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Abstract

False sharing occurs when processors in a shared-memory parallel system make

references to di�erent data objects within the same coherence block (cache line or page),

thereby inducing \unnecessary" coherence operations. False sharing is widely believed

to be a serious problem for parallel program performance, but a precise de�nition and

quanti�cation of the problem has proven to be elusive. We explain why. In the process,

we present a variety of possible de�nitions for false sharing, and discuss the merits

and drawbacks of each. Our discussion is based on experience gained during a four-

year study of multiprocessor memory architecture and its e�ect on the behavior of

applications in a sixteen-program suite.

Using trace-based simulation, we present experimental evidence to support the claim

that false sharing is a serious problem. Unfortunately, we �nd that the various computa-

tionally tractable approaches to quantifying the problem are either heuristic in nature,

or fail to agree with intuition.

1 Introduction

A typical (sequentially consistent) shared-memory multiprocessor consists of a number of

processors with some form of memory or cache at each processor. In order to increase lo-

cality of reference, shared data are generally replicated into the memories or caches of the

processors that use them. This replication leads to the problem of data coherence|ensuring

that all reads of (any copies of) a given datum return the \latest" value. For the purpose

of maintaining coherence, memory is grouped into blocks. On a machine with hardware

cache coherence, blocks are cache lines; on a machine with VM-based software coherence

(i.e., a Non-Uniform Memory Architecture (NUMA) [2, 8, 13] or Distributed Shared Mem-

ory (DSM) [16] system), blocks are generally pages. In either case, the coherency protocol

does not distinguish among individual words within a block; a write to any word of a block

�
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causes all copies of the entire block to be invalidated or updated. It is therefore possible

for references by di�erent processors to disjoint sets of words within a block to result in

coherence operations that are not necessary for correct behavior of the program. This is

an informal statement of the false sharing problem. False sharing has been observed and

commented on previously [10, 18], but these studies do not provide su�ciently mathemati-

cally precise, convincing de�nitions. This paper considers several methods for transforming

the intuitive idea of false sharing into a precise, usable de�nition that is able to show false

sharing's performance impact on a particular program running on a particular machine.

Section 2 lists criteria for a good de�nition of false sharing, and then considers several

candidate de�nitions. None is found to be ideal, but several appear to be useful. Section 3

presents the cost component method, which is not a complete de�nition of false sharing

but appears to be a promising direction for future consideration. Section 4 estimates the

extent of false sharing for several applications by looking at the overhead and data transfer

components of their memory access and coherence costs using trace-driven simulation. The

�nal section summarizes our conclusions.

Practical methods of reducing false sharing are beyond the scope of this paper. The in-

sights o�ered into the magnitude of the problem, however, indicate that if it could be solved

in a general way, it would result in large improvements in parallel program performance,

particularly on systems with large block sizes.

An expanded version of this paper appears as chapter 7 of [6].

2 De�nitions of False Sharing

Ideally, a de�nition of false sharing would have the following properties:

� It would adequately capture the intuitive notion of false sharing.

� It would be mathematically precise.

� It would be practically applicable.

To adequately capture the intuitive notion of false sharing, the de�nition should result

in a value that gets bigger as more unrelated things are co-located within blocks, that never

grows as blocks are subdivided, and that is zero when the block size is one word. Its value

should correspond to the cost savings due to eliminating all of the false sharing in the

application in one way or another. That is, to satisfy the intuition criterion, what is de�ned

by a candidate de�nition should correspond to our informal notion of what constitutes false

sharing.

To be mathematically precise, the de�nition should permit properties of false sharing

(such as those in the previous paragraph) to be stated as theorems, and proven. It should

present false sharing as a scalar-valued function of a program, some input, and a set of

machine parameters. A de�nition that relies on heuristics will at best provide bounds on

false sharing, and at worst inexact approximations that may lie an undetermined distance

in either direction from the \truth."

A de�nition that both captures the intuitive notion and is mathematically precise would

in some sense be su�cient. It would be of little practical use, however, it if could not be mea-

sured for real programs (e.g. because it required the solution to an NP-hard optimization

problem).
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The following sections explore some potential de�nitions of false sharing. All of them fail

one or another of the above criteria. They provide insight, however, into the subtlety behind

the intuitive concept, and some of them, though imprecise, provide useful approximations

to the amount of false sharing in a program. Section 2.1 describes the one-word block

de�nition, which occurs to many people when they are �rst presented with the idea of

false sharing, but which on closer examination badly fails to capture intuition. Section 2.2

describes the interval de�nition, which uses future knowledge and an optimizing algorithm

to quantify false sharing in a precise and intuitively reasonable way. It fails the practicality

criterion; there is no known tractable solution to the optimization problem. Section 2.3

addresses the primary weakness of the interval de�nition by allowing heuristic selection of

intervals; it fails the precision criterion. Section 2.4 considers full-duration false sharing, and

�nds that it is too restrictive a de�nition. Section 2.5 reviews a method used by Eggers and

Jeremiassen wherein a program is tuned by hand and measured to determine the extent of

false sharing; it is not mathematically precise. The cost-component method is described in

its own top level section, section 3. It is a promising but as of yet incomplete technique for

measuring false sharing which operates by breaking down the cost of a program execution

into its constituent parts. Section 4 uses observations from the cost component method to

estimate false sharing in several example programs.

Much of our discussion takes place in the context of a formal model of memory access

cost, de�ned in previous work [5]. The model applies to invalidation-based coherence pro-

tocols on sequentially-consistent machines. It captures a program and its input in the form

of a shared-memory reference trace, interleaved as the references occurred in practice on

some parallel machine (in our studies, an 8-node IBM ACE [12] with uniform access-time

memory). The model captures the underlying system in the form of three parameters:

the cost of a remote memory reference (in�nity in machines that lack this capability), the

size of a coherency block, and the cost of copying a block from one location to another,

all expressed as multiples of the local cache hit time. In the context of a given system,

a coherence policy constitutes a mapping from traces to placements|time-indexed lists of

locations that have copies of various blocks. The cost of a given policy on a given trace is

simply the number of memory references for which the data can be found locally, plus the

remote reference cost times the number of references for which the data cannot be found

locally, plus the block-copy cost times number of times that a new replica is created (the

cost of invalidating a copy of a block is assumed to be included in the cost of creating the

copy in the �rst place). Reference [5] presents the cost of several practical policies on a

16-program application suite. It also presents a tractable o�-line policy that is provably

optimal|that minimizes the total cost of memory accesses and coherence operations.

The optimal policy optimizes the choice between replicating a block and using re-

mote memory operations to access an existing copy. For machines that lack remote ref-

erence, there is no choice to be made, and the policy reduces to a straightforward (on-line)

invalidation-based protocol. There are two main ideas behind using an optimal policy rather

than any particular on-line policy. The �rst is that it permits changing machine parameters

without re-tuning the policy, and the second that it eliminates the possibility of having

an on-line policy a�ect results by favoring one architecture or program over another. An

important point in understanding the use of the optimal policy is that previous results [3]

show that, at least for a certain class of architectures, straightforward on-line policies can

closely approach optimal performance.
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Figure 1: Mean cost per reference versus block size (log scales), for an SOR application.

2.1 The One-Word Block De�nition

When asked to consider false sharing in the context of our memory cost model, several people

initially suggested de�ning it to be the di�erence in cost between running the optimal o�-line

policy with a given block size and running it with one-word blocks. Indeed, when a trace

is run with a single-word block size there is manifestly no false sharing. Furthermore, the

optimal placement for a program with a single-word block size will have the property that

as few words are transferred between processors as is possible while maintaining coherence.

However, it does not result in the minimum number of transfers; most programs have at least

some spatial locality of reference, and so would bene�t from some grouping of transfers. In

any reasonable set of machine models, the cost of moving a block must include both a per-

byte bandwidth component and a per-message overhead component. Reducing the block

size to one word minimizes the data transferred, but increases the number of operations

and thus the overhead incurred. So, the na��ve de�nition of false sharing could easily result

in a negative amount of false sharing if the additional overhead generated outweighs the

eliminated false-sharing induced coherence operations.

This e�ect can be seen in �gure 1, which displays results for a successive over-relaxation

(SOR) application. Performance is reported as mean cost per reference (MCPR), where

a cost of 1 is de�ned to be the time to make a local cache hit. All performance �gures

in this paper include all memory references made by the program, both to private and

explicitly shared memory. These results were obtained by running our o�-line optimal policy

over a 104 million-reference trace. The �ve curves represent �ve di�erent sets of machine

parameters. CC (cache-coherent) is a write-invalidate, sequentially consistent coherently

cached shared memory multiprocessor; CC+ is a hypothetical cache-coherent machine that

adds the ability to read or write data at a remote node without replicating the cache

line. NUMA (non-uniform memory access) is meant to be similar to the Cray T3D, with
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VM-based software coherence. DSM (distributed shared memory) is meant to be similar

to VM-based software coherence on a machine like the Intel Touchstone Delta; DSM+

adds fault-driven software emulation of remote memory references. As noted above, the

\optimal" policy doesn't actually optimize anything on the CC and DSM models, which

lack remote reference capabilities. All �ve sets of parameters assume equivalent hardware

technology. Further details appear in [4].

The total cost of memory references and coherence operations in the SOR program

increases markedly as the block size is lowered toward one word. If all that happened as

the block size was reduced was that false sharing was also reduced, then the cost would get

smaller with the block size. However, exactly the opposite happens: the cost gets larger

with a smaller block size. The sharing in this particular application is essentially migratory

in nature: four kilobyte chunks are passed between processors, and performance su�ers if

this sharing happens by moving small pieces one at a time.

Most of the applications we studied su�er some degree of increased cost with small block

sizes, due to the breakup of blocks that are not falsely shared. The e�ect is usually not as

pronounced as in the SOR program, however, and is generally hidden by the reduction in

false sharing; most applications have enough false sharing that reducing the block size is

bene�cial.

Because the one-word block de�nition of false sharing is unable to separate improvements

in performance due to reductions in false sharing from degradations in performance due to

increases in the number of operations needed, it fails the test for a proper de�nition; it does

not adequately capture the intuitive notion of false sharing.

2.2 The Interval De�nition

Imagine a coherence policy with perfect knowledge of the sharing behavior of the program

(e.g. via perfect annotations provided by the programmer). Using this information, it would

be possible to relax the implementation of sequential consistency: instead of requiring that

only one copy exist at the time of a write, we could simply require that any time a read takes

place, the reading processor sees the \freshest" data. Processors could have inconsistent

copies of a (logically) single block, but would need to be able to re-merge these copies at

some future time.

De�ne the e�ect of false sharing to be the di�erence in performance between the optimal

policy using a traditional coherence constraint and the minimal cost achievable using the

extended execution model with the new merge facility. This de�nition agrees with intu-

ition, is mathematically precise, and describes a system that one could at least imagine

implementing (given that the application writer or language tools provided good enough

directives). It does not require heuristics or reasoning about the space of possible alterna-

tive programs and results in no fuzziness in the size of the measured e�ect, as do some of

the other de�nitions presented later in this paper.

Unfortunately, this interval de�nition fails the practicality criterion: it is not known to

be computationally tractable. Consider a string of references to a single block made by two

di�erent processors, as illustrated in Figure 2. Here, a notation like r

p

a

means processor

p read address a. A false sharing interval, then, is any interval that contains no pair of

references w

p

a

and r

q

a

such that p 6= q, the write precedes the read, and the block is written

and referenced by more than one processor during the interval. That is, a false sharing
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Figure 2: False sharing intervals.

interval is one in which the block is used by more than one processor, but in which no

data communication takes place. A \maximal" false sharing interval is one that cannot be

extended by one reference at either end, either because true data communication would be

required, or because the end in question is at the beginning or end of the whole trace.

The situation shown in �gure 2 has two potential \maximal" intervals: from just after

the �rst write to just before the �nal read, or from some time in the past (determined by

other constraints not shown) up to just before the �rst read. Neither of these intervals can be

extended without violating some constraint, but yet they have a non-empty intersection and

are not equal. The total number of possible \maximal" interval sets can be exponentially

large in the number of references, and we know of no computationally e�cient method to

determine which interval set results in the lowest possible overall execution cost.

2.3 Heuristic Interval Selection

Given that there is no known way of optimally choosing false sharing intervals, it could

still be possible to make a good guess as to which intervals to use. At the very least, even

an arbitrarily selected interval set has the property that it provides a lower bound on the

amount of false sharing present in an application. If the heuristic used is good, then the

computed bound could be close to the real limit, and so might su�ce to show that false

sharing can be a large problem.

It is possible to have a (maximal) interval that has negative value: the cost of the

coherence operations eliminated by the interval are smaller than the cost of merging the

block at the end of the interval. Furthermore, the cost bene�t of an interval depends not

only on the references made during the interval, but also on the desired starting and ending

locations of the single copy of the block at the beginning and end of the interval. These

locations in turn depend on what other intervals are selected. So, even the simple heuristic

of choosing some set of maximal intervals, simulating the trace and rejecting those intervals

that have negative value can still result in the selection of intervals that increase cost rather

than reduce it, because they add cost only after other intervals have been chosen. In fact, we

tried just this experiment, and found that is was fairly common to have bene�cial intervals

become detrimental after intervals that were detrimental in the �rst place were removed.

The heuristic interval de�nition of false sharing fails the mathematical precision crite-

rion; nevertheless, it is an approximation of the interval method that always errs in the

direction of underestimating false sharing, and therefore provides a lower bound on false

sharing. In practice, this lower bound is not very tight.

Munin's [7] software implementation of release consistency takes a practical approach

to heuristic interval selection. Its designers observe that with the proper use of locks, any
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references made by a processor to an object for which it holds a lock will be inside a false

sharing interval. This interval is not necessarily maximal, but in practice it will often be

su�ciently large to result in a signi�cant reduction of false sharing. After a lock release, if

another processor acquires a lock for an object in the same block (page), Munin uses a saved

copy of the original version of the page to drive a di�-based merge operation. A similar

approach was supported in hardware by machines from Myrias Research Corporation of

Edmonton, Alberta, Canada.

2.4 Full Duration False Sharing

If an additional restriction is placed on the intervals used for de�ning false sharing, namely

that they extend from the beginning of the trace to the end of the trace, then two helpful

things happen. First, the interval selection problem goes away, because there can be only

one maximal \full duration" interval. Second, the implementation question of how to deal

with a program that has full-duration false sharing is much easier. All an implementor has

to do, given that full duration false sharing is identi�ed ahead of time, is to turn coherence

o� for the falsely shared regions of memory. Since by hypothesis no processor reads data

written by another within a full-duration falsely shared block, sequential consistency will

be maintained. There is no need for merge operations.

Along the same lines as full duration false sharing is the identi�cation of words that

are either only-read or are used by only one processor, but are located on a block that is

written by other processors. If these words could be separated at compile time, then every

access to them could be local.

We found that full duration falsely shared blocks are extremely rare. The result of

exploiting full duration false sharing is su�ciently small as to be uninteresting in our ap-

plication suite, and probably in most applications. While this de�nition is precise and

complete, and describes something that can be called \false sharing," it fails to capture

the real problem of false sharing. It is a valid de�nition of the wrong e�ect; the intuition

criterion is not satis�ed.

2.5 The Hand Tuning Method

Eggers and Jeremiassen [10] de�ned false sharing to be the cost of cache coherence operations

that were initiated by a reference to a word that was not modi�ed by any processor since

it was last present at the referencing processor. This de�nition has the di�culty (which

was not noted in [10]) that true sharing may be masked by such coherence operations. For

example, in a system with two processors, A and B, a single block with three words, and

a repeating reference pattern of the form r

B

2

w

B

2

w

B

1

r

A

0

w

A

0

r

A

1

,

1

Eggers and Jeremiassen's

de�nition will identify all of the coherence operations as being due to false sharing, because

they are all initiated by a processor reading a word that is never touched by the other

processor. However, there is real data communication from processor B to processor A

in word 1. In practice, the di�erence between false sharing as de�ned by Eggers and

Jeremiassen and its \true" value may well be small, but it is di�cult to determine if this is

the case in any particular instance.

1

Recall that a notation of the form r

p

x

means processor p reads word x.
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Eggers and Jeremiassen then proceed to measure false sharing in a second way: by

hand-modifying their programs in order to reduce false sharing by applying a small set of

transformations to the programs' source code. They ran and traced the modi�ed programs,

and again measured the number of cache coherence operations. They claimed that the dif-

ference in performance between the original and modi�ed programs was the e�ect of false

sharing. This latter de�nition is interesting in that it results in a practically achievable

performance improvement. However, there is no guarantee that their transformations elim-

inated all of the false sharing in the program (or even that they did not reduce the amount

of data communication for other reasons, such as reducing fragmentation in cache lines),

and so is not mathematically precise.

They found reductions in overall bus utilization due to their false sharing removal trans-

formations of up to about 25%, for cache lines no larger than 64 bytes.

3 The Cost Component Method

The cost component method is not a complete de�nition of false sharing. However, it

appears to be a promising new direction from which a complete de�nition may be found.

If the cost component method was completed, it would satisfy all three criteria and would

constitute a proper de�nition.

A remote operation (either moving a block or making a direct remote memory reference)

can be thought of as the sum of two costs: the cost of moving the data across the inter-

connect, and the cost of setting up the transfer. The �rst is known as the data movement

component and the second as the overhead component. The data movement component

depends only on the bandwidth of the interconnect and the number of words moved (but

not on the number of separate transfers used to move the words). Overhead can depend on

many factors. The cost component de�nition of false sharing uses the fact that changing the

block size will a�ect the two cost components di�erently. First, we observe what happens

to optimal performance when the block size is reduced, and then consider the relationship

of these e�ects to the cost components.

In general, when the block size is reduced, the coherence operations performed by an

optimal policy will change. These changes will be due to one of three e�ects:

1. If data that are used together are separated, more coherence operations will be nec-

essary to move them.

2. If falsely shared data are separated into pieces that are no longer falsely shared,

coherence operations will be eliminated.

3. If a block is split into two pieces and only one of those pieces is used, the cost of

moving the other piece will be saved.

Or, more concisely, overhead will increase for moving large blocks of data that should

be grouped together; false sharing will be reduced; and fragmentation will be reduced. The

combination of these three e�ects results in the net change in cost between the initial and

smaller block size systems. De�ne the amount of false sharing at block size s to be the

di�erence in the value of the false sharing component between a run at block size s and
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a run with a single word block size. (One word block size machines thus have no false

sharing).

Breaking up data that are used together (\useful groupings") results in increased cost

because more operations are required to accomplish the same task. All of this additional

cost will show up as additional overhead; the number of bytes transferred through the inter-

connection network will not change. Reduction of false sharing reduces the total number of

operations necessary, thus reducing both the number of bytes transferred and the amount

of overhead incurred. Reducing fragmentation does not a�ect the number of operations,

and so produces no change in the overhead, but reduces the volume of data transferred.

If we de�ne S to be the false sharing component and F the fragmentation component

of the di�erence in cost between runs with regular and single-word blocks, we can show [6]

that the grouping components cancel out, and

S = (o+ bs)M

s

� (

o

s

+ b)M

1

� (1 +

o

bs

)F (1)

where o is per-message overhead, b is per-byte overhead, s is block size, and M

s

and M

1

are the number of block moves performed by an optimal policy with block sizes of s and 1,

respectively.

Unfortunately, there does not seem to be any obvious way to measure the amount

of fragmentation in a program independent of false sharing. The best we can do, since

fragmentation can never increase with smaller blocks, is to set F to zero in Equation 1,

thereby obtaining an upper bound on false sharing:

S � (o+ bs)M

s

� (

o

s

+ b)M

1

(2)

The cost component de�nition measures the total amount of performance improvement

that could conceivably be obtained by eliminating false sharing, assuming that it were pos-

sible to do so without increasing overhead by using smaller block sizes, or merge operations.

The only plausible way of doing such a thing is by directive from the application. Getting

the kinds of savings shown by this method would require either very careful application

tuning, or a very good compiler, library and/or runtime tools to assist the coherence policy

in making its decisions.

4 Estimating False Sharing

None of the de�nitions discussed in sections 2 and 3 provides a way of measuring false

sharing. Equation 1 from the cost component method could be used to show false sharing

as a function of F , but the possible range of false sharing thus demonstrated is very large:

for applications we have studied, the contribution of false sharing to the total cost of shared

memory could range from nothing to over 90% of total cost.

To get a hint as to where in this range false sharing really lies, we can consider how

much of the total memory (reference and block move) cost is due to per-message overhead,

and how much is due to per-byte data transfer costs. Figures 3, 4, 5 and 6 provide this

breakdown for four of our applications, again using trace-driven simulation of an optimal

placement policy, with two di�erent sets of machine parameters. Recall that MCPR is the

mean cost of a memory reference expressed in terms of a local cache hit, and that all graphs
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Figure 3: Data transfer and overhead components (log scales) of mean cost per reference

for a scene-rendering application.
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Figure 4: Data transfer and overhead components (log scales) of mean cost per reference

for parallel quicksort.
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Figure 5: Data transfer and overhead components (log scales) of mean cost per reference

for Cholesky factorization.
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Figure 6: Data transfer and overhead components (log scales) of mean cost per reference

for an SOR application.
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in this paper include all memory references: both those made to shared and explicitly pri-

vate memory. The applications are a scene-rendering program [11], a Presto [1] quicksort

program, the Cholesky factorization program from the SPLASH suite [17], and our suc-

cessive over-relaxation program. The machine parameters model a sequentially consistent

cache-coherent (CC) multiprocessor, and a VM-based software coherence system running

on a non-uniform memory access (NUMA) machine resembling the Cray T3D.

The \useful grouping" cost component can only result in increased cost with reduced

block sizes. Fragmentation does not a�ect the overhead component at all. Therefore, any

reduction in overhead with reduced block size must be due to a reduction in false sharing.

Furthermore, that reduction in overhead must be accompanied by some reduction in data

transfer as well, because the reduction in false sharing results in fewer total transfers needed,

and a transfer incurs both overhead and data transfer costs.

When the block size is halved, we can show that fragmentation can at most be reduced

by a factor of two. By induction, when block size changes from s to

s

2

n

, fragmentation can

reduce the data transfer cost component by at most a factor of 2

n

. (The result generalizes

to denominators that are not powers of two.) Many of our applications approach or even

exceed this limit over a wide range of block sizes. For example, the data transfer cost

component for the quicksort program with 8K blocks on the CC model is 1.2 billion cost

units. At a 1K block size the data transfer cost is 138 million, for a ratio of 8.7, which

is greater than the factor of 8 that can be explained by fragmentation alone. At a 128

byte block size the data transfer cost is 28 million cost units, or 43 times less than that at

8K; while this could be explainable entirely by fragmentation, doing so would mean that

nearly all of the memory in the 8K blocks was unused. This is very unlikely. False sharing

is almost certainly responsible for most of the di�erence in performance (which is greater

than an order of magnitude).

On the other hand, the SOR application has very little false sharing. Its data transfer

cost component is never greater than 10% of the total cost of running the application.

2

The

ratio of the data transfer cost at an 8K block size to that at a 32 byte block size is 5 to

1, which is much less than the factor of 256 that could be accounted for by fragmentation.

The overhead component steadily increases in its contribution to cost as the block size is

reduced, in stark contrast to the other applications discussed.

Most of the applications in our suite display performance like that of the quicksort, scene

rendering, and Cholesky programs, rather than the SOR program. This indicates that false

sharing is probably the major reason for the poor performance of these applications on

large block size machines. If false sharing were somehow reduced, our results suggest that

machines with page-size blocks would perform comparably to those whose blocks are the

size of a typical cache line.

5 Conclusion

The impact of false sharing on parallel program performance depends on many factors,

including block size, data layout, program access patterns, and the cost of coherence op-

erations. Quantifying this impact has proven surprisingly di�cult. Program or machine

2

The total cost as shown in these graphs is the sum of not only the data transfer and overhead components,

but also the cost of making local memory references, which contributes 1 to the mean cost per reference.
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changes that serve to reduce false sharing also tend to a�ect other components of memory

system cost, including the amortized overhead of large bulk transfers and the data transfer

costs of internal fragmentation. We know of no e�ective way to separate false sharing from

these other e�ects. Moreover, even when program or machine changes serve to improve

performance, we know of no way to determine de�nitively whether the improvements are

large or small relative to what is theoretically achievable.

From a purely conceptual point of view, the most precise and reasonable characterization

of false sharing would appear to be the interval de�nition, described in section 2.2. In

essence, this de�nition says that the cost of false sharing is the di�erence in performance

between a policy that makes optimal placement decisions, but that enforces consistency on

a whole-block basis, and one that enforces consistency only in the event of genuine word-

level data dependences. Unfortunately, the temporal overlapping of dependences leads to

a combinatorial explosion of possible placements, suggesting that measuring false sharing

under this de�nition is probably NP-hard.

Several less conceptually satisfying de�nitions of false sharing lend themselves to actual

measurement, including de�nitions based on heuristic interval selection, full duration false

sharing, hand tuning, and the cost component method. Combining analysis from the cost

component method with the results of trace-driven simulation, we �nd that the improve-

ments in performance that result from smaller blocks approach or even exceed the maximum

possible e�ect of everything other than false sharing. When combined with some knowledge

of application semantics, these results suggest that the elimination of false sharing could

result in order-of-magnitude improvements in performance for many programs.

Relaxed models of memory consistency (as in DASH [14] or Munin [7]; see [15] for

a survey) constitute one promising approach to reducing the impact of false sharing. In

essence, relaxed consistency models su�er delays due to false sharing only at synchronization

points. Other means of reducing false sharing include on-line adaptation of the block size [9],

hand tuning [10], and smart compilers. Each of these approaches has its drawbacks, but the

potential gains appear to be large enough to warrant substantial investments in hardware

or in software.

6 Availability

Compressed postscript for this paper and other systems papers from the University of

Rochester Computer Science Department may be obtained by anonymous ftp from pub/

systems papers on cs.rochester.edu. Printed versions of technical reports from URCS

may be obtained for a fee by contacting tr@cs.rochester.edu, or through physical mail

fromTechnical Reports Librarian/Department of Computer Science/University of Rochester/

Rochester, NY 14627-0226. Under very special circumstances, the traces used in this paper

may be made available. However, making copies of these traces requires substantial per-

sonal e�ort on the part of the author, and so will not be undertaken lightly or often. If you

feel that you have a real need for the traces, write to Bill Bolosky.
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