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Abstract

Programmers want shared memory. They can get it on special-purpose multiprocessor
architectures, but the speed of technological improvements makes it difficult for these
architectures to compete with systems built from commodity parts. Shared-memory
parallel programming on distributed systems is therefore an appealing idea, but it isn’t
practical yet. Practicality will hinge on a prudent mix of compiler technology, dynamic
data placement with relaxed consistency, and simple hardware support.

1. Introduction
The distinction between multiprocessors, multicomputers, and local-area distributed systems

is becoming increasingly blurred. Interconnection networks are getting faster all the time, and
processors (and their primary caches) are getting faster at an even higher rate. Improvements in
memory and bus speed are comparatively slow. As a result, more and more parallel and distrib-
uted systems can be approximated simply as a collection of processors with caches, in which
local memory is a long way away, and other processors are somewhat farther away. The more
aggressive hardware designs do a better job of masking the latency of remote operations, but they
cannot eliminate it completely, and their added complexity increases cost and time to market.

Given technology trends, it seems prudent to take a careful look at the benefits and costs of
special-purpose inter-processor memory and communication architectures. This paper takes the
position that aggressive hardware is unlikely to stay ahead of the ‘‘technology curve,’’ and that
parallel programming on simpler, more distributed systems is therefore a good idea. Even with
fixed technology, a customer with limited funds may not necessarily get better performance by
investing in fancy memory or communication, rather than in more or faster processors.

The following sections discuss the nature of the shared-memory programming model, the
relative roles of compiler technology and distributed shared memory, the design of systems that
integrate the two, and appropriate hardware support. The conclusion proposes directions for
future research.

2. Shared Memory
Prior to the late 1980s, almost all commercially significant parallel applications used a

shared-memory programming model, and ran on machines (from Alliant, Convex, Cray, Encore,
Sequent, etc.) with modest numbers of processors. These applications tended to employ parallel
extensions to a sequential programming language (typically Fortran 77) or, usually for systems
programming, a parallel library package called from a sequential language (typically C).
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In recent years, the availability of large-scale multicomputers (e.g. from Intel and NCube)
has spurred the development of message-passing library packages, such as PVM [31] and MPI
[10]. There is considerable anecdotal evidence, however, that programmers prefer a shared-
memory interface, and many research efforts are moving in this direction. Some (e.g. the Kendall
Square and Tera corporations) are pursuing large-scale hardware cache coherence. Others (e.g.
the various distributed shared memory systems [25]) prefer to emulate shared memory on top of
distributed hardware. Somewhere in the middle are the so-called NUMA (non-uniform memory
access) machines, such the Cray T3D and BBN TC2000, which provide a single physical address
space, but without hardware cache coherence.

In all these systems (with the possible exception of the Tera machine), it is important to note
that a shared memory programming model does not imply successful fine-grain sharing or low-
latency access to arbitrary data. Modern machines display a huge disparity in latencies for local
and remote data access. Good performance depends on applications having substantial per-
processor locality. Shared memory is a programming interface, not a performance model.

The advantage of shared memory over message passing is that a single notation suffices for
all forms of data access. The Cooperative Shared Memory project at the University of Wisconsin
refers to this property as referential transparency [14]. Naive patterns of data sharing in time-
critical code segments may need to be modified for good locality on large machines, but referen-
tial transparency saves the programmer the trouble of using a special notation for non-local data.
More important, non-time-critical code segments (initialization, debugging, error recovery),
which typically account for the bulk of the program text, need not be modified at all.

3. Smart Compilers
If parallel programs are to be modified to maximize per-processor locality, how are these

modifications to be achieved? One might simply leave it up to the application programmer, but
this is unlikely to be acceptable. Experience with shared-memory systems of the past (e.g. the
BBN Butterfly [17] and the IBM RP3 [6]) suggests that achieving enough locality to obtain near-
linear speedups on large numbers of processors is a very difficult task, and the growing disparity
between processor and memory speeds suggests that the difficulty will increase in future years
[22].

For many of the most demanding parallel applications (e.g. large-scale ‘‘scientific’’ compu-
tations), most time-critical data accesses occur in loop-based computational kernels that perform
some regular pattern of updates to multi-dimensional arrays. Compilers are proving to be very
good at detecting these patterns, and at modifying the code to maximize locality of reference, via
loop transformations [11, 16, 20, 28, 33], prefetching [7, 24], data partitioning and distribution
[1, 2, 13, 19], etc.

Much of the recent work on parallelizing compilers, particularly in the HPF/Fortran-D/-
Fortran-90 community, has focused on generating message-passing code for distributed systems,
but several groups are beginning to look at compiling for per-processor locality on machines with
a single physical address space [1, 12, 20, 26]. Such machines can be programmed simply by gen-
erating block copy operations instead of messages, but they also present the opportunity to per-
form remote references at a finer grain than is feasible with software overhead, and to load
directly into registers (and the local cache), bypassing local memory.

For the sorts of sharing patterns they are able to analyze, compilers are clearly in a better
position than programmers to make appropriate program modifications. Operations such as hoist-
ing prefetches, transforming loops and re-computing bounds, accessing multiple copies of data at
multiple addresses, and invalidating outdated copies require meticulous attention to detail, some-
thing that compilers are good at and programmers are not. It seems inevitable that every serious
parallel computing environment will eventually require aggressive compiler technology.



4. Distributed Shared Memory
What then is the role for distributed shared memory? For regular computations on arrays, it

is probably a bad idea: compilers can do a better job. But there remain important problems (e.g.
combinatorial search [9] and ‘‘irregular’’ array computations [21]) for which compile-time
analysis fails. For problems such as these, good performance is likely to require some sort of
run-time data placement and coherence. In general, these operations will need to occur at the
direction of the compiler. They will apply only to those data structures and time periods for
which static analysis fails. Even then, the compiler will often be able to determine the specific
points in the code at which data placement and/or coherence operations are required. As a last
resort, the compiler will need to be able to invoke some sort of automatic coherence mechanism
driven by data access patterns observed ‘‘from below.’’

This behavior-driven coherence mechanism can be implemented entirely in hardware, or it
can employ a mixture of hardware and software support. Using trace-driven simulation, we com-
pared several of the alternatives on a suite of small-scale (7 processor) explicitly-parallel pro-
grams (no fancy compiler support). (Full details appear in [4].) Figure 1 displays results for a
typical application: the Cholesky factorization program from the Stanford SPLASH suite. The
graph presents the mean cost (in cache cycles) per data reference as a function of the size of the
coherency block (cache line or page). The five machine models represent directory-based
hardware cache coherence (CC), directory-based hardware cache coherence with optional single-
word remote reference (CC+), VM-based NUMA memory management (NUMA), distributed
shared memory (DSM), and distributed shared memory with optional VM-based single-word
remote reference (DSM+). The models share a common technology base, with high-bandwidth,
high-latency remote operations. All five are sequentially consistent. In the cases where there is a
choice between remote reference and data migration, the simulator makes an optimal decision.

Several conclusions are suggested by this work. First, block size appears to be the dominant
factor in the performance of behavior-driven data placement and coherence systems. Second,
with large blocks, it is valuable to be able to make individual references to remote data, without
migrating the block. The benefit is large enough to allow NUMA memory management (with
remote reference) to out-perform hardware cache coherence (without remote reference) on even
256-byte blocks. In addition, the difference in performance between DSM and DSM+ suggests
that VM fault-driven remote reference facilities would be a valuable addition to distributed
shared-memory systems, given reasonable trap-handling overheads. Finally, additional experi-
ments reveal that much of the performance loss with large block sizes is due not to migration of
unneeded data, but to unnecessary coherence operations resulting from false sharing (see the
paper by Bolosky and Scott elsewhere in these proceedings).

5. Putting the Pieces Together
In an attempt to improve price-performance, we are pursuing the design of systems that use

static analysis where possible and behavior-driven data placement and coherence where neces-
sary, with modest hardware support. Like many researchers, we are basing our work on relaxed
models of memory consistency [23]. We also expect to make heavy use of program annotations.

The goal of relaxed consistency is to reduce the number of ‘‘unnecessary’’ coherence opera-
tions (invalidations and/or updates). Generally, systems based on a relaxed consistency model
enforce consistency across processors only at synchronization points. (Compilers do this as a
matter of course.) Hardware implementations of relaxed consistency [18, 30] typically initiate
coherence operations as soon as possible, but only wait for them to complete when synchroniz-
ing. Software implementations [8, 15, 27] are often more aggressive, delaying the initiation of the
operations as well. Among other things, the delay serves to mitigate the effects of false sharing.
(It also supports programs that can correctly utilize stale data, allows messages to be batched, and
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Figure 1: Mean cost per data reference for five sequentially-consistent machine models running
Cholesky factorization (log scales).

capitalizes better on unilateral evictions.) Because false sharing is unintentional, it can occur at a
very fine grain; limiting its impact to synchronization points can be a major win.

Figure 2 displays preliminary results of recent experiments in which we compared the per-
formance of sequentially-consistent hardware cache coherence and NUMA memory management
with that of a distributed implementation of software cache coherence with relaxed consistency.
The bars in the graph report millions of execution cycles in the execution-driven simulation of a
64-processor machine. The mp3d and water applications are from the Stanford SPLASH suite;
sor is a local implementation of sequential over relaxation. Each application displays distinctive
characteristics. Mp3d has a lot of fine-grain sharing. The NUMA memory management system
wins by freezing blocks in place and accessing them remotely. The other two systems lack
remote reference; the hardware implementation moves smaller blocks, with less fragmentation
and less false sharing. Sor is very well behaved. It has relatively little shared data, all of which is
falsely shared between barriers. The NUMA system freezes the falsely shared data in place; the
relaxed consistency system permits inconsistent local copies.1 Water has significantly more false
sharing with big blocks than with small ones, but relaxed consistency mitigates the impact of that
sharing.

These experiments suggest that a system employing both relaxed consistency and remote
reference would in some sense enjoy the best of all worlds, with good performance on a wide
range of programs. It might even have an edge on a hardware implementation of relaxed con-
sistency, if there are useful protocol options too complex to reasonably implement in hardware.
Program annotations provide one possible source of such benefits and complexity.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1 One should really use static compiler analysis to manage the data in sor, but we did not attempt to do so.
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Figure 2: Execution time (in millions of cycles) for three applications and three coherence pro-
tocols on a simulated 64-processor machine.

We believe strongly in the use of program annotations to convey semantic information to a
behavior-driven data placement and coherence system. Annotations could be provided by the
compiler or the programmer. In either case, we prefer to cast them in a form that describes the
behavior of the program in a machine independent way, and that does not change the program’s
semantics. Example annotations include ‘‘this is migratory data,’’ ‘‘this is mostly read,’’
‘‘I won’t need this before it changes,’’ and ‘‘this is never accessed without holding lock X.’’
Each of these permits important optimizations.2

6. Simple Hardware Support
Short of full-scale cache coherence, we see several opportunities to improve performance via

simple hardware support. For compiler-generated data placement and coherence, fast user-level
access to the message-passing hardware (as on the CM-5) is clearly extremely important. For
behavior-driven data placement and coherence, our experiments testify to the importance of a
remote reference facility, particularly on machines with large block sizes. This facility amounts
to the use of unique, system-wide physical addresses, with the ability to map remote memory in
such a way that a cache miss generates a message to the home node. Ideally, the messages would
be generated in hardware, but fast page faults (which are useful for other purposes as well) would
clearly be better than nothing.

When messages are received, there is a similar need to handle common operations without
interrupting the processor. Reads and writes are two examples. Others include atomic fetch-
and-Φ operations, and more general active messages [32]. In order for processors to cache local
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

2 The last annotation may lead to incorrect behavior if it’s wrong. This is not as nice as an annotation that affects
only performance, but it’s better than an annotation that may lead to incorrect behavior if omitted.



data that others may access remotely, it is also important that the processor and the network inter-
face on each node be mutually coherent. (The Cray T3D has this property; the BBN TC2000 did
not.)

With changes to current trends in processor design, one might envision machines with very
small pages for VM-based coherence, or with valid bits at subpage granularities [5, 29]. Either of
these would eliminate much of the advantage of hardware coherence, with its cache-line size
blocks. For systems that trade remote reference against migration, it would also be useful for
each block to have a counter that could be initialized to a given value when a mapping is created,
and that would be decremented on each reference, producing a fault at zero [3].

With additional hardware support, but still short of full-scale hardware coherence, a hybrid
hardware/software system like Wisconsin’s Dir1SW proposal may also prove attractive [14]. It is
not yet clear at what point additional hardware will cease to be cost effective.

7. Conclusion
Much of the research in distributed shared memory and NUMA memory management has

occurred in an environment devoid of good compilers, or even good applications. As these
become more widely available, the nature of parallel systems research is likely to change substan-
tially. Parallel systems of the future will need to use compilers for the things that compilers are
good at. These include managing both data and threads for regular computations, partitioning
data among cache lines in order to reduce false sharing, invoking some coherence operations
explicitly, and generating annotations to guide behavior-driven data placement and coherence.
The behavior-driven techniques — distributed shared memory, NUMA memory management,
etc.− should properly be regarded as a fall-back, to be enabled by the compiler when static
analysis fails.

Both compiler technology and high-quality run-time systems will reduce the need for
hardware cache coherence. Simpler levels of hardware support — remote memory reference in
particular — are more likely to be worth the cost.
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