
Common Runtime Support for High-Performance Parallel Languages

Parallel Compiler Runtime Consortium *
Geoffrey C. Fox, Sanjay Ranka, Michael Scott, Allen D. Malony,

Jim Browne, Marina C. Chen, Alok Choudhary, Thomas Cheatham,
Jan Cuny, Rudolf Eigenmann, Amr Fahmy, Ian Foster,

Dennis Gannon, Tom Haupt, Mike Karr, Carl Kesselman,
Chuck Koelbel, Wei Li, Monica Lam, Thomas LeBlanc,

Jim Openshaw, David Padua, Constantine Polychronopoulos, Joel Saltz,
Alan Sussman, Gil Weigand, Kathy Yelick

1 Introduct ion

Parallel Computers have recently become powerful
enough to outperform conventional vector based su-
percomputers. Several parallel languages are currently
under development for exploiting the data and/or task
parallelism available in the applications. In this re-
port, we propose the development of a basic public
domain infrastructure to provide runtime support for
high level parallel languages. This would support sev-
eral projects developing different compilers for a given
language such as C + + , ADA, or Fortran but also give
a unified support for compilers of different languages.
There are two particularly important motivations for
this common runtime support system.

Firstly, it will accelerate the development of new
compiler projects investigating particular modules or
concepts by providing a public domain infrastructure
which can be built on and not replicated.

Secondly there is currently no universally "best"
language; each excels in different aspects of the per-
formance, expressivity, reliability, user familiarity and
other metrics. This fact is corroborated by the find-
ings of the recent multiagency workshop onHPCC and
grand challenge applications at Pittsburgh. A typi-
cal example of software development involved using
C++ as a high level language to achieve modularity,
Fortran as a high performance assembly language for
coding the computationally intensive fragments, and

'The workshop at Syracuse was sponsored hy DARPA under
contract # DABT63-91-C-0028. The content of the information
does not necessarily reflect the position or the policy of the
Government and no official endorsement should he inferred.

0 1993 ACM 0-8186-4340493/0011$1.50

using AVS for visualization and some coarse grain soft-
ware integration. Thus integrated support of different
languages appears an essential pragmatic feature of
high performance computing environments.

The above issues were discussed by several re-
searchers which led to a workshop at Syracuse Uni-
versity on common runtime support for compilers and
formation of the Parallel Compiler Runtime Support
Consortium. Three central and relatively orthogonal
topics were identified for common runtime support:

1. Common Runtime Support for Data parallelism

2. Common Runtime Support for Task parallelism

3. Performance and Debugging Infrastructure for
Compiler Runtime Systems

Data parallelism and Task parallelism are two impor-
tant kinds of exploitable parallelism available in most
applications. The need for debuggers and performance
estimation is of utmost importance for any software
environment.

The parallel runtime compiler consortium was orig-
inally put together on the initiative of Gil Weigand.
The current members of the consortium represent
many of the major compiler groups supported by
ARPA. The purpose of this report is t o present im-
portant issues in providing a common framework for
runtime support of compilers. The report is organized
into three general parts, corresponding to the above
three topics. Each part represents the discussions of
a working group and provides a detailed analysis of
the issues, implications and organization required for
a common runtime support. The working groups were

mls
Supercompting'93 Proceedings

coordinated by Sanjay Ranka, Michael Scott and Alan
Malony respectively.

Details and background of this report can be ac-
cessed via anonymous ftp from minerva.npac.syr.edu

2 Data Parallelism

way that assumes the availability of multiple inde-
pendent processors and an interface to a message
passing system (such as PVM, Express, propri-
etary vendor message passing systems, MPI, etc.).
Alternately compilers and runtime support can
assume the existence of hardware supported ad-
dress translation and data miaration mechanisms,

Recently there have been major efforts in develop-
ing programming language and compiler support for
parallel machines. For example, High Performance
Fortran has been standardized. A similar effort is
currently in progress for HPC++. We use the term
High Performance Language (HPL), to refer to HPF,
HPC++, an extended (data parallel) form of ADA, or
some other relevant language.

A system that would allow different components,
perhaps written in various HPLs, to operate with each
other and execute in an integrated fashion is sorely
needed for the following reasons: (1) different pieces of
an application program in one HPL may be best han-
dled by different runtime components (e.g. program
segments with regular data access patterns versus ir-
regular access patterns); (2) different components may
be best written in one or more HPLs due to the na-
ture of the components and the particular types of
language support (e.g. Ada/HPF combination); (3)
building components that are reusable across different
applications, perhaps written in different HPLs; (4)
sharing of infrastructure (data structures, iutermedi-
ate forms, etc.) across systems.

We believe that there is a great deal of commonal-
ity in the support for parallelism in these languages,
since parallelism is inherent in the problem and not in
the problem's representation in a particular HPL. We
should develop a unified framework for integrating and
accommodating different program transformation and
runtime components for supporting data parallelism.
The runtime components developed will be available
in the public domain. This will allow groups to build
and test compiler subsystems and will accelerate re-
search and development in this area.

The following is a summary of important research
issues and innovations that would result from design-
ing such a unified framework:

Portable and Scalable Multi-platform Runtime

Runtime support must efficiently support the ad-
dress translations and data movements that oc-
cur when one embeds a globally indexed program
onto a multiple processor architecture. Compilers
and runtime support for HPLs can be built in a

Support

I

such as those found on Kendall Square KSR-1 ma-
chines. The issue there will be purely figuring out
how data should be migrated.
We expect that all HPL compilers will make use
of at least some optimizations for reducing com-
munication costs such as message blocking, collec-
tive communication, message coalescing, aggrega-
tion and latency hiding. Prototype runtime sup-
port has been developed to carry out these op-
timizations in the contexts of structured, adap-
tive, block structured and tree structured prob-
lems [l, 2, 3, 4, 5, 6, 71. We will develop an in-
tegrated runtime support system that carries out
address translation and communication optimiza-
tions, this runtime support will be built on top of
a message passing interface.
We will also develop versions of common run-
time support to take advantage of hardware sup-
ported distributed shared memory mechanisms.
HPL data structure decompositions and proces-
sor mappings will make it necessary to carry out
rather complex mappings between logical pro-
gram addresses and locations in the machine's
distributed memory. Given these complex map-
pings, we do not expect hardware supported dis-
tributed shared memory alone to be able to effi-
ciently handle data migration and address trans-
lation. Instead, we will develop runtime support
capable of leveraging the capabilities of hardware
supported distributed shared memory.

Methodology for Integrated Multilanguage Sup-
port
We would design and develop common code and
data descriptors, and libraries and routines which
operate on them for supporting data parallelism
in HPLs. This would allow different programming
languages to share data structures that are dis-
tributed across the memory hierarchy of scalable
parallel systems and operate upon them.
We would design a common compiler data move-
ment interface specification that will provide a set
of communication standards that compilers can
link into the runtime system for applications. Un-
like the user level message passing interface stan-

I53

http://minerva.npac.syr.edu

dard, the compiler interface can be more exten-
sive in its capabilities, ranging from very low level
primitives that exploit special hardware proper-
ties to very high level primitives directly coupled
to the common array and data structure formats.
The interface standard will make it possible to
write compilers that achieve a much greater ef-
ficiency on a wider variety of machines than we
can with current user level message passing mech-
anisms. In addition, a common runtime interface
will allow a compiler to be easily adapted to a
new machine, and still allow customization in the
library implementation to improve performance.

Methodology for structuring code and data rep-
resentations to support extensibility

We will develop a methodology for the engineer-
ing aspect of the described runtime support to al-
low ease of use, modification, specialization, and
extension. The kind of extension we consider in-
cludes support for new distributed data struc-
tures, new language features, new runtime sys-
tem mechanisms and algorithms, and new mes-
sage passing or distributed shared memory inter-
faces.

3 Task Parallelism

We define task parallelism as parallelism not dic-
tated by the distribution of data structures. It in-
cludes the execution of different functions in parallel,
as well as the parallelization of loops via mechanisms
other than (or in addition to) the “owner computes“
rule commonly found in HPF, pC++, etc. Task par-
allelism is common in many existing systems. It is
particularly useful for irregular applications. Recent
research also suggests that there are important classes
of applications that require both task and data paral-
lelism in order to obtain good performance 18, 9, 101.

The requirements of a runtime system for task-level
parallelism are different from those for data paral-
lelism. First, there is a need for dynamic creation of
tasks or processes. Dynamic load balance is necessary
since these tasks generally have very different execu-
tion times. Second, the interactions between different
tasks can be very complex and need the support of
sophisticated synchronization primitives. Finally, to
take advantage of locality of reference, it is important
to cache and replicate data dynamically. The runtime
system must provide support for processes to locate
data in the distributed address space and to manage
the local memory.

We recommend that research efforts in task-parallel
runtime systems be combined to build common run-
time infrastructure. The common infrastructure
would be built in layers, and all layers would be
accessible to top-level clients. The infrastructure
should run on a variety of high performance paral-
lel machines, including cache-coherent mnltiproces-
sors like DASH or the KSR-1, NUMA machines like
the Cray T3D, and distributed-memory multicom-
puters like the Intel Paragon or the Thinking Ma-
chines CM-5. It should support high level parallel
languagessuch as CC++ [l l] , Jade [lZ] , Natasha [ZO],
and Fortran M [13], as well as parallelizing com-
pilers that generate multithreaded or task parallel
code [14,15, 16,17,18,19]. Prototypes of many of the
layers we envision already exist (often as part of work-
ing runtime systems for specific languages and ma-
chines), so the implementation effort should be man-
ageable.

A common runtime infrastructure for task paral-
lelism would have the following benefits:

Provide a machine-independent layer for portabil-
ity across machines. This will leverage the lower
level system construction currently being done by
individual groups.

Enable shared efforts, both within the group of
developers and for external groups that currently
lack the resources to build portable runtime sys-
tems.

e Encourage better software design through the def-
inition of interfaces between pieces of software.

Provide validation of results by facilitating com-
parisons between different approaches on a com-
mon software architecture.

Allow for inter-operability between different run-
time systems. With an open layered architec-
ture, compiler writers would be able to access
whichever level provides appropriate functional-
ity.

Enable the comparative study of multiple pro-
gramming paradigms and multiple machine ar-
chitectures. Because top-level clients will run on
a common substrate, which in turn runs on many
machines, “apples and apples” comparisons be-
tween languages and compilers will be consid-
erably easier, as will comparisons between ma-
chines.

e Provide a framework for identifying commonality
in runtime systems built for ostensibly different

754

environments (e.g. on different hardware, or for
different languages). Beyond the common facili-
ties described in this report, it is likely that ad-
ditional opportunities for standardization will be
found as research progresses, e.g. in the area of
scheduling policies.

There are currently a number of efforts t o develop
task-parallel runtime systems for a variety of high-
level programming languages, such as CC++ [ll],
Jade (121, Natasha [ZO], and Fortran M [13]. In addi-
tion, several groups are developing parallelizing com-
pilers that recognize implicit task parallelism in se-
quential programs [14, 15, 16, 17, 18,191. These efforts
have resulted in runtime software for a large set of ma-
chines, but because the systems were developed inde-
pendently, each typically runs on only one or two ma-
chines. A common runtime system for task-level paral-
lelism would support multiple machines, and multiple
high-level programming languages and compilers.

To manage the complexity of such a system, we
recommend development of a runtime system archi-
tecture consisting of well-defined layers of abstraction.
Each layer will be exposed to the user-some compil-
ers may be built only on lower layers whereas others
may use a mixture of all layers. In addition, multiple
instances of a single layer may exist to permit efficient
implementations on different architectures, or to pro-
vide a different set of abstractions to higher layers. For
example, locality may be achieved by a shared object
system, a virtual shared memory layer, or hardware
shared memory.

In describing our system architecture, we separate
functions into control and data hierarchies. The con-
trol hierarchy provides threads, scheduling, synchro-
nization, and load balancing facilities, while the data
hierarchy contains names (addresses), data objects,
and object relocation facilities. In practice, of course,
control and data management facilities are seldom in-
dependent; a single software module is likely to pro-
vide a combination of both. Interactions between
them include reduction operations, aligning data and
control (i.e. scheduling for locality), associating syn-
chronization objects with data objects (to facilitate re-
laxed consistency) and waiting for prefetch/poststore
operations to complete.

We expect there to be substantial commonality in
both the control and data hierarchies across the spec-
trum of architectures and programming paradigms.
At the same time, alternative module implementa-
tions, and even alternative interfaces, will be needed
in certain layers in order to accommodate major ar-
chitectural differences, or to provide the performance

and functionality required by dissimilar programming
paradigms. Protocol hierarchies for communication
networks provide an instructive analogy. The I S 0 hi-
erarchy [Z l] provides a conceptual framework for lay-
ered protocols, and Arizona’s $-kernel project [22] pro-
vides an excellent example of the identification and ex-
ploitation of commonality in different protocol stacks.

4 Performance and Debugging Infras-
tructure

The rapidly evolving state of system, run-time, and
application software demands performance evaluation
and debugging technology that is portable across di-
verse implementation platforms, and that can be read-
ily extended to include the results of emerging re-
search. Creating a common performance evaluation
and debugging infrastructure that meets these require-
ments for current application and run-time software
implies a research effort with two specific foci:

integration of application and run-time software
with both extant and proposed performance and
debugging analysis systems through the specifica-
tion and development of software interfaces that
isolate the implementation of specific instrumen-
tation and analysis techniques behind software
“firewalls,” ensuring that instrumented software
can be ported to systems with different instru-
mentation implementations; and

application of performance evaluation and dehug-
ging techniques during run-time software execu-
tion through new, dynamic performance and de-
bugging instrumentation, query, and presentation
techniques, enabling the development of adaptive
application and run-time software.

No single performance analysis or debugging tool
provides all the functionality needed to debug and
optimize all software, nor should it; experience has
shown that a collection of simpler tools is preferable
to a single, complex tool. However, software develop-
ers should he able to easily integrate, combine, and
analyze data from multiple instrumentation and data
analysis tools. At present, this is not possible. The
goal of the software integration focus is to provide run-
time system software developers a set of standard,
high-level interfaces to performance and debugging
tools. Without these standard interfaces, individual
run-time system projects would likely design and de-
velop performance and debugging software specific to
their problem area, rather than deal with the nuances
of each tool’s use. Not only would these systems he

755

incompatible, they would be unable to exploit cross-
domain information (e.g., run-time library and com-
piler information) in a uniform way. A common plat-
form can be achieved only through the standardiza-
tion of software interfaces that isolate the implemen-
tation of specific performancefdebugging instrumen-
tation and analysis techniques behind software bound-
aries. These interfaces provide an integration veneer
which ensures that application and run-time software
can be ported to systems with differing performance
and debugging implementations. For tool developers,
the standard interfaces will provide broad access to
performance and debugging software that is compli-
ant with the interface definitions.

Although standard software interfaces support a
portable, reusable performance evaluation and debug-
ging infrastructure, the requirements posed by emerg-
ing software systems challenge existing performance
and debugging technology. Run-time systems for high-
level languages (e.g., for HPF and HPC++); environ-
ments for creating and accessing parallel, distributed
data structures; and software for adaptive applica-
tion execution and run-time decision analysis will all
require new performance and debugging techniques,
particularly for dynamic instrumentation, run-time
queries, dynamic guidance, and execution state access.
The present opportunity to develop new performance
and debugging techniques in concert with run-time
software is unique. Exploiting this opportunity will
maximize the likelihood that the resulting software
will be well-targeted, quickly applied, and reused by
future run-time system development efforts.

The Performance Evaluation and DebuggInG soft-
waRE infrastructurE (PEDIGREE)’ research project
will create a portable, extensible performance evalu-
ation and debugging infrastructure, based on the re-
search foci above, that is broadly applicable to both
run-time libraries and application software. In partic-
ular, the PEDIGREE infrastructure will include the
following key Components:

standard software interfaces for performance and
debugging tools;

dynamically activated performance instrumenta-
tion, application-initiated performance queries,
performance-directed decision procedures, and
data presentation techniques that allow software
developers to guide computations; and

‘The PEDIGREE acronym is intended to imply a common
basis for performance and debugging support that will be ap-
plicable to all run-time system software.

. run-time debugging infrastructure that utilizes
techniques for dynamic breakpointing to uni-
formly support run-time breakpoint manage-
ment, state and event-based query, and dynamic
visualization.

Standard interfaces will allow both instrumented
run-time systems and applications to be moved to dif-
ferent parallel systems without porting a particular
performance or debugging implementation. In addi-
tion, standard interfaces will encourage the develop-
ment of “meta-tools” that combine data from multi-
ple performance and debugging systems. The primary
focus of existing tools is user-level performance analy-
sis and debugging; the new infrastructure will enable
run-time systems to access performance and debug-
ging data during their execution and to use this data
as input to dynamic decision procedures.

We believe that by delivering these three PEDI-
GREE components, current and future runtime sys-
tem and application software developments will more
likely utilize common performance evaluation and de-
bugging tools rather than develop specialized software,
leading to a sorely needed integration and uniformity
of technology in the two areas.

References

[l] Harry Berryman, Joel Saltz, and Jeffrey Scroggs.
Execution time support for adaptive scientific al-
gorithms on distributed memory machines. Con-
currency: Practice and Experience, 3(3):pp. 159-
178, June 1991.

[Z] Sandeep Bhatt, Marina Chen, James Cowie,
Cheng-Yee Lin, and Pangfeng Liu. Object-
Oriented Support for Adaptive Methods on Par-
allel Machines. OONSKI’93 Object Oriented Nu-
merics Conference, Sunriver, Oregon, April 25-
27, 1993.

[3] S. Bhatt, M. Chen, C.Y. Lin, and P. Liu. Ab-
stractions for Parallel N-body Simulations. Pro-
ceedings of Scalable High Performance Comput-
ing Conference (SHPCC ’92), Williamsburg, Vir-
ginia, April 1992.

[4] Zeki Bozkus, Alok Choudhary, Geoffrey Fox,
Tomasz Haupt, Sanjay R a n b , and Jhy-
Chun Wang. Message Passing Environment Re-
quirements for the Fortran SOD Compiler. Techni-
cal Report SCCS-FEB-93, Northeast Parallel Ar-
chitectures Center at Syracuse University, Febru-
ary 1993.

[SI R. Das, R. Ponnusamy, J. Saltz, and D. Mavriplis.
Distributed memory compiler methods for irreg-
ular problems - data copy reuse and runtime par-
titioning. J. Saltz and P. Mehrotra, editors, Lan-
guages, Compilers and Runtime Environments

756

f o r Distributed Memory Machines, pp. 185-220.
Elsevier, 1992.

[6] S. Ranka, J.C. Wang, and M. Kumar. Personal-
ized Communication Avoiding Node Contention
on Distributed Memory Systems. Proceedings
of the 1993 International Conference on Parallel
Processing, St. Charles, IL, August 1993.

[7] A. Sussman, J. Saltz, R. Das, S. Gupta,
D. Mavriplis, R. Ponnusamy, and K. Crowley.
PART1 primitives for unstructured and block
structured problems. Computing Systems in En-
gineering, 3(1-4):pp. 73-86, 1992. Papers pre-
sented at the Symposium on High-Performance
Computing JOT Flight Vehicles, December 1992.

L. A. Crowl, M. Crovella, T. J. LeBlanc, and
M. L. Scott. Beyond Data Parallelism: The Ad-
vantages of Multiple Parallelizations in Combina-
torial Search. T R 451, Computer Science Depart-
ment, University of Rochester, April 1993.

T . Pratt. Kernel-Control Parallel Versus Data
Parallel: A Technical Comparison. In Proceedings
of the Second Workshop on Languages, Compil-
ers, and Run- Tame Enuiranments for Distributed
Memory Multiprocessors, pages 5-8, Boulder, CO,
30 September - 2 October 1992. In AGM SIG-
PLAN Notices 281 (January 1993).

J. Subhlok, J . M. Stichnoth, D. R. O’Hallaron,
and T. Gross. Programming Task and Data Par-
allelism on a Multicomputer. In Proceedings of
the Fourth AGM Sumvosium on Princioles and
Practice of Para112 Programming, San Diego,
CA, 20-22 May 1993.

K. M. Chandy and C. Kesselman. Composi-
tional C++: Compositional Parallel Program-
ming. California Institute of Technology, 1992.

M. C. Rinard, D. J. Scales, and M. S. Lam. Jade:
A High-Level Machine-Independent Language for
Parallel Programming. Computer, 26(6):28-38,
June 1993.

I. T. Foster and K. M. Chandy. Fortran
M: A Language for Modular Parallel Program-
ming. Preprint MCS-P327-0992, Argonne Na-
tional Laboratory, June 1992.

R. Eigenmann, J. Hoeflinger, G . Jaxon, Z. Li,
and D. Padua. Restructuring Fortran Pro-
grams for Cedar. Proceedings of the 1991 In-
ternational Conference on Parallel Processing, I,
Architecture:57-66, August 1991.

C. D. Polychronopoulos and others. Parafrase-’2:
A Multilingual Compiler for Optimizing, Parti-
tioning, and Scheduling Ordinary Programs. In
Proceedings of the 1989 International Conference
on Parallel Processing, St. Charles, IL, August
1989.

[16] W. Li and K. Pingali. Access Normalization:
Loop Restructuring for NUMA Compilers. In
Proceedings of the Fifth International Conference
on Architectural Support for Programming Lan-
guages and Operating Systems, pages 285-295,
Boston, MA, 12-15 October 1992.

[17] S. P. Amarasinghe and M. S. Lam. Communica-
tion Optimization and Code Generation for Dis-
tributed Memory Machines. In Proceedings of the
SIGPLAN ’93 Conference on Proprammino Lan-
guage Design and implementation, Albuquerque,
NM, 21-25 June 1993.

(181 J. M. Anderson and M. S. Lam. Global Opti-
mizations for Parallelism and Locality on Scal-
able Parallel Machines. In Proceedings of the SIG-
PLAN ’93 Conference on Programming Language
Design and Implementation, Albuquerque, NM,
21-25 June 1993.

(191 D. Padua and R. Eigenmann. Polaris: A New
Generation Parallelizing Compiler for MPPs.
Technical Report 1306, Center for Supercomput-
ing Research and Development, University of Illi-
nois at Urbana-Champaign, 1993.

[ZO] L. A. Crowl and T. J. LeBlanc. Control Ab-
straction in Parallel Programming Lan uages. In
Proceedings of the International Conhrence on
Computer Languages, pages 44-53, Oakland, CA,
April 1992.

[Z l] A. S. Tanenbaum. Network Protocols. AGM
Computing Surveys, 13(4):453-489, December
1981.

[22] L. Peterson, N. Hutchinson, S. O’Malley, and H.
Rao. The x-Kernel: A Platform for Accessing
Internet Resources. Computer, 23(5):23-33, May
1990.

[23] W. J. Bolosky, R. P. Fitzgerald, and M. L.
Scott. Simple But Effective Techniques for
NUMA Memory Management. In Proceedings of
the Twelfth AGM Symposium on Operating Sys-
tems Principles, pages 19-31, Litchfield Park, AZ,
3-6 December 1989.

157

