
Linking Shared Segments
W. E. Garrett, M. L. Scott, R. Bianchini, L. I. Kontothanassis, R. A. McCallum,

J. A. Thomas, R. Wisniewski and S. Luk – University of Rochester

ABSTRACT
As an alternative to communication via messages or files, shared memory has the potential to
be simpler, faster, and less wasteful of space. Unfortunately, the mechanisms available for
sharing in Unix are not very easy to use. As a result, shared memory tends to appear
primarily in self-contained parallel applications, where library or compiler support can take
care of the messy details. We have developed a system, called Hemlock, for transparent
sharing of variables and/or subroutines across application boundaries. Our system is
backward compatible with existing versions of Unix. It employs dynamic linking in
conjunction with the Unix mmap facility and a kernel-maintained correspondence between
virtual addresses and files. It introduces the notion of scoped linking to avoid naming
conflicts in the face of extensive sharing.

1. Introduction

Multi-user operating systems rely heavily on
the ability of processes to interact with one another,
both within multi-process applications and between
applications and servers of various kinds. In the
Unix world, processes typically interact either
through the file system, or via some form of message
passing. Both mechanisms have their limitations,
however, and support for a third approach — shared
memory — can also be extremely useful.

Memory sharing between arbitrary processes is
at least as old as Multics[17]. It suffered something
of a hiatus in the 1970s, but has now been incor-
porated into most variants of Unix. The Berkeley
mmap facility was designed, though never actually
included, as part of the 4.2BSD and 4.3BSD
releases[12]; it appears in several commercial sys-
tems, including SunOS. ATT’s shm facility became
available in Unix System V and its derivatives.
More recently, memory sharing via inheritance has
been incorporated in the versions of Unix for several
commercial multiprocessors, and the external pager
mechanisms of Mach[1] and Chorus[18] can be used
to establish data sharing between arbitrary processes.

Shared memory has several important advan-
tages over interaction via files or messages.

1. Many programmers find shared memory more
conceptually appealing than message passing.
The growing popularity of distributed shared
memory systems[16] suggests that program-
mers will adopt a sharing model even at the
expense of performance.

2. Shared memory facilitates transparent, asyn-
chronous interaction between processes, and
shares with files the advantage of not requir-
ing that the interacting processes be active
concurrently.

3. When interacting processes agree on data for-
mats and virtual addresses, shared memory

provides a means of transferring information
from one process to another without translat-
ing it to and from a (linear) intermediate
form. The code required to save and restore
information in files and message buffers is a
major contributor to software complexity, and
much research has been aimed at reducing
this burden (e.g., through data description
languages and RPC stub generators).

4. When supported by hardware, shared memory
is generally faster than either messages or
files, since operating system overhead and
copying costs can often be avoided. Work by
Bershad and Anderson, for example[4], indi-
cates that message passing should be built on
top of shared memory when possible.

5. As an implementation technique, sharing of
read-only objects can save significant amounts
of disk space and memory. All modern ver-
sions of Unix arrange for processes executing
the same load image to share the physical
page frames behind their text segments.
Many (e.g., SunOS and SVR4) extend this
sharing to dynamically-linked position-
independent libraries. More widespread use
of position-independent code, or of logically-
shared, re-entrant code, could yield additional
savings.

Both files and message passing have applica-
tions for which they are highly appropriate. Files
are ideal for data that have little internal structure, or
that are frequently modified with a text editor. Mes-
sages are ideal for RPC and certain other common
patterns of process interaction. At the same time,
we believe that many interactions currently achieved
through files or message passing could better be
expressed as operations on shared data. Many of the
files described in section 5 of the Unix manual, for
example, are really long-lived data structures. It
seems highly inefficient, both computationally and in

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 13

Linking Shared Segments Garrett, et al.

terms of programmer effort, to employ access rou-
tines for each of these objects whose sole purpose is
to translate what are logically shared data structure
operations into file system reads and writes. In a
similar vein, we see numerous opportunities for
servers to communicate with clients through shared
data rather than messages, with savings again in both
cycles and programmer effort.

Despite its merits, however, shared memory in
Unix remains largely confined to inheritance-based
sharing within self-contained multiprocessor applica-
tions, and special-purpose sharing with devices. We
speculate that much of the reason for this limited use
lies in the lack of a transparent interface: access to
private memory is much simpler and more easily
expressed than access to shared memory; sharing is
difficult to set up in the first place and variable and
functions in shared memory cannot be named
directly.

Both the System V shm and Berkeley mmap
facilities require the user to know significant
amounts of set-up information before sharing can
take place. Processes must agree on ownership of a
shared segment, and (if pointers are to be used) on
its location in their respective address spaces.
Processes using shm must also agree on some form
of naming convention to identify shared segments
(mmap uses file system naming). Most important,
neither mmap nor shm allows language level access
to shared segments. References to shared variables
and functions must in most languages (including C)
be made indirectly through a pointer. There is no
performance cost for this indirection on many
machines, but there is a loss in both transparency
and type safety — static names are not available,
explicit initialization is required, and any sub-
structure for the shared memory is imposed by con-
vention only.

In an attempt to address these problems we
have developed a system, Hemlock,1 that automates
the creation and use of shared segments. Our goal
in developing Hemlock was to simplify the interface
to shared memory facilities while increasing the
flexibility of the shared memory segments at the
same time. Hemlock consists of new static and
dynamic linkers, a run-time library, and a set of ker-
nel extensions. These components cooperate to map
and link shared segments into programs, providing
type safety and language-level access to shared
objects, and hiding the distinction between shared
and private objects. Hemlock also facilitates the use
of pointers to shared objects by maintaining a spe-
cial file system, with a globally-consistent mapping
between virtual addresses and sharable files. The

1Named for an evergreen tree species common in upstate
New York, and for one of the lakes from which Rochester
obtains its water supply.

mapping ensures that a given shared object lies at
the same virtual address in every address space.
Finally, through its lazy dynamic linking, Hemlock
allows the programmer to design applications whose
components, both private and shared, are determined
at run time.

We focus in this paper on linker support for
sharing, including scoped linking to avoid the nam-
ing conflicts that arise when linking across conven-
tional application boundaries, dynamic linking to per-
mit the private and shared components of applica-
tions to be determined at run time, and lazy linking
to minimize unnecessary work. We provide an over-
view of Hemlock in section 2, and a more detailed
description of its linkers in section 3. We describe
example applications in section 4, discuss some
semantic subtleties in section 5, and conclude in sec-
tion 6.

2. An Overview of Hemlock

Our emphasis on shared memory has its roots in the
Psyche project[19, 20]. Our focus in Psyche was on
mechanisms and conventions that allow processes
from dissimilar programming models (e.g., Lynx
threads and Multilisp futures) to share data abstrac-
tions, and to synchronize correctly[14, 21]. The fun-
damental assumption of this work was that sharing
would occur both within and among applications.
Our current work[7, 23] is an attempt to make that
sharing commonplace in the context of traditional
operating systems.

Hemlock uses dynamic linking to allow
processes to access shared code and data with the
same syntax employed for private code and data. It
also places shared segments into a special file sys-
tem that maintains a globally-consistent mapping
between sharable objects and virtual addresses,
thereby ensuring that pointers to shared objects will
be interpreted consistently in different protection
domains. Unlike the ‘‘shared’’ libraries of systems
such as SunOS and SVR4, Hemlock supports
genuine write sharing, not just the physical sharing
of logically private pages. Unlike such integrated
programming environments as Cedar[24] and
Emerald[10], it supports sharing of modules written
in conventional languages, in a manner that is back-
ward compatible with Unix. An early prototype of
Hemlock ran under SunOS, but we are now working
on Silicon Graphics machines (with SGI’s IRIX
operating system). Our long-term plans call for the
exploitation of processors with 64-bit addressing, but
this is beyond the scope of the current paper.

We use the term segment to refer to what Unix
and Mach call a ‘‘memory object’’. Each segment
can be accessed as a file (with the traditional Unix
interface), or it can be mapped into a process’s
address space and accessed with load and store
instructions. A segment that is linked into an
address space by our static or dynamic linkers is

14 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

Garrett, et al. Linking Shared Segments

referred to as a module. Each module is created
from a template in the form of a Unix .o file. Each
template contains references to symbols, which are
names for objects, the items of interest to program-
mers. (Objects have no meaning to the kernel.) The
linkers cooperate with the kernel to assign a virtual
address to each module. They relocate modules to
reside at particular addresses (by finalizing absolute
references to internal symbols; some systems call
this loading), and they link modules together by
resolving cross-module references.

cccc

executing
program

a.out, with ldl
and special crt0

cc

lds

and data (.c files)

Private source code

and data (.c files)

Private source code

cc

lds

a.out, with ldl
and special crt0

External declarations

for shared code

and data (.h files)

Shared source code

and data (.c files)

optional

(brought in by ldl)

lds lds

created by ldl
on first use

. . .shared1.o sharedN.o

sharedNshared1 . . .

executing
program

. . .

. . .

PROGRAM 1 PROGRAM 2

Figure 1: Building a Program with Linked-in Shared Objects

Our linkers associate a shared segment with a
Unix .o file, making it appear to the programmer as
if that file had been incorporated into the program
via separate compilation (see Figure 1). Objects
(variables and functions) to be shared are generally
declared in a separate .h file, and defined in a
separate .c file (or in corresponding files of the
programmer’s language of choice). They appear to
the rest of the program as ordinary external objects.
The only thing the programmer needs to worry about
(aside from algorithmic concerns such as synchroni-
zation) is a few additional arguments to the linker;
no library or system calls for set-up or shared-
memory access appear in the program source.

Hemlock’s linker for sharing, lds, is currently
implemented as a wrapper that extends the func-
tionality of the Unix ld linker. Lds defines four
sharing classes for the object modules (.o files) from
which an executing program is constructed. These
classes are static private, dynamic private, static
public, and dynamic public. Classes can be specified
on a module-by-module basis in the arguments to
lds. They differ with respect to the times at which
they are created and linked, and the way in which
they are named and addressed; see Table 12.

At static link time, lds creates a load image
containing a new instance of every private static
module. It also creates any public static modules
that do not yet exist, but leaves them in separate
files; it does not copy them into the load image. A
public module resides in the same directory as its
template (.o) file, and has a name obtained by drop-
ping the final ‘.o’. It also has a unique, globally-

2For the purposes of this paper, we use the word
‘process’ in the traditional Unix sense. Like most
researchers, we believe that operating systems should
provide separate abstractions for threads of control and
protection domains. Our work is compatible with this
separation, but does not depend upon it.

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 15

Linking Shared Segments Garrett, et al.

agreed-upon virtual address, and is internally relo-
cated on the assumption that it resides at that
address. Public modules are persistent; like tradi-
tional files they continue to exist until explicitly des-
troyed.

New instance Default
Sharing Class When linked created/destroyed portion of

for each process address space

Static private Static link time
Dynamic private Run time

yes Private

Static public Static link time
Dynamic public Run time

no Public

Table 1: Class creation and link times

Lds resolves undefined references to symbols in
static modules. It does not resolve references to
symbols in dynamic modules. In fact, it does not
even attempt to determine which symbols are in
which dynamic module, or insist that the modules
yet exist. Instead, lds saves the module names and
search path information in the program load image,
and links in an alternative version of crt0.o, the Unix
program start-up module. At run time, crt0 calls our
lazy dynamic linker, ldl.

Ldl uses the saved information to locate
dynamic modules. It creates a new instance of each
dynamic private module, and of each dynamic public
module that does not yet exist. It then maps static
public modules and all dynamic modules into the
process address space, and resolves undefined refer-
ences from the main load image to objects in the
dynamic modules. If any module contains undefined
references (this is likely for dynamic private
modules, and possible for newly-created public
modules), ldl maps the module without access per-
missions, so that the first reference will cause a seg-
mentation fault. It installs a signal handler for this
fault. When a fault occurs, the signal handler
resolves any undefined external references in (all
pages of) the module that has just been accessed,
mapping in (possibly inaccessibly) any new modules
that are needed.

This lazy linking supports a programming style
in which users refer to modules, symbolically,
throughout their programming environment. It
allows us to run processes with a huge ‘‘reachability
graph’’ of external references, while linking only the
portions of that graph that are actually used during
any particular run. We envision, for example, re-
writing the emacs editor with a functional interface
to which every process with a text window can be
linked. With lazy linking, we would not bother to
bring the editor’s more esoteric features into a par-
ticular process’s address space unless and until they
were needed.

At static link time, modules are specified to lds
the same way they are specified to ld: as absolute or
relative path names. When attempting to find
modules with relative names, lds uses a search path
that can be altered by the user. It looks first in the
current directory, next in an optional series of direc-
tories specified via command-line arguments, then in
an optional series of directories specified via an
environment variable, and finally in a series of
default directories. Lds applies the search strategy
at static link time for modules with a static sharing
class. It passes a description of the search strategy
to ldl for use in finding modules with a dynamic
sharing class.

A template (.o) file is generally produced by a
compiler. In addition, it can at the user’s discretion
be run through lds, with an argument that retains
relocation information. In this case, lds can be
asked to include search strategy information in the
new .o file. When creating a new dynamic module
from its template at run time, ldl attempts to resolve
undefined references out of the new module using
the search strategy (if any) specified to lds when
creating that module. If this strategy fails, it reverts
to the strategy of the module(s) that make references
into the new module. This scoped linking preserves
abstraction by allowing a process to link in a large
subsystem (with its own search rules), without wor-
rying that symbols in that subsystem will cause nam-
ing conflicts with symbols in other parts of the pro-
gram. Scoped linking is discussed in further detail
in the following section.

To facilitate the use of pointers, we must insist
that all public modules be linked at the same virtual
address in every protection domain. To ensure such
uniform addressing on a 64-bit machine, we would
associate a unique range of virtual addresses with
every Unix file. On 32-bit machine, we maintain
addresses only for files on a special disk partition,
and then insist that public modules (and the tem-
plates from which they are created) reside on this
partition. We retain the traditional Unix interfaces
to the shared file system, both for the sake of back-
ward compatibility and because we believe that these
interfaces are appropriate for many applications.

The user-level handler for the SIGSEGV signal
catches references to modules that are not currently

16 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

Garrett, et al. Linking Shared Segments

part of the address space of the executing process.
The handler actually serves two purposes: it
cooperates with ldl to implement lazy linking, and it
allows the process to follow pointers into segments
that may or may not yet be mapped. When trig-
gered, the handler checks to see if the faulting
address lies in the shared portion of the process’s
address space. If so, it uses a (new) kernel call to
translate the address into a path name and, access
rights pemitting, maps the named segment into the
process’s address space. If the address lies in a
module that has been set up for lazy linking, the
handler invokes ldl to resolve any undefined or relo-
catable references. (These may in turn cause other
modules to be set up for lazy linking.) Otherwise,
the handler opens and maps the file. It then restarts
the faulting instruction. For compatibility with pro-
grams that already catch the SIGSEGV signal, the
library containing our signal handler provides a new
version of the standard signal library call. When the
dynamic linking system’s fault handler is unable to
resolve a fault, a program-provided handler for SIG-
SEGV is invoked, if one exists.

3. Linking in Hemlock

Linker support for sharing capitalizes on the
lowest common denominator for language implemen-
tations: the object file. By making modules
correspond to object files, Hemlock gives the pro-
grammer first-class access to the objects they
contain — with language-level naming, type check-
ing, and scope rules — without modifying the com-
pilers. By comparison, sharing based on pointer-
returning system calls is comparatively distant from
the programming language. The subsections below
provide additional detail on the linkers, the shared
file system, and the rationale for lazy and scoped
linking.
The Linkers

Our current static linker is implemented as a
wrapper, lds, around the standard IRIX ld linker.
The wrapper processes new command line options
directly related to its functionality and passes the
others to ld. Lds-specific options allow for the asso-
ciation of sharing classes with modules and the
specification of search paths to be used when locat-
ing modules. In addition, lds provides ldl with relo-
cation information about static modules and warns
the user if the dynamic modules do not yet exist.
We are in the process of building a completely new
stand-alone static linker that will also support scoped
linking, currently available only in the dynamic
linker, ldl.

Both lds and ldl use an extended search stra-
tegy for modules, inspired by the analogous strategy
in the SunOS dynamic linker. At static link time,
lds searches for modules in (1) the current directory,
(2) the path specified in a special command-line
argument, (3) the path specified by the

LD_LIBRARY_PATH environment variable, and (4)
the default library directories. If there is more than
one static module with the same name, lds uses the
first one it finds. At execution time, ldl searches for
dynamic modules in (1) the path specified by the
LD_LIBRARY_PATH environment variable, and (2)
the directories in which lds searched for static
modules: the directory in which static linking
occurred, the directories specified on the lds com-
mand line, the directories specified by the
LD_LIBRARY_PATH variable at static link time,
and the default directories. Users can arrange to use
new versions of dynamic modules by changing the
LD_LIBRARY_PATH environment variable prior to
execution. This feature is useful for debugging and,
more important, for customizing the use of shared
data to the current user or program instance. (We
return to this issue in section 4 below.) Lds aborts
linking if it cannot find a given static module. It
issues a warning message and continues linking if it
cannot find a given dynamic module.

To support the dynamic linker, lds creates a
data structure listing the dynamic modules, and
describing the search path it used for static modules.
To give ldl a chance to run prior to normal execu-
tion, lds links C programs with a special start-up
file. It would use similar files for other program-
ming languages. Ldl also creates any static public
modules that do not yet exist, and initializes those
objects from their templates. Finally, in the current
wrapper-based implementation, lds must compensate
for certain shortcomings of the IRIX ld. Ld refuses
to retain relocation information for an executable
program, so lds must save this in an explicit data
structure. Ld also refuses to resolve references to
symbols at absolute addresses (as required for static
public modules), so lds must do so.

Ldl differs from most dynamic linkers in
several ways. Its facilities for lazy and scoped link-
ing are discussed in more detail below. In addition,
it will use symbols found in dynamically-linked
modules to resolve undefined references in the
statically-linked portion of the program, even when
the location of those symbols was not known at
static link time. To cope with an unfortunate limita-
tion of the R3000 architecture, ldl insists that
modules be compiled with a flag that disables use of
the processor’s performance-enhancing global pointer
register. Addressing modes that use the pointer are
limited to 24 bit offsets, and are incompatible with a
large sparse address space. To cope with a similar
28-bit addressing limit on the processor’s jump
instructions, lds and ldl arrange for over-long
branches to be replaced with jumps to new, nearby
code fragments that load the appropriate target
address into a register and jump indirectly.

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 17

Linking Shared Segments Garrett, et al.

Address Space and File System Organization
Given appropriate rights, programs should be

able to access a shared object or segment simply by
using its name. But different kinds of names are
useful for different purposes. For human beings,
ease of use generally implies symbolic names, both
for objects and for segments: the linkers therefore
accept file system names for segments, and support
symbolic names for objects. For running programs,
on the other hand, ease of use generally implies
addresses: programs need to be able to follow
pointers, even if they cross segment boundaries. It
is easy to envision applications in which both types
of names are useful. Any program that shares data
structures and also manipulates segments as a whole
may need both sets of names.

In our 32-bit prototype, we have reserved a
1G-byte region between the Unix heap and stack
segments, and have associated this region with the
kernel-maintained shared file system. The file sys-
tem is configured to have exactly 1024 inodes, and
each file is limited to a maximum of 1M bytes in
size. Hard links (other than ‘.’ and ‘. .’) are prohi-
bited, so there is a one-one mapping between inodes
and path names. We have modified the IRIX kernel
to keep track of the mapping internally, and have
provided system calls that translate back and forth.

All of the normal Unix file operations work in
the shared file system. The only thing that sets it
apart is the association between file names and
addresses. Mapping from file names to addresses is
easy: the stat system call already returns an inode
number. We provide a new system call that returns
the filename for a given inode, and we overload the
arguments to open so that the programmer can open
a file by address instead of by name, with a single
system call. For the sake of simplicity, the mapping
in the kernel from addresses to files employs a linear
lookup table. We initialize the table at boot time by
scanning the entire shared file system, and update it
as appropriate when files are created and destroyed.
For an experimental prototype, these measures have
the desirable property of allowing the
filename/address mapping to survive system crashes
without requiring modifications to on-disk data struc-
tures or to utilities like fsck that understand those
structures.

With 64-bit addresses, we will extend the
shared file system to include all of secondary store,
and will relax the limits on the number and sizes of
shared files. We plan to provide every segment,
whether shared or not, with a unique, system-wide
virtual address. At the same time, we plan to retain
the ability to overload addresses within a reserved,
private portion of the 64-bit space. Within the ker-
nel, we will abandon the linear lookup table and the
direct association between inode numbers and
addresses. Instead, we will add an address field to
the on-disk version of each inode, and will link these

inodes into a lookup structure — most likely a B-
tree — whose presence on the disk allows it to sur-
vive across re-boots.
Lazy Dynamic Linking

Public modules in Hemlock can be linked both
statically and dynamically. The advantage of
dynamic linking is that it allows the makeup of a
program to be determined very late. With dynamic
linking, an application can be composed of different
modules from run to run, depending on who is run-
ning it, what directories and modules currently exist,
what changes have recently been made to environ-
ment variables, etc.

We expect to rely on run-time identification of
modules for a variety of purposes. By using search
paths containing directories that are named relative
to the current or home directory, we can arrange for
applications to link in data structures that are shared
with other applications belonging to the same user,
project etc. Similarly, by modifying environment
variables prior to execution, we can arrange for new
processes to find shared data in a temporary direc-
tory. We describe the use of this technique in paral-
lel applications in section 4 below.

Dynamic linking is already used in several
Unix systems (including SunOS and SVR4) to save
space in the file system and in physical memory, and
to permit updating of libraries without recompiling
all the programs that employ them. In many of
these systems, position-independent code (PIC) per-
mits the text pages of libraries to be physically
shared, but this is only an optimization; each process
has a private copy of any static variables. The PIC
produced by the Sun compilers uses jump tables that
allow functions to be linked lazily, but references to
data objects are all resolved at load time. Sun’s ld
also insists that all dynamically-linked libraries exist
at static link time, in order to verify the names of
their entry points.

Hemlock uses dynamic linking for both private
and shared data, and does not insist on knowing at
static link time which symbols will be found in
which dynamically-linked modules. This latter point
may delay the reporting of errors, and can increase
the cost of run-time linking, but increases flexibility.
Lds requires only that the user specify the names of
all modules containing symbols accessed directly
from the main load image. It then accepts argu-
ments that allow the user to specify a search path on
which to look for those modules at run time. Any
module found may in turn specify a search path on
which to look for modules containing symbols that it
references.

Our fault-driven lazy linking mechanism is
slower than the jump table mechanism of SunOS,
but works for both functions and data objects, and
does not require compiler support. We do not
currently share the text of private modules, but will

18 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

Garrett, et al. Linking Shared Segments

do so when PIC-generating compilers become avail-
able under IRIX. Given the opportunity, we will
adopt the SunOS jump-table-based lazy linking
mechanism as an optimization: modules first
accessed by calling a (named) function will be
linked without fault-handling overhead.

A.o - shared
B.o - private
C.o - private

 EXECUTABLE

 in memory

 in memory

 already linked

 not yet linked

 not yet in memory

module and path fixed

unknown at present

path not fixed

A.o B.o C.o

D.o

G.oG.o

E.o

G.o - privateG.o - private

F.o

D.o - private
E.o - shared

E.o - shared E.o - shared
F.o - private

Figure 2: Hierarchical Inclusion of Dynamically-Linked Modules

Several dynamic linkers, including the Free
Software Foundation’s dld[9] and those of SunOS
and SVR4, provide library routines that allow the
user to link object modules into a running program.
Dld will resolve undefined references in the modules
it brings in, allowing them to point into the main
program or into other dynamically-loaded modules.
The Sun and SVR4 routines (dlopen and dlsym) do
not provide this capability; they require the newly-
loaded module be self-contained. Neither dld nor
the explicitly-invoked Sun/SV routines resolves
undefined references in the main program; they sim-
ply return pointers to the newly-available symbols.
Scoped Linking

Traditional linking systems, both static and
dynamic, deal only with private symbols. They bind
all external references to a given name to the same

object in all linked modules. If more than one
module exports an object with a given name, the
linker either picks one (e.g., the first) and resolves
all references to it, or reports an error. Our system
of dynamic linking, with shared symbols and recur-
sive, lazy inclusion of modules, presents cases where
either behavior is undesirable.

Specifying that a module is to be included in a
program starts a link in a potentially long chain.
Hemlock allows modules to have their own search
path and list of modules, which in turn may have
their own lists, recursively. Linking a single module
may therefore cause a chain reaction that ends up
incorporating modules that the original programmer
knew nothing about. These modules may have
external symbols that the original program knew
nothing about. Some of these external symbols may
have the same name as external symbols exported by
the main program, even though they are actually
unrelated. This possibility introduces a potentially
serious naming conflict.

The problem is that linkers map from a rich
hierarchy of abstractions to a flat address space.

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 19

Linking Shared Segments Garrett, et al.

Various programming languages (e.g., Modula-2 and
Common Lisp) that use the idea of a module for
abstraction already deal with this problem. Their
implementations typically preface variables and
function names with module names, thereby greatly
reducing the chance of naming conflicts. Scoped
linking provides similar freedom from ambiguity, in
a language-independent way.

When a module M is brought in, its undefined
references are first resolved against the external sym-
bols of modules found on M’s own module list and
search path. If this step is not completely success-
ful, consideration moves up to the module(s) that
caused M to be loaded in — M’s ‘‘parent’’, so to
speak: remaining undefined references are resolved
against the external symbols of modules found on
the parent’s module list and search path. If
unresolved references still remain, they are then
resolved using the module list and search path of
M’s grandparent, and so on.

The linking structure of a program can be
viewed as a DAG (see Figure 2), in which children
can search up from their current position to the root,
but never down. Modules wishing to have control
over their symbols must specify appropriate modules
and directories on their module list and search path.
Modules wishing to rely on a symbol being resolved
by the parent can simply neglect to provide this
information. References that remain undefined at the
root of the DAG are left unresolved in the running
program. If encountered during execution they result
in segmentation faults that are caught by the signal
handler, and could be used (at the programmer’s dis-
cretion) to trigger application-specific recovery.

4. Example Applications

In this section we consider several examples of
the usefulness of cross-application shared memory.
Administrative Files

Unix maintains a wealth of small administrative
files. Examples include much of the contents of
/etc, the score files under /usr/games, the many
‘‘dot’’ files in users’ home directories, bitmaps,
fonts, and so on. Most of these files have a rigid
format that constitutes either a binary linearization or
a parsable ASCII description of a special-purpose
data structure. Most are accessed via utility routines
that read and write these on-disk formats, converting
them to and from the linked data structures that pro-
grams really use.

For the designer of a new structure, the
avoidance of translation may not be overwhelming,
but it is certainly attractive. As an example of the
possible savings in complexity and cost, consider the
rwhod daemon. Running on each machine, rwhod
periodically broadcasts local status information (load
average, current users, etc.) to other machines, and
receives analogous information from its peers. As

originally conceived, it maintains a collection of
local files, one per remote machine, that contain the
most recent information received from those
machines. Every time it receives a message from a
peer it rewrites the corresponding file. Utility pro-
grams read these files and generate terminal output.
Standard utilities include rwho and ruptime, and
many institutions have developed local variants.
Using the early prototype of our tools under SunOS,
we re-implemented rwhod to keep its database in
shared memory, rather than in files, and modified the
various lookup utilities to access this database
directly. The result was both simpler and faster. On
our local network of 65 rwhod-equipped machines,
the new version of rwho saves a little over a second
each time it is called. Though not earthshaking, this
savings may be significant: many members of our
department run a windowing variant of rwho every
60 seconds. We are currently porting the new server
and utilities to our SGI-based system.
Utility Programs and Servers

Traditionally, UNIX has been a fertile environ-
ment for the creation and use of small tools that can
be connected together, e.g., via pipes. Other sys-
tems, including Multics and the various open operat-
ing systems[24, 25] encourage the construction of
similar building blocks at the level of functions,
rather than program executables. In future work, we
plan to use Hemlock facilities to experiment with
functional building blocks in Unix. We also plan to
experiment with the use of shared data to improve
the performance of interfaces between servers and
their clients.

When synchronous interaction is not required,
modification of data that will be examined by
another process at another time can be expected to
consume significantly less time than kernel-
supported message passing or remote procedure
calls. Even when synchronous communication
across protection domains is required, sharing
between the client and server can speed the call. In
their work on lightweight and user-level remote pro-
cedure calls, Bershad et al. argue that high-speed
interfaces permit a much more modular style of sys-
tem construction than has been the norm to date[4].
The growing interest in microkernels[28] suggests
that this philosophy is catching on. In effect, the
microkernel argument is that the proliferation of
boundaries becomes acceptable when crossing these
boundaries is cheap. We believe that it is even more
likely to become acceptable when the boundaries are
blurred by sharing, and processes can interact
without necessarily crossing anything.
Parallel Applications

A parallel program can be thought of as a col-
lection of sequential processes cooperating to accom-
plish the same task. Threads in a parallel applica-
tion need to communicate with their peers for

20 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

Garrett, et al. Linking Shared Segments

synchronization and data exchange. On a shared
memory multiprocessor this communication occurs
via shared variables. In most parallel environments
global variables are considered to be shared between
the the threads of an application while local vari-
ables are private to a thread. In systems like
Presto[3], however, both shared and private global
variables are permitted. Presto was originally
designed to run on a Sequent multiprocessor under
the Dynix operating system. The Dynix compilers
provide language extensions that allow the program-
mer to distinguish explicitly between shared and
private variables. The SGI compilers, on the other
hand, provide no such support.

When we set out to port Presto to IRIX in the
fall of 1991, the lack of compiler-supported language
extensions became a major problem. The solution
we eventually adopted was to explicitly place shared
variables in memory segments shared between the
processes running the application. Placement had to
be done by editing the assembly code, and was
extremely tedious when attempted by hand. We
created a post-processor to automate this procedure;
it is 432 lines long (including 105 lines of lex
source), and consumes roughly one quarter to one
third of total compilation time. It also embeds some
compiler dependencies; we were forced to re-write it
when a new version of the C compiler was released.

We are currently modifying our Presto imple-
mentation to use our dynamic linking tools. Selec-
tive sharing can be specified with ease. Shared vari-
ables must still be grouped together in a separate
file, but editing of the assembly code is no longer
required. The parent process of the application,
which exists solely for set-up purposes, and does
none of the application’s work, does not link the
shared data file. Rather, it creates a temporary
directory, puts a symbolic link to the shared data
template into this directory, and then adds the name
of the directory to the LD_LIBRARY_PATH
environment variable. At static link time, the child
processes of the parallel application specify that the
shared data structures should be linked as a dynamic
public module. When the parent starts the children,
they all find the newly-created symlink in the tem-
porary directory. The first one to call ldl creates and
initializes the shared data from the template, and all
of them link it in.3 When the computation terminates
the parent process performs the necessary cleanup,
deleting the shared segment, template symlink, and
temporary directory.
Programs with Non-Linear Data Structures

Even when data structures are not accessed
concurrently by more than one process, they may be
shared sequentially over time. Compiler symbol

3Ldl uses file locking to synchronize the creation of
shared segments.

tables are a canonical example. In a multi-pass
compiler, pointer-rich symbol table information is
often linearized and saved to secondary store, only
to be reconstructed in its original form by a subse-
quent pass. The complexity of this saving and res-
toring is a perennial complaint of compiler writers,
and much research has been devoted to automating
the process[15].4 Similar work has occurred in the
message-passing community[8].

With pointers permitted in files, and with a glo-
bal consensus on the location of every segment,
pointer-rich data structures can be left in their origi-
nal form when saved across program executions.
Segments thus saved are position-dependent, but for
the compiler writer this is not a problem; the idea is
simply to transfer the data between passes.

In a related case study, we have examined our
compiler for the Lynx distributed programming
language[22], designed around scanner and parser
generators developed at the University of Wisconsin.
The Wisconsin tools produce numeric tables which a
pair of utility programs translate into initialized data
structures for separately-developed scanner and
parser drivers, written in Pascal. Since Pascal lacks
initialized static variables, the initialization trick
depends on a non-portable correspondence in data
structure layouts between C and Pascal.

With Hemlock, the utility programs that read
the numeric output of the scanner and parser genera-
tors would share a persistent module (the tables)
with the Lynx compiler. The utility programs would
initialize the tables; the compiler would link them in
and use them. These changes would eliminate
between 20 and 25% of code in the utility programs.
They would also save a significant amount of time:
the C version of the tables is over 5400 lines, and
takes 18 seconds to compile on a Sparcstation 1.

An additional example can be found in the xfig
graphical editor, which we have re-written under
Hemlock. While editing, xfig maintains a set of
linked lists that represent the objects comprising a
figure. It originally translated these lists to and from
a pointer-free ASCII representation when reading
and writing files. As the same time, xfig must be
able to copy the pointer-rich representation, to dupli-
cate objects in a figure. The Hemlock version of
xfig uses the pre-existing copy routines for files, at a
savings of over 800 lines of code.

5. Discussion

Public vs. Private Code and Data
A representation of addressing in Hemlock

appears in Figure 3. The public portion of the
address space appears the same in every process,

4Some of this research is devoted to issues of machine
and language independence, but much of it is simply a
matter of coping with pointers.

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 21

Linking Shared Segments Garrett, et al.

though which of its segments are actually accessible
will vary from one protection domain to another.
Addresses in the private portion of the address space
are overloaded; they mean different things to dif-
ferent processes. Private modules (including the
main module of every process) are linked into the
private, overloaded portion of the address space,
while public modules are linked at their globally-
understood address.

32 bit address space 32 bit address space

Shared File System

Bss/Data

0x10000000 - 0x30000000

A

C

 Shared Libraries
 Program Text

Heap

(1GB)
Shared File System

Bss/Data

0x10000000 - 0x30000000

B
A

 Shared Libraries
 Program Text

Heap

(1GB)
Shared File System

Stack
0x70000000 - 0x7FFF0000

0x80000000 - 0xFFFFFFFF 0x80000000 - 0xFFFFFFFF

Stack
0x70000000 - 0x7FFF0000

0x0 - 0x10000000 0x0 - 0x10000000

Kernel Kernel

 Program 1 Program 2

0x30000000 - 0x70000000 0x30000000 - 0x70000000

Figure 3: Hemlock Address Spaces

Every program begins execution in the private
portion of the address space. In our current 32-bit
system, only one quarter of the address space is pub-
lic, and traditional, unmodified Unix programs never
use public addresses. In a 64-bit system, the vast
majority of the address space would be public, and
we would expect programmers to gradually adopt a
style of programming in which public addresses are
used most of the time. Backward compatibility is
thus the principal motivation for providing private
addresses. Some existing programs (generally not
good ones) assume that they are linked at a particu-
lar address. Most existing programs are created by
compilers that use absolute addressing modes to
access static data, and assume that the data are
private. Many create new processes via fork.

Chase, et al.,[5] observe that the Unix fork
mechanism is based in a fundamental way on the use
of static, private data at fixed addresses. Their Opal
system, which adopts a strict, single global transla-
tion, dispenses with fork in favor of an RPC-based
mechanism for animating a newly-created protection
domain. We adopted a similar approach in Psyche;
we agree that fork is an anachronism. It works fine
in Hemlock, however, and we retain it by weight of
precedent. The child process that results from a fork
receives a copy of each segment in the private por-
tion of the parent’s address space, and shares the
single copy of each segment in the public portion of
the parent’s address space. In all cases, the parent
and child come out of the fork with identical pro-
gram counters. If the parent’s PC was at a private
address, the parent and child come out in logically
private but identical copies of the code. If the
parent’s PC was at a public address, the parent and
child come out in logically shared code, which must
be designed for concurrent execution in order to
work correctly.

Like Psyche, Hemlock adopts the philosophy
that code should be considered shared precisely
when its static data is shared. Under this philoso-
phy, the various implementations of ‘‘shared’’

22 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

Garrett, et al. Linking Shared Segments

libraries in Unix are in fact space-saving implemen-
tations of logically private libraries. There is no
philosophical difference between these implementa-
tions and the much older notion of ‘‘shared text’’;
one is implemented in the kernel and the other in the
linkers, but both serve to conserve physical page
frames while allowing the programmer to ignore the
existence of other processes.

A different philosophical position is taken in
systems such as Multics[17], Hydra[27], and Opal,
which clearly separate code from data and speak
explicitly of processes executing in shared code but
using private (static) data. Multics employs an ela-
borate hardware/software mechanism in which refer-
ences to static data are made indirectly through a
base register and process-private link segment.
Hydra employs a capability-based mechanism imple-
mented by going through the kernel on cross-
segment subroutine calls. Opal postulates compilers
that generate code to support the equivalent of Mul-
tics base registers in an unsegmented 64-bit address
space.

With most existing Unix compilers, processes
executing the same code at the same address will
access the same static data, unless the data addresses
are overloaded. This behavior is consistent with the
Hemlock philosophy. Code in the private portion of
the address space is private; if it happens to lie at
the same physical address as similar-looking code in
another address space (as in the case of Unix shared
text), the overloading of private addresses still
allows it to access its own copy of the static data.
Code in the public portion of the address space is
shared if and only if more than one process chooses
to execute it, in which case all processes access the
same static data.

In practice, we can still share physical pages of
code between instances of the same module by using
position-independent code (PIC), which embeds no
assumptions (even after linking) about the address at
which it executes or about the addresses of its static
data or external code or data. Compilers that gen-
erate linkage-table-based PIC are already used for
shared libraries in SunOS and SVR4, and will soon
be available under IRIX.5

The decision as to whether sharable code at a
given virtual address always accesses the same static
data is essentially a matter of taste; we have adopted
a philosophy more in keeping with Unix than with
Multics. In code that is logically shared (with static
data that is shared), Hemlock programmers can dif-
ferentiate between processes on the basis of
� parameters passed into the code in registers,

5We should emphasize that our system does not require
PIC. In fact, the SGI compilers don’t produce it yet.
When it becomes available we will obtain no new
functionality, but we will use less space.

or in an argument record accessed through a
register (frame pointer),

� return values from system calls that behave
differently for different processes (possible
only if processes are managed by the kernel),

� explicit, programmer-specified overloading of
(a limited number of) addresses, or

� programming environment facilities (e.g.,
environment variables) implemented in terms
of one of the above.

Caveats
Easy sharing is unfortunately not without cost.

Although we firmly believe that increased use of
cross-application shared memory can make Unix
more convenient, efficient, and productive, we must
also acknowledge that sharing places certain respon-
sibilities on the programmer, and introduces prob-
lems.
Synchronization

Files are seldom write-shared, and message
passing subsumes synchronization. When accessing
shared memory, however, processes must synchron-
ize explicitly. Unix already includes kernel-
supported semaphores. For lighter-weight synchroni-
zation, blocking mechanisms can be implemented in
user space by providing standard interfaces to thread
schedulers[13], and several researchers have demon-
strated that spin locks can be used successfully in
user space as well, by preventing, avoiding, or
recovering from preemption during critical sec-
tions[2, 6, 13], or by relinquishing the processor
when a lock is unavailable[11].
Garbage Collection

When a Unix process finishes execution or ter-
minates abnormally, its private segments can be
reclaimed. The same cannot be said of segments
shared between processes. Sharing introduces (or at
least exacerbates) the problem of garbage collection.
Good solutions require compiler support, and are
inconsistent with the anarchistic philosophy of Unix.
We see no alternative in the general case but to rely
on manual cleanup. Fortunately, our shared file sys-
tem provides a facility crucial for manual cleanup:
the ability to peruse all of the segments in existence.
Our hope is that the manual cleanup of general
shared-memory segments will prove little harder
than the manual cleanup of files, to which program-
mers are already accustomed.
Position-Dependent Files

As soon as we allow a segment to contain
absolute internal pointers, we cannot change its
address without changing its data as well. Files with
internal pointers cannot be copied with cp, mailed
over the Internet, or archived with tar and then
restored in different places. Though many files need
never move, in other cases the choice between being
able to use pointers and being able to move and
copy files may not be an easy one to make. Figures

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 23

Linking Shared Segments Garrett, et al.

from our modified version of xfig, for example, can
safely be copied only by xfig itself.
Dynamic Storage Management

In the earlier overview section, we suggested
that dynamic linking might encourage widespread
re-use of functional interfaces to pre-existing utili-
ties. It is likely that the interfaces to many useful
functions will require variable-sized data structures.
If the text editor is a function, for example, it will
be much more useful if it is able to change the size
of the text it is asked to edit. This suggests an inter-
face based on, say, a linked list of dynamically-
allocated lines, rather than a fixed array of bytes.
We have developed a package designed to allocate
space from the heaps associated with individual seg-
ments, instead of a heap associated with the calling
program. This package is used by the Hemlock ver-
sion of xfig. We expect that as we develop more
applications we will be able to determine the extent
and type of new storage management facilities that
will be necessary.
Safety

It is possible that a programming error will
cause a program to make an invalid reference to an
address that happens to lie in a segment to which the
user has access rights. Our signal handler will then
erroneously map this segment into the running pro-
gram and allow the invalid reference to proceed.
We see no way to eliminate this possibility without
severely curtailing the usefulness of our tools. The
probability of trouble is small; the address space is
sparse.

It is also possible that a program will circum-
vent our wrapper, execute a kernel call directly, and
replace our signal handler. Since use of our tools is
optional, we do not regard this as a problem; we
assume that a program that uses our tools will use
only the normal interface.

Finally, programming under Hemlock using
shared memory requires a more defensive style of
programming than is normally necessary when com-
municating via messages or RPC. It is easier to
implement sanity checks for RPC parameters than it
is to implement them for arbitrary shared data seg-
ments. Servers must be careful that their proper
operation is not dependent on the proper operation of
their clients.
Loss of Commonality

The ubiquity of byte streams and text files is a
major strength of Unix. As shared-memory utilities
proliferate, there is a danger that programmers will
develop large numbers of incompatible data formats,
and that the ‘‘standard Unix tools’’ will be able to
operate on a smaller and smaller fraction of the typi-
cal user’s data.

Many of the most useful tools in Unix are
designed to work on text files. To the extent that

persistent data structures are kept in a non-linear,
non-text format, these tools become unusable.
Administrative files, for example, are often edited by
hand. There are good arguments for storing them as
something other than ascii text, but doing so means
abandoning the ability to make modifications with an
ordinary text editor.

It is not entirely clear, of course, that most data
structures should be modified with a text editor that
knows nothing about their semantics. Unix provides
a special locking editor (vipw) for use on
/etc/passwd, together with a syntax checker (ckpw)
to verify the validity of changes. System V employs
a non-linear alternative to /etc/termcap (the terminfo
database), and provides utility routines that translate
to and from (with checking) equivalent ascii text.

Similar pros and cons apply to the design of
programs as filters. The ability to pipe the output of
one process into the input of another is a powerful
structuring tool. Byte streams work in pipes pre-
cisely because they can be produced and consumed
incrementally, and are naturally suited to flow con-
trol. Complex, non-linear data structures are
unlikely to work as nicely. At the same time, a
quick perusal of Unix directories confirms that many
of the file formats currently in use have a rich, non-
byte stream structure: a.out files, ar archives, core
files, tar files, TeX dvi files, compressed files,
inverted indices, the SunView defaults database, bit-
map and image formats, and so forth.

6. Conclusion

Hemlock is a set of extensions to the Unix pro-
gramming environment that facilitates sharing of
memory segments across application boundaries.
Hemlock uses dynamic linking to allow programs to
access shared objects with the same syntax that they
use for private objects. It includes a shared file sys-
tem that allows processes to share pointer-based
linked data structures without worrying that
addresses will be interpreted differently in different
protection domains. It increases the convenience
and speed of shared data management, client/server
interaction, parallel program construction, and long-
term storage of pointer-rich data structures.

As of November 1992, we have a 32-bit ver-
sion of Hemlock running on an SGI 4D/480 mul-
tiprocessor. This version consists of (1) extensions
to the Unix static linker, to support shared segments;
(2) a dynamic linker that finds and maps such seg-
ments (and any segments that they in turn require,
recursively) on demand; (3) modifications to the file
system, including kernel calls that map back and
forth between addresses and path name/offset pairs
in a dedicated shared file system, and (4) a fault
handler that adds segments to a process’s address
space on demand, triggering the dynamic linker
when appropriate.

24 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

Garrett, et al. Linking Shared Segments

Hemlock maintains backward compatibility
with Unix, not only because we wish to retain the
huge array of Unix tools, but also because we
believe that the Unix interface is for the most part a
good one, with a proven track record. We believe
that backward compatibility has cost us very little,
and has gained us a great deal. In particular, reten-
tion of the Unix file system interface, and use of the
hierarchical file system name space for segments,
provides valuable functionality. It allows us to use
the traditional file read/write interface for segments
when appropriate. It allows us to apply existing
tools to segments. It provides a means of perusing
the space of existing segments for manual garbage
collection.

Problems that we are currently investigating
include:
� Language Heterogeneity

Hemlock uses the object file as a lowest com-
mon denominator among programming
languages. It provides no magic, however, to
ensure that object files produced by different
compilers will embed compatible assumptions
about the naming, types, and layout of shared
data. These problems are not new of course;
programs whose components are written in
different languages, or compiled by different
compilers, must already deal with the issue of
compatibility. Problems are likely to arise
more often, however, when sharing among
multiple programs. We are interested in the
possibility of automatically translating
definitions of shared abstractions written in
one language into definitions and optimized
access routines written in another language.

� Synchronous Communication
We plan to add a protection-domain switching
system call to our modified IRIX kernel to
support synchronous communication across
protection boundaries in Hemlock. We specu-
late that the ability to migrate unprotected
functionality into shared code will allow us in
many cases to increase the degree of parallel-
ism, and hence the performance, of fast RPC
systems.

� Scoped Static Linking
Because lds is implemented as a wrapper for
ld, scoped linking is currently available in
Hemlock only for dynamic modules. We plan
to correct this deficiency in a new, fully-
functional static linker.

Along with the above goals there are a number
of other questions that we expect will be answered
as we continue to build larger applications with
Hemlock. These include:
� How important is the ability to overload vir-

tual addresses? Is it purely a matter of back-
ward compatibility?

� How best can our experience with Psyche

(specifically, multi-model parallel program-
ming and first-class user-level threads) be
transferred to the Unix environment?

� To what extent can in-memory data structures
supplant the use of files in traditional Unix
utilities?

� In general, how much of the power and flexi-
bility of open operating systems can be
extended to an environment with multiple
users and languages?

Many of the issues involved in this last ques-
tion are under investigation at Xerox PARC (see
[26] in particular). The multiple languages of Unix,
and the reliance on kernel protection, pose serious
obstacles to the construction of integrated program-
ming environments. It is not clear whether all of
these obstacles can be overcome, but there is cer-
tainly much room for improvement. We believe that
shared memory is the key.

References

1. M. Accetta, R. Baron, W. Bolosky, D. Golub,
R. Rashid, A. Tevanian, and M. Young,
‘‘Mach: A New Kernel Foundation for UNIX
Development,’’ Proceedings of the Summer
1986 USENIX Technical Conference and Exhi-
bition, pp. 93-112, June 1986.

2. T. E. Anderson, B. N. Bershad, E. D.
Lazowska, and H. M. Levy, ‘‘Scheduler
Activations: Effective Kernel Support for the
User-Level Management of Parallelism,’’ ACM
Transactions on Computer Systems, vol. 10, no.
1, pp. 53-79, February 1992. Originally
presented at the Thirteenth ACM Symposium on
Operating Systems Principles, 13-16 October
1991.

3. B. N. Bershad, E. D. Lazowska, H. M. Levy,
and D. B. Wagner, ‘‘An Open Environment for
Building Parallel Programming Systems,’’
Proceedings of the First ACM Conference on
Parallel Programming: Experience with Appli-
cations, Languages and Systems, pp. 1-9, New
Haven, CT, 19-21 July 1988. In ACM SIG-
PLAN Notices 23:9.

4. B. N. Bershad, T. E. Anderson, E. D.
Lazowska, and H. M. Levy, ‘‘Lightweight
Remote Procedure Call,’’ ACM Transactions on
Computer Systems, vol. 8, no. 1, pp. 37-55,
February 1990. Originally presented at the
Twelfth ACM Symposium on Operating Systems
Principles, 3-6 December 1989.

5. J. S. Chase, H. M. Levy, M. Baker-Harvey, and
E. D. Lazowska, ‘‘How to Use a 64-Bit Virtual
Address Space,’’ Technical Report 92-03-02,
Department of Computer Science and Engineer-
ing, University of Washington, March 1992.

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 25

Linking Shared Segments Garrett, et al.

6. J. Edler, J. Lipkis, and E. Schonberg, ‘‘Process
Management for Highly Parallel UNIX Sys-
tems,’’ Proceedings of the USENIX Workshop
on Unix and Supercomputers, Pittsburgh, PA,
26-27 September 1988. Also available as
Ultracomputer Note #136, Courant Institute,
N. Y. U., April 1988.

7. W. E. Garrett, R. Bianchini, L. Kontothanassis,
R. A. McCallum, J. Thomas, R. Wisniewski,
and M. L. Scott, ‘‘Dynamic Sharing and Back-
ward Compatibility on 64-Bit Machines,’’ TR
418, Computer Science Department, University
of Rochester, April 1992.

8. M. Herlihy and B. Liskov, ‘‘A Value Transmis-
sion Method for Abstract Data Types,’’ ACM
Transactions on Programming Languages and
Systems, vol. 4, no. 4, pp. 527-551, October
1982.

9. W. W. Ho and R. A. Olsson, ‘‘An Approach to
Genuine Dynamic Linking,’’ Software —
Practice and Experience, vol. 21, no. 4, pp.
375-390, April 1991.

10. E. Jul, H. Levy, N. Hutchinson, and A. Black,
‘‘Fine-Grained Mobility in the Emerald Sys-
tem,’’ ACM Transactions on Computer Sys-
tems, vol. 6, no. 1, pp. 109-133, February 1988.
Originally presented at the Eleventh ACM Sym-
posium on Operating Systems Principles, Aus-
tin, TX, 8-11 November 1987.

11. A. R. Karlin, K. Li, M. S. Manasse, and S.
Owicki, ‘‘Empirical Studies of Competitive
Spinning for a Shared-Memory Multiproces-
sor,’’ Proceedings of the Thirteenth ACM Sym-
posium on Operating Systems Principles, pp.
41-55, Pacific Grove, CA, 13-16 October 1991.
In ACM SIGOPS Operating Systems Review
25:5.

12. S. J. Leffler, M. K. McKusick, M. J. Karels,
and J. S. Quarterman, The Design and Imple-
mentation of the 4.3BSD UNIX Operating Sys-
tem, The Addison-Wesley Publishing Company,
Reading, MA, 1989.

13. B. D. Marsh, M. L. Scott, T. J. LeBlanc, and
E. P. Markatos, ‘‘First-Class User-Level
Threads,’’ Proceedings of the Thirteenth ACM
Symposium on Operating Systems Principles,
pp. 110-121, Pacific Grove, CA, 14-16 October
1991. In ACM SIGOPS Operating Systems
Review 25:5.

14. B. D. Marsh, C. M. Brown, T. J. LeBlanc, M.
L. Scott, T. G. Becker, P. Das, J. Karlsson, and
C. A. Quiroz, ‘‘Operating System Support for
Animate Vision,’’ Journal of Parallel and Dis-
tributed Computing, vol. 15, no. 2, pp. 103-117,
June 1992.

15. C. R. Morgan, ‘‘Special Issue on the Interface
Description Language IDL,’’ ACM SIGPLAN
Notices, vol. 22, no. 11, November 1987.

16. B. Nitzberg and V. Lo, ‘‘Distributed Shared
Memory: A Survey of Issues and Algorithms,’’
Computer, vol. 24, no. 8, pp. 52-60, August
1991.

17. E. I. Organick, The Multics System: An Exami-
nation of Its Structure, MIT Press, Cambridge,
MA, 1972.

18. M. Rozier and others, ‘‘Chorus Distributed
Operating Systems,’’ Computing Systems, vol.
1, no. 4, pp. 305-370, Fall 1988.

19. M. L. Scott, T. J. LeBlanc, and B. D. Marsh,
‘‘Design Rationale for Psyche, a General-
Purpose Multiprocessor Operating System,’’
Proceedings of the 1988 International Confer-
ence on Parallel Processing, vol. II − Software,
pp. 255-262, St. Charles, IL, 15-19 August
1988.

20. M. L. Scott, T. J. LeBlanc, and B. D. Marsh,
‘‘Evolution of an Operating System for Large-
Scale Shared-Memory Multiprocessors,’’ TR
309, Computer Science Department, University
of Rochester, March 1989.

21. M. L. Scott, T. J. LeBlanc, and B. D. Marsh,
‘‘Multi-Model Parallel Programming in
Psyche,’’ Proceedings of the Second ACM Sym-
posium on Principles and Practice of Parallel
Programming, pp. 70-78, Seattle, WA, 14-16
March, 1990. In ACM SIGPLAN Notices 25:3.

22. M. L. Scott, ‘‘The Lynx Distributed Program-
ming Language: Motivation, Design, and
Experience,’’ Computer Languages, vol. 16, no.
3/4, pp. 209-233, 1991. Earlier version pub-
lished as TR 308, ‘‘An Overview of Lynx,’’
Computer Science Department, University of
Rochester, August 1989.

23. M. L. Scott and W. Garrett, ‘‘Shared Memory
Ought to be Commonplace,’’ Proceedings of
the Third Workshop on Workstation Operating
Systems, Key Biscayne, FL, 23-24 April 1992.

24. D. Swinehart, P. Zellweger, R. Beach, and R.
Hagmann, ‘‘A Structural View of the Cedar
Programming Environment,’’ ACM Transac-
tions on Programming Languages and Systems,
vol. 8, no. 4, pp. 419-490, October 1986.

25. J. H. Walker, D. A. Moon, D. L. Weinreb, and
M. McMahon, ‘‘The Symbolics Genera Pro-
gramming Environment,’’ IEEE Software, vol.
4, no. 6, pp. 36-45, November 1987.

26 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

Garrett, et al. Linking Shared Segments

26. M. Weiser, L. P. Deutsch, and P. B. Kessler,
‘‘UNIX Needs a True Integrated Environment:
CASE Closed,’’ Technical Report CSL-89-4,
Xerox PARC, 1989. Earlier version published
as Toward a Single Milieu, UNIX Review 6:11.

27. W. A. Wulf, R. Levin, and S. P. Harbison,
Hydra/C.mmp: An Experimental Computer Sys-
tem, McGraw-Hill, New York, 1981.

28. Usenix Workshop on MicroKernels and other
Kernel Architectures, Seattle, WA, 27-28 April
1992.

Author Information

Bill Garrett is a graduate student in the Com-
puter Science Department at the University of
Rochester. He received his B.S. from Alfred
Unviersity in 1990 and his M.S. from Rochester in
1992. He can be reached c/o the Computer Science
Department, University of Rochester, Rochester, NY
14627-0226. His e-mail address is
garrett@cs.rochester.edu.

Michael Scott is an Associate Professor of
Computer Science at the University of Rochester.
He received his Ph.D. from the University of
Wisconsin − Madison in 1985. His U.S. mail
address is the same as Bill Garrett’s. His e-mail
address is scott@cs.rochester.edu.

Ricardo Bianchini, Leonidas Kontothanassis,
Andrew McCallum, and Bob Wisniewski are gradu-
ate students in the Computer Science Department at
the University of Rochester. Jeff Thomas is a gradu-
ate student in the Computer Science Department at
the University of Texas at Austin. Steve Luk is an
undergraduate at the University of Rochester, major-
ing in Computer Science.

1993 Winter USENIX – January 25-29, 1993 – San Diego, CA 27

28 1993 Winter USENIX – January 25-29, 1993 – San Diego, CA

