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In a previous article,"' Gupta and Hill introduced an ucluptiw fmnbittit~g tree 
algorithm for busy-wait barrier synchronization on shared-memory multipro- 
cessors. The intent of the algorithm was to achieve a barrier in logarithmic time 
when processes arrive simultaneously, and in constant time after the last arrival 
when arrival times are skewed. A fuzzy'" version of the algorithm allows a 
process to perform useful work between the point at which it notifies other pro- 
cesses of its arrival and the point at which it waits for all other processes to 
arrive. Unfortunately, adaptive combining tree barriers as originally devised 
perform a large amount of work at each node of the tree, including the acquisi- 
tion and release of locks. They also perform an unbounded number of accesses 
to nonlocal locations, inducing large amounts of memory and interconnect 
contention. We present new adaptive combining tree barriers that eliminate 
these problems. We compare the performance of the new algorithms to that of 
other fast barriers on a 64-node BBN Butterfly 1 multiprocessor, a 35-node 
BBN TC2000. and a 126-node KSR 1. The results reveal scenarios in which our 
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algorithms outperform all known iiltcrni~tivcs, iinil suggest thiit both iiil;iptiition 
iind the conihini~tion of fuzziness with tree-style sy~iclirotiiziitioii will be of 
increasing importance on future generations of shared-memory multiprocessors. 

KEY WORDS: Synchronization; scalability; fuzzy barriers; adaptive com- 
bining trees. 

1. INTRODUCTION 

A barrier is a synchronization mechanism that ensures that no process 
advances beyond a particular point in a computation until all processes 
have arrived at that point. Barriers are widely used to delimit algorithmic 
phases; they might guarantee, for example, that all processes have finished 
updating the values in a shared matrix in step t before any processes use 
the values as input in step t + 1. If phases are brief (as they are in many 
applications), barrier overhead may be a major contributor to execution 
time; fast barrier implementations are thus of great importance. This paper 
focuses on busy-wait (spinning) barrier implementations for shared- 
memory multiprocessors. 

In the simplest barrier algorithms, each process increments a shared, 
centralized counter as it reaches a barrier, and spins until that counter (or 
a flag set by the last arriving process) indicates that all processes are 
present. Such centralized algorithms suffer from several limitations: 

Linear asymptotic latency. On a machine without hardware combin- 
ing of atomic instructions, achieving a barrier requires time linear in 
the number of processes, P. Specifically, it requires a sequence of 0 ( P )  
updates to the central counter followed (in the absence of broadcast or 
fast multicast) by 0 ( P )  reads. 
Contention. Because processes access a central location, traditional 
centralized barriers can generate contention for memory and for the 
processor-memory interconnection network. Such contention degrades 
the performance of any process that initiates references involving the 
network or a saturated memory bank. 
Unnecessary waiting. Processes that arrive at a barrier early (to 
announce to their peers that they have completed some critical com- 
putation) must wait for their peers to arrive as well, even if they have 
other work they could be doing that does not depend on the arrival 
of those peers. 

To improve asymptotic latency, several barriers have been developed 
that run in time 0(log P). Most use some form of tree to gather and scatter 
information" "; the butterfly and dissemination barriers of Brooks"' and 

of Hensgen PI ~ 1 . ~ ~  use ii symmetric pattern of synchronization operations 
that resembles an FFT or parallel prefix computation. The butterfly and 
dissemination barriers perform a total of 0 ( P  log P) writes to shared loca- 
tions, but only O(log P) on their critical paths. The various tree-based 
barriers perform a total of 0 ( P )  writes to shared locations, with O(log P )  
on their critical paths. On most machines, logarithmic barriers can be 
designed to eliminate contention by having processes spin only on locally- 
accessible locations (either in a local coherent cache, or in a local portion 
of shared memory).(5) 

To reduce unnecessary waiting at barriers, Gupta introduced the 
notion of a fuzzy barrier.(2) Such a barrier consists of two distinct phases. 
In the first phase, processes announce that they have completed all the 
work on which their peers depend. In the second phase they wait until all 
their peers have made similar announcements. A traditional centralized 
barrier can be modified trivially to implement these two phases as separate 
enter-barrier and exit-barrier routines. Unfortunately, none of 
the logarithmic barriers mentioned above has such an obvious fuzzy 
version. In the butterfly and dissemination barriers, no process knows that 
all other processes have arrived until the very end of the algorithm. In a 
static tree barrier,(') and in the tournament barriers of Hensgen et a/.") and 
Luba~hevsky,(~) static synchronization orderings force some processes to 
wait for their peers before announcing that they have reached the barrier. 
In all of the tree-based barriers, processes waiting near the leaves cannot 
discover that the barrier has been achieved until processes higher in the 
tree have already noticed this fact. 

Logarithmic barriers also introduce an additional problem: 

Lack of  amortization. The critical path requires O(log P) writes to 
shared locations after the arrival of the last process before any process 
can continue. In a traditional centralized barrier, the last arriving 
process discovers that the barrier has been achieved in constant time 
(ignoring possible delay due to contention). 

To address this problem, Gupta and Hill'') introduced the concept of 
an adaptive combining tree barrier. Each process arriving at an adaptive 
combining tree barrier performs a local modification to the tree that allows 
later arrivals to start their work closer to the root. Given sufficient skew in 
the arrival times of processes, the last arriving process performs only a 
constant amount of work before discovering that the barrier has been 
achieved. To address unnecessary waiting, Gupta and Hill also devised a 
fuzzy version of their algorithm, with a separate tree traversal for the 
wakeup phase of the barrier. Both the regular and fuzzy versions use per- 
tree-node locks to ensure that updates to the structure of the tree arc 
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viewed consistently by all processes. Unfortunately, the scheme for main- 
taining consistency requires that processes spin on non-local locations, and 
can be expected to lead to contention. 

Our contribution is to demonstrate that adaptivity and fuzziness can 
be achieved without nonlocal spinning, and that the resulting algorithms 
are of practical utility. 

We review Gupta and Hill's adaptive combining tree barrier in 
Section 2, providing fixes for several bugs in the fuzzy version of their algo- 
rithm. We present new algorithms in Section 3, and examine their perfor- 
mance in Section 4. Our algorithms avoid locking tree nodes by performing 
their updates in an asynchronous, wait-free fashion. They also spin on 
locally-accessible locations. In our performance experiments, we consider 
the new algorithms, Gupta and Hill's algorithms, and the fastest pre- 
viously-known centralized and logarithmic barriers, using two of BBN's 
NUMA machines (the Butterfly 1 and the TC2000), and Kendall Square's 
cache-coherent KSR 1. [NUMA = Non-Uniform Memory Access. NUMA 
machines have shared memory-a single physical address space-but the 
memory is distributed among the nodes of the machine, and is not 
coherently cached.] Our results indicate that fuzziness is valuable on all 
three machines, and that adaptation pays off on the KSR 1, where the cost 
of a remote operation is comparatively high. There are scenarios in which 
the new algorithms outperform all known alternatives on the TC2000 and 
the KSR 1, and architectural trends suggest that their relative performance 
will increase on future machines. Section 5 reviews these conclusions and 
provides recommendations for practitioners and architects. 

2. PREVIOUS ALGORITHMS 

Gupta and Hill's adaptive combining tree barrier ilppeilrs in Fig. 2. 
The algorithm employs two instances of the barrier data structure for use 
in alternating barrier episodes. An initialization routine (not shown) estab- 
lishes each data structure as a binary tree of nodes, with one leaf for every 
process. The r e  i n i  t ial i ze routine (called but not shown) restores the 
l e f t ,  r i g h t ,  p a r e n t ,  v i s i t e d ,  and n o t i f y  fields of a node to 
their original values. 

To take part in a barrier episode, a process starts at its leaf and 
proceeds upward, stopping at the first node ( w )  that has not been visited 
by any other process. [A program that wishes to change the set of pro- 
cesses that are to take part in a given barrier episode must modify the 
barrier's data structures accordingly. The complexity of these modifications 
is a weakness shared by all of the logarithmic time barriers.] It then 
modifies the tree (see Fig. 1 )  so that w's other child (0, the child through 

Fig. 1. Naming of nodes 
in the adaptive combining 
tree barrier. 

which the process did not climb) is one level closer to the root. Specifically, 
the process changes 0's parent to be p (the parent of w) and makes o a 
child of p. A process that reaches p through w's sibling will promote o 
another level, and a later-arriving process, climbing through o, will traverse 
fewer levels of the tree than it would have otherwise. 

A process that finds that its leaf has a nil parent knows that it is the 
last arrival, and can commence a wave of waveups. It sets the n o t i f y  flag 
in the root of the tree. The process waiting at the root then sets the 
n o t i f y  flags in the root's children, and so on. Each process on its way out 
of the tree reinitializes its leaf and the node at which it waited. Two instan- 
ces of the barrier data structure are required to ensure that no process 
can get to the next barrier episode and see nodes that have not yet been 
reinitialized in the wake of the previous episode. 

The key to the correctness of Gupta and Hill's algorithm is its syn- 
chrony: no two processes ever see changes to the tree in an inconsistent 
order. In the initial loop, for example, one might think that a process that 
finds that w has already been visited could simply proceed to w's parent. 
Allowing it to do so, however, would mean that a process might discover 
that the barrier has been achieved while some of its peers are still adapting 
nodes farther down in the tree. These adaptations could then interfere with 
node reinitializations during wakeup. In a similar vein, the lock on o in the 
second ("adapt t r e e " )  loop ensures that 0's pointer to p and p's pointer 
to o are changed mutually and atomically. Both loops release any node 
(w or o) that is found to have been visited already, in the knowledge that 
some other process will replace the pointer to it with a pointer to some 
unvisited node. There is no guarantee how quickly the replacement will 
occur, however, so there is no bound on the number of times that either 
loop may execute. 

To construct a fuzzy version of their adaptive combining tree 
barrier, Gupta and Hill observed that a simple separation of the arrival 
and wakeup phases does not suffice to minimize unnecessary waiting: 
processes may not call e x i t - b a r r i e r  in the same order they called 
en t e r -bar  r i e  r. Processes that acquired nodes near the fringe of the tree 
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type node = record 
lock : volatile syncvar :=  free 

/ /  Volatile fields are changed only by a process that holds the lock, 
/ /  and are always changed consistently. 

visited : volatile (no, left, right) := no 
/ /  Has this node been visited, and if so, from which child? 

root, binleft, binright, bin-parent : "node : =  / /  tree 
left, right, parent : volatile "node :=  bin-left, bin-right, binsarent 
notify : volatile Boolean :=  false 

/ /  Notify will eventually become true once the barrier is achieved. 

type instance = record 
my-leaf : 'node := / /  as appropriate, in tree 

private instances : array [0..11 of instance 
private current-instance : "instance := &instances[O] 

procedure barrier 0 
n : "node :=  currentinstance".myleaf 
1 oop 

w : "node := na.parent 
if w = nil / /  We are the last arrival 

n".roote.notify :=  true 
reinitialize (n) 
goto rtn; 

acquire (wA.lock) 
if wA.visited = no 

exit loop 
release (wA.lock) 
/ /  continue; n's parent pointer will eventually change, 
/ /  and we'll get a new w. 

reinitialize (n) 
if we.left = n 

wS.visited := left 
else 

wA.visited :=  right 
release (wA.lock) 

/ /  adapt tree: 
loop 

if wA.visited = left 
o : "node := wh.right 

else 
o : "node := we.left 

acquire (oA.lock) 
if oA.visited = no 

exit loop 
release to".lock) 
/ /  continue; w's right or left pointer will eventually change, 
/ /  and we'll get a new o. 

p : "node := wA.parent 
if p <> nil 

if pe.left = w 
ph.left :=  o 

else 
p".right : =  o 

/ / ThI 6 P t i r t t l Q o  I 0  1," , l o f t  i t 1  L > "  . 1 I Q l t l  I I l A y  a I  I n W  . 4 l ~ u L l > e l  ~ t l 0 1 ' 0 B 6  

/ /  to break out of the second loop above. 
oA.parent :=  p 

/ /  This may allow another process to break out of the first loop above. 
release (o'.lock) 
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/ /  wait for barrier to be achieved: 
repeat until we.notify / /  spin 

/ /  Root".notify is set at line 5 of this procedure; 
/ /  other nodes".notify are set by code below. 

/ /  notify descendants: 
w".bin_leftA.notify := true / /  unnecessary but harmless if 
w".binright'.notify := true / /  children are leaves 
reinitialize (w) 

rtn: 
if currentinstance = &instances[lI 

current-instance := &instances[O] 
else 

currentinstance := &instances[lI 

Fig. 2. Gupta and Hill's adaptive combining tree barrier. 

in enter-barr ier, but which call exi t-barrier early might have to 
wait (needlessly) for processes that acquired nodes near the root of the tree 
in enter-barr ier, but which call exi t-barri er relatively late. The 
solution to this problem is to employ a separate tree traversal in the 
wakeup phase of the algorithm, so that processes that call exit-barrier 
early busy-wait on nodes that are close to the root. 

Code for a modified version of Gupta and Hill's fuzzy adaptive com- 
bining tree barrier appears in Fig. 3. We have broken out the recursive part 
of the wakeup phase as a separate routine to make the use of alternating 
trees explicit. We have also introduced changes to address some subtle 
bugs in the original version that are not obvious on paper, but which 
emerged in the course of experimentation: 

( 1 )  set n's occupied flag in the first if statement of rec-exit, 
even if n's not i fy flag is already set. This prevents a process 
from entering a node and setting the notify flags of children 

type node = record 
lock : volatile syncvar := free 

/ /  Volatile fields are changed only by a process that holds the lock, 
/ /  and are always changed consistently. 

visited : volatile (no, left, right) := no 
/ /  Has this node been visited in enterbarrier, 
/ /  and if so, from which child? 

last-visitor : volatile pid := none 
/ /  Last process to visit this node in rec-exit. 
/ /  Modified only by a process that holds locks both on this node 
/ /  and on the child through which it reached this node. 

root, binleft, binright, bin~arent : "node := / /  tree 
left, right, parent : volatile "node := bin-left, bin-right, binjarent 
leftnotify, rightnotify : volatile Boolean :=  false, false 

/ /  a t l i l o t l  L o  ~ $ 1  o v o t t t .  m i i 1 L l [ i l a  not 1 f t a u  
notify, occupied : volatile Boolean :=  false, false 

/ /  Notify will eventually become true once the barrier is achieved. 
/ /  Occupied is true iff some process has ended its search at this nod 
/ /  in rec-exit, and will not continue until the notified bit is set. 



Scott and Mellor-Crummey 

type instance = record 
my-leaf : "node := / /  as appropriate, in tree 

private instances : array [0..11 of instance 
private currentinstance : 'instance :=  &instances[O] 

procedure enterbarrier 0 
n : "node :=  current_instanceA.myleaf 
loop 

w : "node :=  n*.parent 
if w = nil / /  We are the last arrival. 

nA.root".notify : =  true 
return 

acquire (w".lock) 
if wA.visited = no 

exit loop 
release (w'.lock) 
/ /  Continue; n's parent pointer will eventually change, 
/ /  and we'll get a new w. 

if w'.left = n 
we.visited :=  left 

else 
wA.visited :=  right 

release (we. lock) 

/ /  adapt tree: 
loop 

if wA.visited = left 
o : "node : =  we.right 

else 
o : "node :=  wA.left 

acquire (o".lock) 
if oA.visited = no 

exit loop 
release (oA.lock) 
/ /  Continue; w's right or left pointer will eventually change, 
/ /  and we'll get a new o. 

p : "node :=  wA.parent 

if p <> nil 
if pA.left = w 

pA.left : =  o 
else 

pe.right : =  o 
/ /  This change to pn.left or pe.right may allow another process 
/ /  to break out of the second loop above. 

oa.parent := p 
/ /  This may allow another process to break out of the first loop above. 

release (oA.lock1 

procedure rec-exit In : 'node) 
/ /  nA.lock is held, and n'.lastvisitor = rny-pid 

if ne.notify 
n".occupied := true I /  missing in original 
release In". lock) 

else 
p : "node : =  nA.bin_parent 
if p = nil / /  n is the root 

nm.occupied :=  true 
release (nA.lock1 
repeat until nA.notify / /  spin 

/ /  root".notify is set at line 5 of enter-barrier; 
/ /  other nodesA.notify are set by code below. 
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else 
acquire (pe.lock1 
if not pa.occupied 

p".last_visitor :=  myjid 
release (n'.lock) / /  before previous line in original 
rec-exit (pl / /  recursive call 

else 
release (pa.lock1 
n".occupied :=  true 
release (ne.lock) 
repeat until nA.notify / /  spin 

/ /  rootA.notify is set at line 5 of enter-barrier; 
/ /  other nodesA.notify are set by code below. 

/ /  At this point we know the barrier has been achieved. 
/ /  Each process is responsible for notifying any not-yet-notified children 
/ /  of nodes along the path between its leaf and the node it occupied. 
/ /  Each process also is responsible for re-initializing each node that it 
/ /  was the last to visit on that path. 
if not leaf (n) 

/ /  signal children ONCE AND ONLY ONCE: 
acquire (n*.bin_left".lockl 
if n".lastvisitor = myjid and n".left_notiÂ£ = false 

nA.leftnotify := true 
n'.binleft'.notify :=  true 

release (n".binleft".lockl 
acquire (nA.bin_right".lock1 
if n'.lastvisitor = myjid and ne.right-notify = false 

nA.right_notify := true 
n'-.bin_righta.notify := true 

release [n".binright".lock) 
/ I  The left_notiÂ£ and right-notify flags prevent multiple notifies 
/ /  of the same child, which could otherwise lead to an infinite wait. 

/ /  At this point if nA.last_visitor = myjid it will stay so, 
/ /  because the children have been notified while their locks were held 
/ /  by the most recent process to climb through n. 
if n".lastvisitor = myoid 

reinitialize (nl 
else 

repeat while n".notify / /  spin 
/ /  Wait until reinitialized; that way we don't return into a child 
/ /  and reinitialize it before its notify flag gets set. 
/ /  This line was originally before the sets of child notify flags. 

procedure exit-barrier 0 
n : "node : =  currentinstance".my_leaf 
acquire (n".lock) 
nA.last_visitor := mysid 
rec-exit (n) 
if currentinstance = &instances[11 

current-instance :=  &instances[0] 
else 

currentinstance :=  &instances[ll 

Fig. 3. Gupta and Hill's fuzzy adaptive combining tree barrier (modified). 
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when some other process has already returned from that node 
and reinitialized one of the children. 

set p's l a s t - v i s i t o r  field in the third if statement of 
rec -ex i t ,  prior to releasing the lock on n and moving (recur- 
sively) up the tree. This ensures that when a process makes 
a recursive call up into a parent node, no other process will 
reinitialize that node out from under it (the other process must 
first acquire the locks on the children). 

introduce lef t-notify and right-notify flags to ensure 
that no node is notified more than once. Without these flags it is 
possible for a process to climb into a node, notice that it has 
been notified, reinitialize it, and return, while another process 
higher in the tree is about to notify it again. If the second process 
then returns into the re-notified node, it will enter an infinite 
wait, expecting some other process to clear the notify flag. 

wait for n to be reinitialized by a more recently-arriving process 
only after l a s  t - v i s  it o r has stabilized. After the series of 
nested e l s e s  in r e c - e x i t  we know that the barrier has been 
achieved. After the if n o t  leaf clause near the end of 
r e c - e x i t  we know that no other process will climb through 
node n in the future. If no other process has climbed through 
after us, then we can safely reinitialize n. Otherwise, we wait for 
the last process that got through to reinitialize it. It is safe to 
execute the last i f  statement after n has been reinitialized: 
n * . l a s t - v i s i t o r  will be unequal to anybody's pid, and 
n ' . n o t  i f  y will be false. 
In the original version of the algorithm, the wait for reinitializa- 
tion appeared in a separate i f  n". l a s t - v i s i t o r  ( )  pid 
clause immediately after the nest elses-before the setting of 
child n o t i f y  flags. The wait could inadvertently be skipped if a 
later-arriving process had not yet set n " . l a s t - v i s i t o r ;  we 
could therefore return into a child and reinitialize it before the 
late-arriving process set the child's n o t  i f  y flag. 

3. NEW ALGORITHMS 

It  is well known that contention for memory locations and processor- 
memory interconnect bandwidth seriously degrades the performance of 
traditional busy-wait synchronization algorithms. Previous work has 
shown how to eliminate this contention for mutual exclusion locks, reader- 
writer locks, and bi~rriers.""' ' "  The key is for every process to spin on 

separate locally-accessible flag variables, and for some other process to ter- 
minate the spin with a single remote write operation at an appropriate 
time. Flag variables may be locally-accessible as a result of coherent 
caching, or by virtue of allocation in the local portion of physically dis- 
tributed shared memory. Our experience indicates that the elimination of 
remote spinning can yield dramatic performance improvements. 

We present our barriers in pseudo-code below; complete C versions 
for the Butterfly 1, TC2000, and KSR 1 can be obtained via anonymous ftp 
from cs.rochester.edu (directory pub/scalable-synchladaptive). 

3.1. A Local-Spinning Adapt ive  Combining Tree  Barrier 

To eliminate remote spinning in the (non-fuzzy) adaptive combining 
tree barrier of Fig. 2, we must address three sources of spinning on remote 
locations: 

(1)  While waiting for the barrier to be achieved, processes spin on a 
flag in a dynamically-chosen tree node. (This is a problem on 
NUMA machines, though not on machines with coherent 
caches.) 

(2)  In order to ensure consistent modifications to the tree, processes 
acquire and release test-and-set locks in every node they 
visit. 

( 3 )  In both the original search for a parent node at which to wait, 
and in the subsequent search for a sibling node whose parent 
should be changed, processes spin until they succeed in locking 
the node they are looking for and find it to be unvisited. 

For NUMA machines, we eliminate the first type of remote spinning by 
using a statically-allocated per-process flag, and storing a pointer to this 
flag in the dynamically-chosen tree node. [On the KSR 1, we spin on flags 
in the tree nodes themselves, and rely on coherent caching to bring the flag 
into local memory.] We eliminate the second and third types of remote 
spinning by using fetch-and-store instructions to modify the tree in 
an asynchronous, wait-free fashion.(I4) [Fe tch-and-s tore (L , V) 
returns the value in location L and replaces it with V, as a single atomic 
operation.] Contention-free spin locks(5' would eliminate the second kind 
of remote spin, but not the third. With the third kind of spin, the number 
of remote references per processor in a barrier episode has no fixed bound. 
The wait-free solution leads to a fixed upper bound on the number of 
remote references as well as achieving higher concurrency and lower per- 
noilc overhead than the locking alternative. 
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shared pseudodata : Boolean 

type node = record 
/ /  Volatile fields may change spontaneously; there are no locks. 
visitor : volatile "Boolean := &pseudodata 

/ /  first process to visit this node; may be temporarily inconsistent, 
/ /  but will stabilize before being dereferenced 

bin-left, bin-right, binjarent : "node :=  / /  tree 
left, right, parent : volatile "node := binleft, bin-right, binparent 
depth, inorder : integer := I 1  as appropriate, in unmodified tree; 

/ /  inorder allows us to determine left and right descendancy. 

type instance = record 
f : Boolean :=  false 
root, my-leaf, rny-internalnode : "node := / /  as appropriate, in tree 

/ /  myinternalnode is used only for reinitialization. 

private instances : array [0..21 of instance 
/ /  separate copy for each process, but allocated 
/ /  in memory accessible to other processes 

private currentinstance : 'instance := &instances101 
private previousinstance : "instance := &instances[2] 

procedure barrier 0 
/ /  find place to wait: 
n : "node :=  currentinstance".myleaf 
loop 

w : "node := ne.parent 
if w = nil 

/ /  signal achievement of barrier: 
current_instance".root".visitor" := true 

/ /  may unblock a process at the spin below 
goto rtn 

x : "node :=  fetch-and-store (&w".visitor, &currentinstance".f) 
if x = &pseudodata 

exit loop 
we.visitor := x / /  already visited; put it back 
n :=  w / /  continue up the tree 

/ /  adapt tree: 
if nA.inorder < wA.inorder 

o : "node :=  wA.right 
else 

o : "node := wA.left 
p : "node := wA.parent 
if p = nil 

o" .parent := nil 
else 

/ /  update down pointer: 
if w'.inorder < pe.inorder 

pa.left :=  o 
else 

pA.right := o 
/ /  update up pointer: 
loop 

t : "node := fetch-and-store (&oa.parent, p) 
if t <> nil and then te.depth > p".depth 

exit loop / /  swap was a good thing 
/ /  else some other process linked o even higher in the tree; 
/ /  continue loop to undo our poorer update 
p : =  t 
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/ /  await notification and pass on the news: 
repeat until currentinstanceA.f / /  spin 

I /  set at the root by line 7 of this procedure; 
I /  set at other nodes by the code below 

w".bin_left".visitorA :Â¥ true 
w".bin_right".visitor" := true 

rtn: 
reinitialize (previous-instance) 
previous-instance := current-instance 
if current-instance = &instances[21 

current-instance := &instances[Ol 
else 

current-instance :=  current-instance + 1 

Fig. 4. An adaptive combining tree barrier with local-only spinning, 

Code for a (nonfuzzy) adaptive combining tree barrier with local-only 
spinning appears in Fig. 4. In general form, it mirrors Fig. 2. The code to 
eliminate remote spinning while waiting for notification is more or less 
straightforward. Rather than set a visited flag, a process uses 
f etch-and-store to set a visitor pointer. The atomicity of the 
operation enables it to determine if another process has already acquired 
the node, in which case it puts that process's pointer back. 

By using a more powerful compare-and-swap ins t r~ct ion~ '~ '  we 
could eliminate the need to re-write pointers that are erroneously over- 
written. [Compare-and-swap ( L ,  0 ,  N) compares the value in location 
L to 0 and, if they are equal, replaces 0 with N, as a single atomic opera- 
tion. It returns true if it performed the swap, and false otherwise.] 
A similar optimization is also possible on the KSR 1; see Section 4. We 
have presented the algorithms with fetch-and-store because it is  
available on a wide variety of machines, including the Butterfly 1 and the 
TC2000. There is no correctness problem induced by re-writing pointers, 
since the values of visitor fields are not used (except to compare them 
to &pseudodata) until after the barrier is achieved, and all mistakenly 
overwritten values are restored before that time. 

The code required to eliminate per-node locks and to avoid the spins 
while looking for unvisited parent and sibling nodes is more subtle. With 
simple f etch-and-@ instructions we cannot change child and parent 
pointers in a consistent fashion in one atomic step. We have therefore 
resorted to an asynchronous approach in which processes may see changes 
to the tree in different orders. In particular, if a process finds that the 
parent p of w has already been visited, we allow it to proceed immediately 
to w's grandparent, even though some other process must of necessity be 
about to change the pointer form w to p. With sufficient skew in the arrival 
times of processes, changes to the tree occur in the same order as they do 

Highlight

Sticky Note
This code should read:
    if t <> nil and then (p = nil or else t^.depth > p^.depth)

Thanks to Alexander Malkis for identifying this error and suggesting the fix.
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in Fig. 2. When processes arrive at about the same time, however, the 
''winner" may follow more than one parent pointer to reach, and visit, the 
root. 

When splicing a sibling o into its grandparent p (see Fig. l ) ,  we 
change p's child field first, before changing 0's parent field. In between, 
there is a timing window when a process climbing up through w's sibling 
may find o and attempt to splice it into its great-grandparent. Because 
the updates to 0's parent field are unsynchronized, we must take care 
to recover in the event that they occur in the incorrect order. 
[Compare-and-swap does not help in this case; one can read the pointer 
to determine whether it is desirable to overwrite it, but even an 
immediately subsequent compare-and-swap may fail because some 
other process has overwritten the pointer in the interim. ] Depth fields in 
each node enable us to discover whether the new value of a parent field 
is an improvement on the old, and to restore the old value if necessary. 
I t  is possible for ;I process to climb up through a node when its parent 
pointer has just been overwritten with an out-of-date value, and before the 
better value is restored, but no correctness problems result: the process 
simply follows more pointers than it would have if it had missed the timing 
window. (The situation is analogous to what occurs in a concurrent f i I i n k  
tree, when a newly inserted node becomes available via a pointer from its 
left sibling, but not yet from its parent.('' 

A t  first glance, i t  would appear that a potentially unbounded number 
of remote references might be performed while executing the loop to update 
0's parent field. This would violate our claim of performing only a bounded 
number of remote references per barrier episode. Fortunately, the number 
of loop iterations is bounded by depth(o) - I, since each iteration sees o's 
parent link move at least one step closer to the root. Moreover, the worst 
case is very unlikely; in practice one would expect to see a single iteration. 

One might suspect that recovery might also be required when we 
update pointers to children, but in fact these updates are serialized. If w is 
initially the left child of p, then initially only the process that visits w (call 
this process X )  can change p's left child field. Moreover only process X can 
cause any node to the left of p (other than w) to point to p as parent, so 
no other process will acquire the ability to modify p's left child field until 
after X has first made p point to o, and then made o point to p. In order 
traversal numbers allow us to determine whether a given node is to the left 
or the right of its parent without inspecting the parent's (possibly incon- 
sistent) child pointers. 

Because of the asynchrony with which processes climb the tree, a slow 
process can still be modifying pointers when all of its peers have left the 
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barrier and continued other work. We are therefore unable to reinitialize 
nodes on the way out of the barrier, as did Gupta and Hill in Fig. 2. 
Instead, we employ three sets of data structures. We reinitialize the one 
that was used before the current barrier episode, and that will not be used 
again until after the next episode. Each process takes responsibility for 
reinitializing its own leaf and one (statically determined) internal node. 

3.2. The Fuzzy Variant 

To eliminate remote spinning from the fuzzy barrier code in Fig. 3. we 
replace n o t i f y  flags with pointers to local flags, eliminate t e s  t-and-s e t 
locks, and adapt the tree asynchronously, just as we did in the nonfuzzy 
version. Code to enter the barrier and adapt the tree can be taken almost 
verbatim from Fig. 4. In e x i  t - b a r r i e r ,  however, we must find a way for 
processes to climb to the highest unoccupied node without the double-lock- 
ing of the original fuzzy algorithm. In  Fig. 3, a process retains the lock on 
a child node while locking and inspecting its parent. If the parent is unoc- 
cupied, the process releases the child. If the parent is already occupied, the 
process occupies the child. Our solution is again to adopt an asynchronous 
approach, in which each process writes a pointer to its wakeup flag into 
every node that appears to be unoccupied on the path from its leaf to the 
root. [Because i t  may end up occupying more than one node, a process 
must store pointers to a local flag, even on the KSR 1; there is no one tree 
node in which it could spin on a flag.] 

Code for a fuzzy adaptive combining tree barrier with local-only spin- 
ning appears in Fig. 5. With sufficient skew in arrival times, processes will 
write pointers to their wakeup flags into distinct nodes of the tree. ending 
at the same nodes at which they would have ended in Fig. 3. If processes 
arrive at about the same time, however, more than one of them may write 
a pointer to its wakeup flag into the same node. Since every process begins 
by writing its pointer into a leaf, at least one of the pointers will never be 
overwritten. As an optimization, each process is informed at wakeup time 
of the node at which its pointer was found. It must perform wakeup opera- 
tions along the path back down from this node, but can skip any higher- 
level nodes at which its pointer was overwritten. 

For the sake of space and time efficiency, we have written e x i t -  
b a r r i e r  as a nonrecursive routine. As in our nonfuzzy barrier, we employ 
three sets of data structures to cope with the asynchrony of tree adapta- 
tions and reinitialization. By reinitializing the data structures of the 
previous barrier instance, we eliminate the need for the l a s t - v i s i  t o r  
fields, which account for much of the complexity of Fig. 3. 
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shared pseudodata : 'node 

type node = record 
/ /  Volatile fields may change spontaneously; there are no locks. 
visited, notified : volatile Boolean := false, false 

/ /  visited = true iff some process has visited this node in 
/ /  enterbarrier. 
/ /  notified will eventually become true once the barrier is achieved. 

owner : volatile "node := / /  address of appropriate f field for leaves, 
/ /  &pseudodata for internal nodes 

/ /  address of f field of a recent visitor in exitbarrier 
/ /  (not necessarily the *most* recent) 

bin-left, binright, binparent : "node := / /  tree 
depth, inorder : integer :=  / /  as appropriate, in unmodified tree; 

/ /  inorder allows us to determine left and right descendancy. 
left, right, parent : volatile "node :=  bin-left, bin-right, binparent 

type instance = record 
f : "node := nil / /  node at which we were awakened 
root, myleaf, myinternalnode : "node := / /  as appropriate, in tree 

/ /  my-internalnode is used only for reinitialization. 

private instances : array [0..21 of instance 
/ /  separate copy for each process, but allocated 
/ /  in memory accessible to other processes 

private currentinstance : "instance := &instances[Ol 
private previousinstance : "instance :=  &instances[2] 

procedure enterbarrier 0 
n : "node : =  current_instance".my-leaf 
loop 

w : "node := nA.parent 
if w = nil 

/ /  signal achievement of barrier: 
current.instance".root".notified :=  true 
currentinstance".root".owner" : =  currentinstance".root 

/ /  may unblock a process at the spin in exit-barrier 
/ /  LnfotmLng it t h n t  w e  woke It up nl Llie loo l  

return, 
if fetch-and-store (&n".visited, true) = false 

exit loop 
n : =  w / /  continue up the tree 

/ /  adapt tree: 
if ne.inorder < w".inorder 

o : "node :=  w*.right 
else 

o : "node :=  wA.left 
p : "node :=  wA.parent 
if p = nil 

oA.parent :=  nil 
else 

/ /  update down pointer: 
if wm.inorder < peinorder 

pe.left := o 
else 

pA.right : =  o 
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/ /  update up pointer: 
loop 

t : "node :=  fetch-and-store (&o".parent, p )  
if t <> nil and then te.depth > ph.depth 

exit loop / /  swap was a good thing 
/ /  else some other process linked o even higher in the tree; 
/ /  continue loop to undo our poorer update 
p :=  t 

procedure exit-barrier 0 
n : "node := currentinstance".myleaf 
if ne.notified 

goto rtn 

p : "node := na.binparent 
loop 

if p".owner = dpseudodata 
pA.owner :=  &current_instance".Â 
if pA.notified 

exit loop 
else if pA.bin_parent = nil 

repeat 
p := current_instance".f 

until p <> nil / /  spin 
/ /  set at root by line 7 of enterbarrier; 
/ /  set at other nodes by the code below 

exit loop 
else 

p := ph.bin_parent 
else if p".notified 

exit loop 
else 

repeat 
p : =  current-instanceh.f 

until p <> nil / /  spin 
/ /  set at root by line 7 of enter-barrier; 
/ /  set at other nodes by the code below 

exit loop 

/ /  work way back down to leaf, giving notifications: 
while p <> current_instance".my_leaf~ 

if nA.inorder < ph.inorder 
o := pA.bin-right 
p :=  pA.bin-left 

else 
o := pe.bin_left 
p := pe.bin_right 

oA.notified := true 
o.owner := o 

/ /  may unblock a process in the spin above, 
/ /  informing it that we woke it up at o 

rtn: 
reinitialize (previousinstance) 
previous-instance := currentinstance 
if currentinstance = &instances[2] 

current-instance : =  &instancest01 
else 

current-instance := current-instance + 1 

Fig. 5. A fuzzy adaptive combining tree barrier with local-only spinning. 
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4. PERFORMANCE RESULTS 

We have compared the performance of the various forms of combining 
tree barrier with that of the centralized and logarithmic barriers found to 
perform best in previous  experiment^.*^' After describing our experimental 
environment in Section 4.1, we consider latency for nonfuzzy barriers in 
Section 4.2, focusing in particular on the impact of skew in arrival times. 
We then consider the utility of fuzzy algorithms in Section 4.3, with an 
emphasis on the cross-over points at which the saving in needless spinning 
makes up for additional overhead. 

4.1. Experimental Environment 

Our timing tests employed three different machines: Rochester's BBN 
Butterfly 1 multiprocessor, a more modern BBN TC2000 machine at 
Argonne National Laboratory, and the Kendall Square KSR 1 at the 
Cornell Theory Center. 

The Butterfly 1 employs MC68000 processors clocked at 8 MHz, with 
up to four megabytes of memory (one on our machine) located at each 
processor. There are no caches, coherent or otherwise. Each processor can 
access its own memory directly, and can access the memory of any node 
through a log4-depth switching network. Transactions on the network are 
packet-switched and nonblocking. If collisions occur at a switch node, one 
transaction succeeds and all of the others are aborted, to be retried at a 
later time (in firmware) by the processors that initiated them. In the 
absence of contention, a remote memory reference (read) takes about 4 us, 
roughly 5 times as long as a local reference. 

The TC2000 is architecturally similar to the Butterfly 1, but employs 
20 MHz MC88100 processors with (noncoherent) caches and a faster logg- 
depth switching network based on virtual circuit connections rather than 
packet switching. With caching disabled, a remote memory reference takes 
about 1.9 us, slightly over 3 times as long as a local reference, and about 
13 times as long as a cache hit. Experiments by Markatos and LeBlanc'"' 
indicate that while the TC2000 has relatively good switch bandwidth and 
latency, it is starved for shared memory bandwidth, and hence vulnerable 
to contention. One would expect the centralized barriers to perform com- 
paratively badly on the TC2000; our results confirm this expectation. 

The KSR 1 is a cache-only machine constructed of custom 64-bit two- 
way superscalar processors clocked at 20 MHz, and connected by a two- 
level hierarchy of rings. Each lower-level ring houses 32 processing nodes 
and an interface to the (single) upper-level ring. The memory at each pro- 
cessing node is organized as a 32 = MB secondary cache, with a 512 = KB 

"subcache." Access time ratios for the subcache, the local (secondary) 
cache, a remote cache in the same ring, and a remote cache in a different 
ring are approximately 1:9:88:300, making remote operations substantially 
more expensive than on the Butterfly 1 or the TC2000. A hardware coherence 
protocol maintains sequential consistency across the caches of all processors. 

The Butterfly 1 supports a 16-bit atomic fetch-and-clear-then_ 
add operation in firmware. This operation takes three arguments: the 
address of the destination operand, a mask, and a source operand. For the 
locks in Figs. 2 and 3 we perform a test-and-set by specifying a mask 
of OxFFFF and an addend of 1. For the central barriers we perform a 
fetch-and-increment by specifying a mask of 0 and an addend of 1; 
for the other barriers we perform a fetchÃ‘and-stor by specifing a 
mask of OxFFFF and an addend of the value to be stored. In comparison 
to ordinary loads and stores, atomic operations are relatively expensive on 
the Butterfly 1; f etch-and-clear-then-add takes slightly longer than 
a call to a null procedure. 

The TC2000 supports the MC88100 XMEM(fetcLand-store) 
instruction in hardware, at a cost comparable to that of an ordinary 
memory reference. It provides additional atomic operations in software, but 
these must be triggered in kernel mode: they make use of a special 
hardware mechanism that locks down a path through the switch to 
memory. They are available to user programs only via kernel calls, and as 
on the Butterfly 1 are relatively expensive. For Gupta and Hill's algorithms 
(Figs. 2 and 3), XMEM can be used directly to implement test-and-set. 
The expense of the kernel-mediated fetch-and-increment contributes 
to the poor performance of the centralized barriers. 

The KSR 1 supports atomic operations only via the "locking" of lines 
("subpages") in a subcache. The acquire-subpage operation brings a 
copy of a specified line into the local subcache and sets a special state bit. 
It fails (setting a condition code) if any other processor currently has the 
state bit set. The release-subpage operation clears the bit and permits 
it to be set in the next requesting processor in ring-traversal order. (There 
is an alternative form of acquire-subpage that stalls until the bit can 
be set, but Dunigan reports,(I9) and our experience confirms, that this 
stalling version performs worse than polling in a loop for all but very small 
numbers of processors.) By following a programming discipline in which 
modifications to a given word are made only when its line has been 
acquired, one can implement the equivalent of arbitrary f e t c Land-@ 
operations. 

For Gupta and Hill's algorithms, acqui re-subpage and 
release-subpage provide the equivalent of t es t-and-se t locks. For 
the new algorithms (Figs. 4 and 5), we use these operations to bracket 
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code sequences that read a pointer, decide if it should be changed, and if 
so change it, atomically, without the need to re-write mistakenly-swapped 
locations. Similar code could be written (albeit with the possibility of some 
remote spinning) for machines based on the MIPS R4000 or DEC Alpha 
architectures, which provide l o a d - l i n k e d  and s t o r e - c o n d i t i o n a l  
instructions. [Load-l inked reads a memory location and saves some 
status information in the local cache controller. S t o r e - c o n d i t i o n a l  
writes the location read by a previous l o a d - l i n k e d ,  provided that no 
other processor has performed an intervening write to the same location, 
and that various possible interfering operations have not occurred on the 
local processor.] 

The barriers included in our timing tests are listed in Fig. 6, together 
with an indication of their line types for subsequent graphs. We have used 
solid lines for nonfuzzy algorithms, and dotted lines for fuzzy algorithms. 
When one algorithm has fuzzy and nonfuzzy variants, they share the same 
tick marks. 

The dissemination barrier is due to Hensgen et As mentioned in 
Section 1, it employs floga P I  rounds of synchronization operations in a 
pattern that resembles a parallel prefix computation: in round k, process i 
signals process ( i+2*)  mod P. The total number of synchronization 
operations (remove writes) is O(P1og P) (rather than 0 ( P )  as in other 
logarithmic time barriers) but as many as log P of these operations can 
proceed in parallel, when using non-overlapping portions of the intercon- 
nection network. 

Our previous experiments(5' found the dissemination barrier to be the 
fastest alternative on the Butterfly 1.  The static tree barrier was a close 
runner-up. It has a slightly longer critical path, but less overall communica- 
tion, and might be preferred when the impact of interconnect contention on 
other applications is a serious concern. Each process in the static tree 

central flag 
fuzzy central flag 
dissemination 
static tree 
original adaptive combining tree 
fuzzy original adaptive combining tree 
local-spinning non-adaptive combining tree 
fuzzy local-spinning non-adaptive combining tree 
local-spinning adaptive combining tree 
fuzzy local-spinning adaptive combining tree 
KSR pthread barrier 

Fig. 6. Barrier algorithms tested. 
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barrier is assigned a unique tree node, which is linked into a 4-ary arrival 
tree by a parent link, and into a binary wakeup tree by a set of child links. 
Upon arriving at the barrier, each process spins on a local word whose 
four bytes are set, upon arrival, by the process's children. It then sets a byte 
in its parent and spins on another local word awaiting notification from its 
parent. The root process starts a downward wave of notifications when it 
discovers that all of its children have arrived. 

The centralflag barrier and its fuzzy variant employ a central counter 
and wakeup flag. On the Butterfly 1 and the TC2000, they pause after an 
unsuccessful poll of the flag for a period of time proportional to the 
number of processes participating in the barrier. Our previous experiments 
found this technique to be more effective at reducing contention (and 
increasing performance) than either a constant pause or a linear or expo- 
nential backoff strategy. On the KSR 1, processors can spin on copies of 
the flag in their local cache, and backoff is not required. 

All of the other barriers were introduced in Sections 2 and 3. The 
original adaptive combining tree and fuzzy original adaptive combining tree 
are from Figs. 2 and 3. The local-spinning adaptive combining tree and fuzzy 
local-spinning adaptive combining tree are from Figs. 4 and 5. The locul- 
spinning nonadaptive combining tree and fuzzy local-spinning nonadaptive 
combining tree are from Figs. 4 and 5, but without the block of code that 
begins with "adapt tree." As noted in Section 3.1, our code for the (non- 
fuzzy) adaptive and nonadaptive local-spinning combining tree barriers on 
the KSR 1 spins on flags in the tree nodes themselves, rather than using 
pointers to statically-allocated local flags. 

For comparison purposes, we have included the barrier synchroniza- 
tion algorithm provided with KSR's p t h r e a d s  library. In  addition, all of 
the tree-based barriers on the KSR 1 were modified to use a central flag for 
the wakeup phase of the algorithm. Previous experiments'') on the cache- 
coherent Sequent Symmetry found the combination of the arrival phase of 
the static tree barrier with a central wakeup flag to be the best-performing 
barrier on more than 16 processors. Experiments on the KSR 1 confirm 
that all of the tree-based barriers run faster with a central wakeup flag (see 
Fig. 8). The KSR 1 does not have broadcast in the same sense as bus-based 
machines, but it can perform a global invalidation with a single transit of 
each ring, and many of the subsequent reloads can occur in parallel. 

For each of our timing tests we ran 1000 barrier episodes and 
calculated the average time per episode. On the Butterfly 1 and the 
TC2000, we placed each process on a different processing node and ran 
with timeslicing disabled, to avoid interference from the scheduler. We 
observed that timings were repeatable to three significant digits. On the 
KSR 1, we were unable to disable the scheduler, but it usually arranged for 
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each process to run without interference on a separate processor. To 
accommodate the occasional interruption, we averaged each experiment 
over at least three separate program runs, throwing out any data points 
that seemed unusually high with respect to other runs. 

In many of the tests we introduced delays between barrier episodes, or 
between enter-barrier and exi t-barrier calls in fuzzy tests. The 
delays were implemented by iterating an appropriate number of times 
around a loop whose execution time was calibrated at 10 us. In some cases 
the number of iterations was the same in every process. In other cases we 
introduced random fluctuations. A figure caption indicating a delay of, 
say, I ms Â 400 us indicates that the number of iterations of the 10 ,us 
delay loop was chosen uniformly in the closed interval 50.. 150. Random 
numbers were calculated off-line prior to the tests. In order to obtain a 
measure of synchronization cost alone, we subtracted delays and loop over- 
head from the total measured time in each test. On the KSR 1, each tree 
node was split among two cache lines, with all read-only fields in one line, 
and all mutable fields in the other. 

4.2. Basic Barrier Latency 

Figure 7 plots the time required to achieve a barrier against the num- 
ber of processes (and hence processors) participating in the barrier, with no 
inter-episode or fuzzy delays. We can observe that the explicit locking and 
nonlocal spinning of the original adaptive combining tree barriers (0) 
impose a large amount of overhead. We can also see the impact of conten- 
tion: the performance of the centralized barriers (0 ) degrades markedly on 
all three machines as the number of processes increases. The curves for the 
original adaptive combining tree barriers also lose their logarithmic shape 
and assume a roughly linear upward trajectory around 20 processes on the 
TC2000 and (less dramatically) around 30 processes on the Butterfly 1. 
Contention in the centralized barriers on the TC2000 is severe enough, 
even with exponential backoff, to make the curves appear highly erratic. 
Timings are repeatable, however; the number of processes is simply not the 
dominant factor in performance. More important is the interconnection 
network topology and the assignment of processes and variables to par- 
ticular processing nodes. 

The dotted (fuzzy) and solid (regular) curves for the local-spinning 
combining tree barriers ( x and A ) show that fuzziness is a small net loss; 
the extra overhead is pointless in the absence of fuzzy computation, 
particularly on the Butterly 1, with its expensive atomic operations. [In 
Fig. 8, fuzziness is a net loss on the KSR 1 for the local-spinning adaptive 
combining tree barrier without flag weakeup, but a small net win for its 
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Fig. 7. Basic barrier performance on the Butterfly 1 (top), TC2000 (middle), and 
KSR 1 (bottom). 
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Fig. 8. Basic barrier performance on the KSR 1 ,  without a central flag for wakeup in 
the tree-based algorithms. 

nonadaptive cousin. The difference is clearly related to the number of 
invalidations of tree nodes by f etch-and-s tore operations on 
visitor fields, but we have been unable to track it down precisely.] 

The fastest algorithms on the NUMA machines are the dissemination 
barrier ( a )  and static tree barrier (m) .  None of the combining tree barriers 
come close in this "tight loop" case. The fastest algorithm on the KSR 1 is 
the static tree with flag wakeup (m), followed by the barrier from KSR's 
p t h  r ead s libary ( * )  and the local-spinning adaptive ( x ) and nonadaptive 
( A )  combining tree barriers. The dissemination barrier does not perform 
as well on the KSR 1 as it does on the BBN machines. It requires O(n log n) 
remote operations (as opposed to 0 (n )  for the tree-based barriers), and 
fewer of these operations can take place in parallel with the KSR topology. 

Comparing the bottom of Fig. 7 to the graph in Fig. 8 reveals that the 
pseudo-broadcast capability of the KSR 1 makes flag wakeup a clear per- 
formance win. At the same time, comparing the three graphs in Fig. 7 
reveals that the NUMA machines are able to synchronize much faster than 
the KSR 1. The fastest 64-node barrier on the Butterfly 1 takes 151 us; the 
fastest 64-node barrier on the KSR 1 takes 587 ,us. These numbers are in 
rough proportion to the maximum no-contention remote reference times 
on the two machines (4 and 15,us, respectively). The KSR 1 is a decade 
newer, but pays dearly for cache coherence. 

Any real program, of course, will have some inter-episode delay; Fig. 7 
represents the (unrealistic) limiting case. Graphs similar to Fig. 7, but with 
significant inter-episode delays and skew, display much less contention in 

the centralized and original adaptive combining tree barriers. They also 
show the local-spinning adaptive combining tree barriers gaining a small 
advantage over their nonadaptive counterparts on the NUMA machines. 
(The adaptive versions are always better on the KSR 1.) On the KSR 1, the 
local-spinning adaptive combining tree barrier (with flag wakeup) becomes 
the best-performing algorithm, though again several others are close. 

Figure 9 displays these effects by plotting time per barrier against the 
maximum random fluctuation in inter-episode delay, with 64 processes on 
the Butterfly 1, 35 processes on the TC2000, and 126 processes on the 
KSR 1. Point (x, y )  represents the time y per barrier episode, with an inter- 
episode delay of 1 ms Â x p s. (Delays may differ by at most 2x.) In the dis- 
semination barrier ( a ) ,  the static tree barrier (m), and the nonadaptive 
combining tree barrier (A) ,  the time to achieve the barrier rises roughly 
with the skew in arrival time. The slope is gentler for machines with a 
longer remote memory access delay, since this delay serves to hide a por- 
tion of the skew in arrival times: the reader of a value can be as much as 
one remote delay behind the writer before it will notice the skew. 

Line-crossings between the local-spinning adaptive ( x )  and nonadap- 
tive ( A ) combining tree barriers suggest that adaptation serves to mitigate 
the increase in synchronization time due to increased arrival skew, but 
only to a very small extent, [The dissimination barrier also appears to be 
able to cope with modest amounts of skew on the KSR 1; we're not sure 
why.] Much more pronounced is the improvement in performance of the 
centralized (0)  barriers on the KSR I and the fuzzy original adaptive 
combining tree (0) barrier on the TC2000, all of which were seen in Fig. 7 
to suffer badly from contention. As the skew in inter-barrier times 
increases, delays in some processes allow other processes to finish their 
work and get out of the way. 

4.3. Barrier Episodes with Fuzzy Delay 

In Fig. 10, we have added a fuzzy delay of 500 us to each iteration of 
the timing loop. We again plot time per barrier against the number of 
participating processes (processors). The inter-episode delay remains at 
1 ms Â 200 ps. Introducing a reasonable amount of randomness into the 
fuzzy delays (up to 50%) had no noticeable effect on the timings. 

In all cases the fuzzy versions of the centralized barrier (0) and the 
local-spinning combining tree barriers ( x  and A ) outperform the nonfuzzy 
versions by significant amounts. On the Butterfly 1 the margin is large 
enough to enable the fuzzy centralized barrier to outperform the dissemina- 
tion ( a )  and static tree (8)  barriers all the way out to 64 processes (though 
it appears that the curves would cross again on a bigger machine). In the 
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original adaptive combining tree barriers ( O), the benefits of fuzziness can 
outweigh the overhead of additional locking only on the newer two 
machines, where the fuzzy delay is comparatively long when measured in 
processor cycles, and atomic operations are not significantly more expen- 
sive than ordinary loads and stores. 

The overhead of the fuzzy algorithms can be seen directly in Fig. 11 by 
comparing the performance of each fuzzy algorithm to that of its nonfuzzy 
counterpart. The graph plots the time required for processes to achieve a 
barrier against the length of the fuzzy delay (in addition to a 1 kO.5 ms 
inter-episode delay), with 64 processes on the Butterfly 1, 35 processes on 
the TC2000, and 126 processes on the KSR 1. For the centralized barrier. 
separating e n t e r - b a r r  i e r  from e x i  t - b a r r  i e r  introduces no over- 
head beyond the additional subroutine call. The separation therefore pays 
off with even very small fuzzy delays. For the adaptive ( x )  and nonadap- 
tive ( A  ) versions of the local-spinning combining tree barriers, the extra 
walk up the tree incurs overhead that is recovered almost immediately on 
the TC2000 and the KSR 1, and for fuzzy delays starting around 150ps 
(15% of the inter-episode delay) on the Butterfly 1. For the original adap- 
tive combining tree barrier (0)- we need almost 700ps before fuzziness 
pays off on the Butterfly I, less than 20 ps on the TC2000, and almost none 
on the KSR I .  (Without flag wakeup, the break-even point is almost 600 ps 
on the KSR I; these curves are not shown in the graph.) Both atomic 
operations and rcmotc operations in gcncritl arc relativcly chc;~p on thc 
TC2000. Atomic operations are expensive on the Butterfly 1; remote opera- 
tions are expensive on the KSR 1. 

On all three machines, the differences in performance between thc 
:~d;~ptivc ( x )  ;ind 11011ild;lpti~~ ( A )  vcrsions of thc loci~l-spinning combin- 
ing tree barriers are relatively small. The difference is most noticeable on 
the KSR 1, where remote operations are much more expensive. Performing 
extra work to reduce the number of remote operations on the barrier's 
critical path is a good idea when those operations are slow. Since processor 
technology is improving more rapidly than memory or interconnect 
technology, it seems likely that adaption will become increasingly impor- 
tant for future generations of machines. 

O n  the Butterfly 1, slow atomic operations and slow processors make 
all of the combining tree algorithms uncompetitive: the static tree barrier, 
the dissemination barrier, and the fuzzy centralized harrier with propor- 
tional backoff work much better. On more modern machines, however, 
fuzziness and adaptation pay off. On the TC2000, the fuzzy local-spinning 
adaptive combining tree barrier outperforms all known alternatives when 
the amount of fuzzy computation exceeds about I0 % of the average time 
between barriers. On the KSR 1 ,  the arrival phase of the local-spinning 

Time 1~ ... - - .  ..... ...... 
0..  

0 200 400 600 
Fuzzy delay (ps) ( lM.5  ms episode delay) 

Fig. 1 I .  Dependence of perfomance on amount of f u q  computation on the Butterfly 1 
(top), TC2000 (middle). and KSR I (bottom). 
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adaptive combining tree barrier, combined with a central wakeup flag, 
outperforms all known alternatives with reasonable inter-barrier delays on 
more than about 50 processors. Its fuzzy version outperforms the nonfuzzy 
version when the amount of fuzzy computation exceeds about 5 O h  of the 
average time between barriers. On smaller numbers of processors, when 
contention is not :IS serioi~s a concern, thc centr:tlizcd barriers (regular iind 
fuzzy) provide the best performance. 

5. CONCLUSIONS 

On the basis of the current study, as well as previous work,(" we offer 
the following recommendations: 

Use a fuzzy barrier whenever the application can be structured 
with a significant amount of fuzzy computation. As shown in 
Fig. 11, the pay-off can be substantial. 

On modest numbers of processors, regardless of architecture, use 
the centralized barrier with proportional backoff (fuzzy or non- 
fuzzy version, as appropriate). Exactly how many processors 
constitute a  modest^' number depends on the machine architec- 
ture, the arrival time skew, and the amount of fiizzy computa- 
tion. In our experiments the cross-over point varies from a low of 
less than 10 to a high of over 40. 

On a large cache coherent machine (with unlimited replication 
and fast broadcast or multicast), combine a central wakeup flag 
with the arrival phase of either the static tree bilrrier, the I ~ i l l -  

spinning adaptive combining tree barrier, or preferably, if appro- 
priate, the latter's fuzzy variant. (See the bottom [KSR] graphs 
in Figs. 7 and 10; see also Fig. 8.) 

On a large NUMA machine (or a cache-coherent machine that 
does not support unlimited replication and fast broadcast or 
multicast), use either the dissemination barrier, the static tree 
barrier, or preferably, if appropriate, the fuzzy local-spinning 
adaptive combining tree barrier. (See the middle [TC2000] 
graphs in Figs. 7 and 10.) 

These recommendations apply primarily to modern machines, in 
which atomic f etch-and-@ operations are comparable in speed to loads 
and stores, but in which all remote operations take scores of cycles. On the 
older Butterfly 1, the dissemination and static tree barriers achieve a sub- 
stantial advantage over the competition by relying only on ordinary (fast) 
reads and writes. The only algorithm that ever outperforms them is the 

fuzzy centralized barrier (with proportional backoff), and only for applica- 
tions with a significant amount of fuzzy computation, and with process 
arrival times that are skewed enough by load imbalance to keep contention 
under control (see Fig. 10). 

On the somewhat more modern TC2000, atomic operations are nearly 
arc fast as 10:ids and stores, but remote operations arc still only three timcs 
as expensive as an access to local memory (the hardware does not cache 
shared memory coherently), The centralized barriers suffer more from 
memory contention than they did on the Butterfly 1, and the fuzzy versions 
of the local-spinning combining tree barriers are fast enough to outperform 
the competition by a substantial margin in applications with fuzzy com- 
putation (see Figs. 10 and 11). Adaptation is not major win, however, and 
the dissemination and static tree barriers still perform best for non-fuzzy 
computations. 

On the most recent of the machines, the cache-coherent KSR 1, 
remote operations are some 300 times as expensive as a cache hit, and 
shared memory can be cached. The centralized barriers suffer less from 
contention than they did on the TC2000, but still enough to cause serious 
problems when the load is well balanced across a large number of pro- 
cessors (see Fig. 9). The best all-around strategy would appear to combine 
a log-time arrival phase with a central waketip flag. For applications with 
a significant amount of fuzzy computation, the arrival phase should be 
taken from the fuzzy local-spinning adaptive combining tree barrier (see 
Fig. 10). For other applications, it should be taken from the static tree 
barrier or the (nonfuzzy) local-spinning adaptive combining tree barrier 
(see Fig. 7). 

I t  is not yct clci~r whcthcr cachc cohcrcncc should bc providcd i n  
hardware. Our experiments suggests that i t  is not required for high-perfor- 
mance synchronization. In hct, the Buttcrfly I ,  while ten years older than 
t11c K S R  I ,  is i l b l~  to ~icllicvc :I 64-node bi~rricr i n  onc fourth thc absolutc 
time! In a11 cases, the key to scalable synchronization is to avoid situations 
that require inter-processor coherence tra6c. The principal advantage of 
cache coherence, for synchronization purposes, is that it enables a process 
to spin locally on a variable that was not statically allocated in local main 
memory. One can achieve essentially the same effect on hardware without 
coherent caches by using f e t c h - a n d - s t o r e  or compare-and-swap to 
replace a flag in an arbitrary location with a pointer to a flag in a location, 
on which a process can then spin locally. This technique is a key part of 
the algorithms in Figs. 4 and 5, and should permit variants of most syn- 
chronization algorithms to run on NUMA machines. 

Since even the fastest software barriers require time logarithmic in 
the number of participating processes, a morc promising possibility for 
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l~;~rdwi~rc sitpport is 10 i tnplct~~ct~t barricrs directly, as it1 lllc 'I'hitlking 
Machines CM-5 or the Cray T3D. Hardware implementations can exploit 
large fan-in logic to dramatically reduce this logarithmic factor, effectively 
producing a constant-time barrier for machines of realistic size. It may be 
dificult, however, for hardware to match the flexibility of software barriers 
in such dimensions as variable numbers of participants, or concurrent, 
independent execution in separate machine partitions. Further experiments 
are needed to determine whether the performance gains outweigh these 
potential disadvantages. 

Our work has demonstrated that log-length critical paths, adaptation, 
fuzziness, and local-only spinning are desirable and mutually compatible, 
and that their combination is competitive with the best known alternative 
techniques for busy-wait barrier synchronization. Since improvements in 
processor performance are likely to outstrip improvcmcnts in mcmory and 
interconnect performance for the foreseeable future, and since hardware 
designers now routinely implement fast atomic instructions, the local- 
spinning adaptive combining tree barriers, both regular and fuzzy, are of 
serious practical use. 

ACKNOWLEDGMENTS 

Our thanks to Tom LeBlanc, Evangelos Markatos, Ricardo Bianchini, 
and Bob Wisniewski for their comments on this paper, and to Mark 
Crovella for this help in learning to use the KSR 1. Our thanks also to 
editor Gary Lindstrom and to the anonymous referees-referee Bl in par- 
ticular. For the use of the TC2000. we thank the Advanced Computing 
Research Facility, Mathematics and Computer Science Division, Argonnc 
National Laboratory. For the use of the KSR 1, we thank the Cornell 
Theory Center and its staff, especially Lynn Baird, Donna Bergmark, and 
Marty Faltesek. 

REFERENCES 

R. Gupta and C. R. Hill, A Scalable Implementation of Barrier Synchronization Using an 
Adaptive Combining Tree, I JPP 18(3):161-I80 (June 1989). 
R. Gupta, The Fuzzy Barrier: A Mechanism for High Speed Synchronization of Pro- 
cessors, Proc. of the Third In!. Conb on Archit. Support for Progr. Lang. and Oper. Svst., 
pp. 54-63 (April 1989). 
D. Hensgen, R. Finkel, and U. Manber, Two Algorithms for Barrier Synchronization, 
IJPP 17(l):l-I7 (1988). 
B. Lubachevsky, Synchronization Bamer and Related Tools for Shared Memory Parallel 
Programming, Proc. of the In!. Con$ on Parallel Processing 11, pp. 175-179 (August 1989). 
J. M. Mellor-Crummey and M. L. Scott, Algorithms for Scalable Synchronization on 

Shitrcd-Mcmory Mulliproccssors, ACM 7'run.r. on Computc,r Sy.vtcm.$ 9( I ):2l-65 (February 
1991). 

6. P.-C. Yew, N.-F. Tzeng, and D. H. Lawrie, Distributing Hot-Spot Addressing in Large- 
Scale Multiprocessors, I E E E  Trans. on Computers C-36(4):388-395 (April 1987). 

7. E. D. Brooks Ill. The Butterfly Barrier, IJPP 15(4):295-307 (1986). 
8. T. E. Anderson, The Performance of Spin Lock Alternatives for Shared-Memory Multi- 

processors, I E E E  Trans. on Parallel and Distributed Systems 1: l:6-I6 (January 1990). 
9. G. Graunke and S. Thakkar, "Synchronization Algorithms for Shared-Memory Multi- 

processors, computer 23(6):60-69 (June 1990). 
10. W. C. Hsieh and W. E. Weihl, Scalable Reader-Writer Locks for Parallel Systems, 

MIT/LCS/TR-521, Laboratory for Computer Science, MIT (November 1991). 
I I .  A. C, Lee, Barrier Synchronization over Multistage Interconnection Networks, Pro<*. 111' 

the Second I E E E  Symp. on Parallel and Distributed Processing, pp. 130-1 33 (December 
1990). 

12. J. M. Mellor-Crummey and M. L. Scott, Synchronization Without Contention, Proc. of 
the Fourth In!. Conf OII Archit. Support for Progr. h n g .  and Oper. Sy.~t., pp. 269-278 
(April I991 ). 

13. J. M. Mellor-Crummey and M. L. Scott, Scalable Reader-Writer Synchronization for 
Shared-Memory Multiprocessors, Proc. of the Third A C M  Syn~p. on Principles and 
Practice of Paro l l~~ l  Programnting, pp. 106-1 13 (April 1991). 

14. M. Herlihy, Wait-Free Synchronization, A C M  Transactions on Programming Language.$ 
and Systems l3(1 ):I24149 (January 1991). 

15. T. Johnson and D. Shasha, A Framework for the Performance Analysis of Concurrent 
B-tree Algorithms, Proc. of the Ninth A C M  SIGACT-SIGMOD-SIGART Synlp. on Prin- 
ciple,~ of Dotabose Systent.~, pp. 273-287 (April 19%). 

16. P, L. Lehman and S. B. Yao, Eficient Locking for Concurrent Operations on B-Trees, 
A C M  Trans. on Database Systems 6(4):650470 (December 1981). 

17. Y. Sagiv, Concurrent Operations on B*-Trees with Overtaking, J .  qf Camp. (tnd S~s.vt. Sci. 
33(2):275-296 (October 1986). 

18. E. P. Markatos and T. J. LeBlanc, Shared-Memory Multiprocessor Trends and the 
Implications for Parallel Program Performance, TR 420, Computer Science Department, 
University of Rochcstcr (Mi~y 1992). 

19. T, H. Dunigan, Kendall Square Multiprocessor: Early Experiences and Performance, 
ORNLFM-12065. Oak Ridge National Laboratory (May 1992). 

Printed in &lgiunt 
Vrrmtwmrdelijke uitgetvr: 

Hu&r~ Van Maele 
Attenawaat 20 - 8-8jtO St:Kruis 




