the improvement in performance of the
centralized (0) barriers on the KSR I and the fuzzy original adaptive
combining tree (0) barrier on the TC2000, all of which were seen in Fig. 7
to suffer badly from contention. As the skew in inter-barrier times
increases, delays in some processes allow other processes to finish their
work and get out of the way.

4.3. Barrier Episodes with Fuzzy Delay

In Fig. 10, we have added a fuzzy delay of 500 us to each iteration of
the timing loop. We again plot time per barrier against the number of
participating processes (processors). The inter-episode delay remains at
1 ms Â 200 ps. Introducing a reasonable amount of randomness into the
fuzzy delays (up to 50%) had no noticeable effect on the timings.

In all cases the fuzzy versions of the centralized barrier (0) and the
local-spinning combining tree barriers (x and A) outperform the nonfuzzy
versions by significant amounts. On the Butterfly 1 the margin is large
enough to enable the fuzzy centralized barrier to outperform the dissemina-
tion (a) and static tree (8) barriers all the way out to 64 processes (though
it appears that the curves would cross again on a bigger machine). In the

Scott and Meltor-Crummey Fast, Contention-Free Combining Tree Barrier*

Time lm -1
Per

barrier

L
I I I 1

0 200 400 WO 800
Maximum episode delay fluctuation (US) (I ms average)

Fig. 9. Dependence of performance on skew in process arrival times on the Butterfly 1
(lop), TC2000 (middle), and KSR I (bottom).

-
1 I I

I

0 50 100
Processors (1B.2 ins episode delay; 500 ps fuzzy delay)

Fig. 10. Barrier performance with a large amount of fuzzy computation on the Butterfly I
(top), TC2000 (middle), and KSR 1 (bottom).

47 6 Scott and Mellor-Crummey Fast, Contention-Free Combining Tree Barriers

original adaptive combining tree barriers (O), the benefits of fuzziness can
outweigh the overhead of additional locking only on the newer two
machines, where the fuzzy delay is comparatively long when measured in
processor cycles, and atomic operations are not significantly more expen-
sive than ordinary loads and stores.

The overhead of the fuzzy algorithms can be seen directly in Fig. 11 by
comparing the performance of each fuzzy algorithm to that of its nonfuzzy
counterpart. The graph plots the time required for processes to achieve a
barrier against the length of the fuzzy delay (in addition to a 1 kO.5 ms
inter-episode delay), with 64 processes on the Butterfly 1, 35 processes on
the TC2000, and 126 processes on the KSR 1. For the centralized barrier.
separating e n t e r - b a r r i e r from e x i t - b a r r i e r introduces no over-
head beyond the additional subroutine call. The separation therefore pays
off with even very small fuzzy delays. For the adaptive (x) and nonadap-
tive (A) versions of the local-spinning combining tree barriers, the extra
walk up the tree incurs overhead that is recovered almost immediately on
the TC2000 and the KSR 1, and for fuzzy delays starting around 150ps
(15% of the inter-episode delay) on the Butterfly 1. For the original adap-
tive combining tree barrier (0)- we need almost 700ps before fuzziness
pays off on the Butterfly I, less than 20 ps on the TC2000, and almost none
on the KSR I . (Without flag wakeup, the break-even point is almost 600 ps
on the KSR I; these curves are not shown in the graph.) Both atomic
operations and rcmotc operations in gcncritl arc relativcly chc;~p on thc
TC2000. Atomic operations are expensive on the Butterfly 1; remote opera-
tions are expensive on the KSR 1.

On all three machines, the differences in performance between thc
:~d;~ptivc (x) ;ind 11011ild;lpti~~ (A) vcrsions of thc loci~l-spinning combin-
ing tree barriers are relatively small. The difference is most noticeable on
the KSR 1, where remote operations are much more expensive. Performing
extra work to reduce the number of remote operations on the barrier's
critical path is a good idea when those operations are slow. Since processor
technology is improving more rapidly than memory or interconnect
technology, it seems likely that adaption will become increasingly impor-
tant for future generations of machines.

O n the Butterfly 1, slow atomic operations and slow processors make
all of the combining tree algorithms uncompetitive: the static tree barrier,
the dissemination barrier, and the fuzzy centralized harrier with propor-
tional backoff work much better. On more modern machines, however,
fuzziness and adaptation pay off. On the TC2000, the fuzzy local-spinning
adaptive combining tree barrier outperforms all known alternatives when
the amount of fuzzy computation exceeds about I0 % of the average time
between barriers. On the KSR 1 , the arrival phase of the local-spinning

Time 1~ ... - -
0..

0 200 400 600
Fuzzy delay (ps) (lM.5 ms episode delay)

Fig. 1 I . Dependence of perfomance on amount of f u q computation on the Butterfly 1
(top), TC2000 (middle). and KSR I (bottom).

478 Scott and Mellor-Crummey Fast, Contention-Free Combining Tree Barriers 479

adaptive combining tree barrier, combined with a central wakeup flag,
outperforms all known alternatives with reasonable inter-barrier delays on
more than about 50 processors. Its fuzzy version outperforms the nonfuzzy
version when the amount of fuzzy computation exceeds about 5 O h of the
average time between barriers. On smaller numbers of processors, when
contention is not :IS serioi~s a concern, thc centr:tlizcd barriers (regular iind
fuzzy) provide the best performance.

5. CONCLUSIONS

On the basis of the current study, as well as previous work,(" we offer
the following recommendations:

Use a fuzzy barrier whenever the application can be structured
with a significant amount of fuzzy computation. As shown in
Fig. 11, the pay-off can be substantial.

On modest numbers of processors, regardless of architecture, use
the centralized barrier with proportional backoff (fuzzy or non-
fuzzy version, as appropriate). Exactly how many processors
constitute a modest^' number depends on the machine architec-
ture, the arrival time skew, and the amount of fiizzy computa-
tion. In our experiments the cross-over point varies from a low of
less than 10 to a high of over 40.

On a large cache coherent machine (with unlimited replication
and fast broadcast or multicast), combine a central wakeup flag
with the arrival phase of either the static tree bilrrier, the I ~ i l l -

spinning adaptive combining tree barrier, or preferably, if appro-
priate, the latter's fuzzy variant. (See the bottom [KSR] graphs
in Figs. 7 and 10; see also Fig. 8.)

On a large NUMA machine (or a cache-coherent machine that
does not support unlimited replication and fast broadcast or
multicast), use either the dissemination barrier, the static tree
barrier, or preferably, if appropriate, the fuzzy local-spinning
adaptive combining tree barrier. (See the middle [TC2000]
graphs in Figs. 7 and 10.)

These recommendations apply primarily to modern machines, in
which atomic f etch-and-@ operations are comparable in speed to loads
and stores, but in which all remote operations take scores of cycles. On the
older Butterfly 1, the dissemination and static tree barriers achieve a sub-
stantial advantage over the competition by relying only on ordinary (fast)
reads and writes. The only algorithm that ever outperforms them is the

fuzzy centralized barrier (with proportional backoff), and only for applica-
tions with a significant amount of fuzzy computation, and with process
arrival times that are skewed enough by load imbalance to keep contention
under control (see Fig. 10).

On the somewhat more modern TC2000, atomic operations are nearly
arc fast as 10:ids and stores, but remote operations arc still only three timcs
as expensive as an access to local memory (the hardware does not cache
shared memory coherently), The centralized barriers suffer more from
memory contention than they did on the Butterfly 1, and the fuzzy versions
of the local-spinning combining tree barriers are fast enough to outperform
the competition by a substantial margin in applications with fuzzy com-
putation (see Figs. 10 and 11). Adaptation is not major win, however, and
the dissemination and static tree barriers still perform best for non-fuzzy
computations.

On the most recent of the machines, the cache-coherent KSR 1,
remote operations are some 300 times as expensive as a cache hit, and
shared memory can be cached. The centralized barriers suffer less from
contention than they did on the TC2000, but still enough to cause serious
problems when the load is well balanced across a large number of pro-
cessors (see Fig. 9). The best all-around strategy would appear to combine
a log-time arrival phase with a central waketip flag. For applications with
a significant amount of fuzzy computation, the arrival phase should be
taken from the fuzzy local-spinning adaptive combining tree barrier (see
Fig. 10). For other applications, it should be taken from the static tree
barrier or the (nonfuzzy) local-spinning adaptive combining tree barrier
(see Fig. 7).

I t is not yct clci~r whcthcr cachc cohcrcncc should bc providcd i n
hardware. Our experiments suggests that i t is not required for high-perfor-
mance synchronization. In hct, the Buttcrfly I , while ten years older than
t11c K S R I , is i l b l~ to ~icllicvc :I 64-node bi~rricr i n onc fourth thc absolutc
time! In a11 cases, the key to scalable synchronization is to avoid situations
that require inter-processor coherence tra6c. The principal advantage of
cache coherence, for synchronization purposes, is that it enables a process
to spin locally on a variable that was not statically allocated in local main
memory. One can achieve essentially the same effect on hardware without
coherent caches by using f e t c h - a n d - s t o r e or compare-and-swap to
replace a flag in an arbitrary location with a pointer to a flag in a location,
on which a process can then spin locally. This technique is a key part of
the algorithms in Figs. 4 and 5, and should permit variants of most syn-
chronization algorithms to run on NUMA machines.

Since even the fastest software barriers require time logarithmic in
the number of participating processes, a morc promising possibility for

480 S c o t t and Mellor-Crummey Fast, Content ion-Free Combining Tree Barriers 48 1

l~;~rdwi~rc sitpport is 10 i tnplct~~ct~t barricrs directly, as it1 lllc 'I'hitlking
Machines CM-5 or the Cray T3D. Hardware implementations can exploit
large fan-in logic to dramatically reduce this logarithmic factor, effectively
producing a constant-time barrier for machines of realistic size. It may be
dificult, however, for hardware to match the flexibility of software barriers
in such dimensions as variable numbers of participants, or concurrent,
independent execution in separate machine partitions. Further experiments
are needed to determine whether the performance gains outweigh these
potential disadvantages.

Our work has demonstrated that log-length critical paths, adaptation,
fuzziness, and local-only spinning are desirable and mutually compatible,
and that their combination is competitive with the best known alternative
techniques for busy-wait barrier synchronization. Since improvements in
processor performance are likely to outstrip improvcmcnts in mcmory and
interconnect performance for the foreseeable future, and since hardware
designers now routinely implement fast atomic instructions, the local-
spinning adaptive combining tree barriers, both regular and fuzzy, are of
serious practical use.

ACKNOWLEDGMENTS

Our thanks to Tom LeBlanc, Evangelos Markatos, Ricardo Bianchini,
and Bob Wisniewski for their comments on this paper, and to Mark
Crovella for this help in learning to use the KSR 1. Our thanks also to
editor Gary Lindstrom and to the anonymous referees-referee Bl in par-
ticular. For the use of the TC2000. we thank the Advanced Computing
Research Facility, Mathematics and Computer Science Division, Argonnc
National Laboratory. For the use of the KSR 1, we thank the Cornell
Theory Center and its staff, especially Lynn Baird, Donna Bergmark, and
Marty Faltesek.

REFERENCES

R. Gupta and C. R. Hill, A Scalable Implementation of Barrier Synchronization Using an
Adaptive Combining Tree, I JPP 18(3):161-I80 (June 1989).
R. Gupta, The Fuzzy Barrier: A Mechanism for High Speed Synchronization of Pro-
cessors, Proc. of the Third In!. Conb on Archit. Support for Progr. Lang. and Oper. Svst.,
pp. 54-63 (April 1989).
D. Hensgen, R. Finkel, and U. Manber, Two Algorithms for Barrier Synchronization,
IJPP 17(l):l-I7 (1988).
B. Lubachevsky, Synchronization Bamer and Related Tools for Shared Memory Parallel
Programming, Proc. of the In!. Con$ on Parallel Processing 11, pp. 175-179 (August 1989).
J. M. Mellor-Crummey and M. L. Scott, Algorithms for Scalable Synchronization on

Shitrcd-Mcmory Mulliproccssors, ACM 7'run.r. on Computc,r Sy.vtcm.$ 9(I):2l-65 (February
1991).

6. P.-C. Yew, N.-F. Tzeng, and D. H. Lawrie, Distributing Hot-Spot Addressing in Large-
Scale Multiprocessors, I E E E Trans. on Computers C-36(4):388-395 (April 1987).

7. E. D. Brooks Ill. The Butterfly Barrier, IJPP 15(4):295-307 (1986).
8. T. E. Anderson, The Performance of Spin Lock Alternatives for Shared-Memory Multi-

processors, I E E E Trans. on Parallel and Distributed Systems 1: l:6-I6 (January 1990).
9. G. Graunke and S. Thakkar, "Synchronization Algorithms for Shared-Memory Multi-

processors, computer 23(6):60-69 (June 1990).
10. W. C. Hsieh and W. E. Weihl, Scalable Reader-Writer Locks for Parallel Systems,

MIT/LCS/TR-521, Laboratory for Computer Science, MIT (November 1991).
I I . A. C, Lee, Barrier Synchronization over Multistage Interconnection Networks, Pro<*. 111'

the Second I E E E Symp. on Parallel and Distributed Processing, pp. 130-1 33 (December
1990).

12. J. M. Mellor-Crummey and M. L. Scott, Synchronization Without Contention, Proc. of
the Fourth In!. Conf OII Archit. Support for Progr. h n g . and Oper. Sy.~t., pp. 269-278
(April I991).

13. J. M. Mellor-Crummey and M. L. Scott, Scalable Reader-Writer Synchronization for
Shared-Memory Multiprocessors, Proc. of the Third A C M Syn~p. on Principles and
Practice of Paro l l~~ l Programnting, pp. 106-1 13 (April 1991).

14. M. Herlihy, Wait-Free Synchronization, A C M Transactions on Programming Language.$
and Systems l3(1):I24149 (January 1991).

15. T. Johnson and D. Shasha, A Framework for the Performance Analysis of Concurrent
B-tree Algorithms, Proc. of the Ninth A C M SIGACT-SIGMOD-SIGART Synlp. on Prin-
ciple,~ of Dotabose Systent.~, pp. 273-287 (April 19%).

16. P, L. Lehman and S. B. Yao, Eficient Locking for Concurrent Operations on B-Trees,
A C M Trans. on Database Systems 6(4):650470 (December 1981).

17. Y. Sagiv, Concurrent Operations on B*-Trees with Overtaking, J . qf Camp. (tnd S~s.vt. Sci.
33(2):275-296 (October 1986).

18. E. P. Markatos and T. J. LeBlanc, Shared-Memory Multiprocessor Trends and the
Implications for Parallel Program Performance, TR 420, Computer Science Department,
University of Rochcstcr (Mi~y 1992).

19. T, H. Dunigan, Kendall Square Multiprocessor: Early Experiences and Performance,
ORNLFM-12065. Oak Ridge National Laboratory (May 1992).

Printed in &lgiunt
Vrrmtwmrdelijke uitgetvr:

Hu&r~ Van Maele
Attenawaat 20 - 8-8jtO St:Kruis

