
Evaluation of Multiprocessor Memory Systems Using Off-Line
Optimal Behavior*

WILLIAM J. BOLOSKY AND MICHAEL L. SCOTT

Computer Science Department, University of Rochester, Rochester, New York 14627-0226

In recent years, much effort has been devoted to analyzing the
performance of distributed memory systems for multiprocessors.
Such systems usually consist of a set of memories or caches, some
device such as a bus or switch to connect the memories and proces-
sors, and a policy for determining when to put which addressable
objects in which memories. In attempting to evaluate such sys-
tems, it has generally proven difficult to separate the performance
implications of the hardware architecture from those of the policy
that controls the hardware (whether implemented in software or
hardware). In this paper we describe the use of off-line optimal
analysis to achieve this separation. Using a trace-driven dynamic
programming algorithm, we compute the policy decisions that
would maximize overall memory system performance for a given
program execution. The result allows us to eliminate the artifacts
of any arbitrarily chosen policy when evaluating hardware perfor-
mance, and provides a baseline against which to compare the
performance of particular, realizable, policies. We illustrate this
technique in the context of software-controlled page migration
and replication and argue for its applicability to other forms of
multiprocessor memory management. Q 1992 Academic press, inc.

1. INTRODUCTION

In the study of multiprocessor memory system design,
as in many fields of scientific endeavor, many factors
interact in complex ways to make up the behavior of the
system as a whole. Overall system performance can be
evaluated in many ways, including simulation, analytical
modeling, and real implementation, but it is not always
easy to isolate the performance effects of individual com-
ponents as they contribute to the whole. Suppose we are
implementing a coherent, global view of memory. If we
double the bandwidth of the interconnection network,
but performance improves by 5%, should we be disap-
pointed? Is the application unable to make use of the

* This work was supported in part by a DARPAINASA Research
Assistantship in Parallel Processing administered by the Institute for
Advanced Computer Studies, University of Maryland, by an IBM sum-
mer student internship, by a Joint Agreement for Loan of Equipment
(Number 14520052) between IBM and the University of Rochester, and
by the National Science Foundation under Institutional Infrastructure
Grant CDA-8822724.

extra bandwidth, or is our coherence protocol simply in-
appropriate for the revised machine? Similarly, if we in-
troduce a lock-down mechanism to reduce ping-ponging
of large cache lines with fine-grain sharing, and perfor-
mance improves by 5%, should we be pleased? Have we
done as well as could reasonably be expected, or could
some other policy have improved performance by 50%?

In an attempt to answer such questions, we have com-
bined trace-driven simulation with an optimal, off-line
memory management policy. We begin with a formal
model of application, hardware, and policy performance.
We then perform a postmortem analysis of the applica-
tion, using a hardware description and a memory refer-
ence trace, to generate the least-cost-possible policy de-
cisions for that application running on that hardware. In
comparison to system evaluations that embed a "real-
life" policy:

1. Off-line optimal analysis allows us to evaluate hard-
ware design decisions without biasing the results based
on the choice of policies (none of which is likely to be
optimal over the entire design space).

2. Performance results obtained with off-line analysis
provide a tight lower bound, for a given hardware base,
on the cost savings that can be achieved by any "real-
life" policy. Rather than tell us how much time is being
used by a given policy, they tell us how much time must
be used by any policy. The difference between optimal
performance and actual achieved performance is the
maximum time that could possibly be saved through pol-
icy improvements.

It is generally accepted that memory reference traces
need to run into millions or even hundreds of millions of
references to capture meaningful behavior. Any algo-
rithm to compute an optimal set of memory management
decisions must therefore make a very small number of
passes over the trace-preferably only one. Our strategy
has been to use dynamic programming to keep track of
the cost, to that point, of each distinguishable state of the
system, and to use architecture-specific knowledge to
keep the number of such states within reason. We pro-
vide a concrete example that captures the most important
characteristics of NUMA multiprocessors (those with

0743-7315192 $5.00
Copyright 0 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

OFF-LINE OPTIMAL MEMORY BEHAVIOR 3 83

visibly nonuniform memory access times) and that can be
applied as well to machines with hardware cache coher-
ence. This latter class is generally said to consist of UMA
(uniform memory access) machines. Different memory
locations have different access times, but the hardware
does its best to conceal this fact.

A NUMA multiprocessor is a distributed memory ma-
chine in which remote single-word references are permit-
ted, and in which data placement decisions such as repli-
cation and migration are not performed in hardware. A
typical NUMA system consists of some collection of pro-
cessors, memories, (noncoherent) caches, interconnec-
tions between these memories (switches or shared bus-
ses), and some software policies (in the kernel, run-time
libraries, or application) that decide where to locate data
dynamically within the memory system. When designing
NUMA hardware, an optimal NUMA placement policy
allows one to evaluate architectural alternatives (e.g.,
different page sizes or different block transfer speeds)
without worrying about whether a particular NUMA
placement policy is making equally good use of each al-
ternative. The types of actions taken by the optimal pol-
icy when running on the hardware model that is eventu-
ally chosen can then be used to guide the design of the
real on-line policy that will eventually be implemented.
The performance of an optimal policy can be used as a
measure against which potential real policies can be com-
pared.

We present a formal model of dynamic multiprocessor
data placement in Section 2 and a tractable algorithm for
computing an optimal placement in Section 3. Section 4
presents experimental results demonstrating the use of
the optimal policy to answer several questions about
NUMA memory management. We include a discussion
of techniques used to establish confidence in our results
despite inherent weaknesses in the formal model. The
paper concludes with Section 5, a general discussion of
domains in which off-line optimal analysis is useful, and a
description of our plans for continued work in multipro-
cessor memory management.

2. A MODEL OF MEMORY SYSTEM BEHAVIOR

This section describes a model designed to capture the
latency-induced cost of memory access and data place-
ment in a multiprocessor memory system that embodies a
tradeoff between replication, migration, and single-word
reference. This model describes most NUMA machines
and many coherently cached machines as well. It does
not attempt to capture any notion of elapsed wall-clock
time, nor does it consider contention, either in the mem-
ory or in the interprocessor interconnection. Memories
and caches are assumed to be as large as needed. Instruc-
tions are assumed to be local at all times; instruction
fetches are ignored.

Throughout this section we use the word "block" for
the unit of memory that can be moved from one location
to another; this formalism applies equally well to pages
and cache lines; "block" is meant to represent either,
depending on context.

The basic concepts of the model are a machine, a trace,
a placement, a policy, and a cost function.

2.1. Machines

A machine p is defined by a set of processors and
memories and some parameters that represent the speeds
of the various memory operations. The set of processors
is denoted II, the set of memories M = n or M = II u
{global}, and the parameters r > l , g > 1 , R > 2r, and
G > 2g. Each parameter is measured in units of time
equal to that of a single-word local memory reference.
Lower-case r is the amount of time that it takes a proces-
sor to access a word from another processor's memory.
"Another processor's memory" could be main memory
associated with a particular processor in a NUMA sys-
tem or a cache line in a coherently cached machine or a
noncoherently cached NUMA system. The symbol n de-
notes the number of elements in a finite set. To eliminate
trivial cases, we require that there be more than one pro-
cessor, i.e., p = nil > 1.

Capital R is the amount of time that it takes for a pro-
cessor to copy an entire block from another processor's
memory. If a machine has global memory (that is, mem-
ory that is not associated with any particular processor,
but rather is equidistant from all processors-this could
be main memory in a cached machine or "dance hall"
memory in a NUMA machine) then the amount of time to
access a word in global memory is g , while G is the cost
of moving an entire block from global memory to a local
memory. The model requires that if g and G are not infi-
nite, then r 2 g and G 5 R 5 2G. Otherwise, if r < g then
it would never make sense to use the global memory; if
R > 2G then one could make a copy from a remote mem-
ory by coping first to global and then from there to the
destination. It is possible to extend our machine model to
include additional classes of memory (e.g., memory at-
tached to the local shared bus of a machine composed of
multiprocessor clusters). Such extensions complicate the
algorithms presented in Section 3, but do not change their
basic character.

For the sake of performance in a distributed-memory
multiprocessor there must often be more than one copy
of a single virtual page. However, the application pro-
grammer wants to think in terms of just one copy, so that
when a change is made by any one processor, that change
should be seen immediately by all other processors. To
enforce this restriction, when a write is made to a particu-
lar virtual page that page may not be replicated anywhere
in the system. This assumption guarantees that any sub-

384 BOLOSKY AND SCOTT

sequent read of the written location will see the new
value, because the version of the page that is read must
itself be a copy of the one that was written. We are cur-
rently engaged in work that relaxes this restriction, either
to support remote-update schemes that maintain consis-
tency among copies by multicasting writes, or to permit
copies of a page to grow mutually inconsistent, so long as
no processor ever accesses a stale word on a page. Both
of these extensions make it difficult-perhaps impos-
sible-to design a computationally tractable optimal pol-
icy; the issues involved are beyond the scope of this pa-
per.

Some systems may not have all of the features de-
scribed above. The BBN Butterfly, for example, has
memory at each processor but no caches and no global
memory; it can be modeled by setting G and g to infinity.
In a coherently cached system where it is not possible to
read a single word from a line stored in a different cache,
r would be infinite. If lines could only be loaded from
main memory and not directly from another cache, then
R would be infinite also.

2.2. Traces

A trace T is a list (T,) of references indexed by Time.
These references are meant to capture all the data-refer-
encing activity of all processors, in order, over the life-
time of the program. We make the important simplifying
assumption that a total ordering exists, and that it is in-
variant, regardless of hardware model and policy deci-
sions.

The word "Time" (with a capital "T") represents the
index of a particular reference within a trace; it is not
directly related to the execution time of a program. Cost
is our analogue of execution time. Thus, regardless of the
policy or hardware considered in a particular execution,
the Time of the trace is the same. We use the integers
from 0 to n - 1 for our time indices, where n is the length
of the trace. A reference is a triple (a, j, w) where a is the
memory address of the word being referenced, j Â II is
the processor making the reference, and w is either read
or write. If p is the set of all possible references, a trace T

races, such as removing jobs from a shared work queue)
in a nondeterministic program could lead to a different
execution altogether. Forbidden interleavings could be
avoided by identifying synchronization operations in a
trace, and never moving references across them, but
even this approach fails to address race conditions. On-
the-fly trace analysis, such as performed in TRAPEDS
[2 3] , could result in better quality results, but only at a
significant cost for maintaining a global notion of time
(e.g., synchronizing on every simulated machine cycle).
In our simulation environment we have performed a se-
ries of experiments designed to measure the sensitivity of
our results to changes in instruction interleaving; we re-
port on these experiments in Section 4.2.

2.3. Placements and Policies

A trace describes an application without specifying the
location(s) within the machine at which pages reside over
Time. These locations are known as a placement; they
are chosen by a policy. As noted above, we assume that
memory and cache space is unlimited, that contention is
not a significant contributor to cost, and that the refer-
ences that make up a trace are not dependent on the
placement chosen for data. Placement decisions made for
different pages therefore have no impact on one another,
allowing us to assume that policies treat pages indepen-
dently. We therefore limit our presentation, without loss
of generality, to the references made to a single page. To
obtain the overall cost of an application, sum the costs
for its pages.

Formally, a placement P is a Time-indexed list (P,) of
location sets, where P, C M , UP, > 0, and (T,.type =

write) => (#P, = 1). That is, each placement set is non-
empty, and is a singleton whenever the corresponding
reference is a write. The set of all placements for a given
trace T is denoted Plc(T). A policy, 9, is a mapping from
traces to placements. Given a machine p , the set of all
policies for that machine is denoted Pol(p).

2.4. Cost
is a list of these references. Trc(p) denotes the set of all The maps a trace and a valid placement for
traces for machine p. that trace into an integer, called the cost of the placement

In practice, a change in policy program tim- the trace. The cost of a placement on a trace is the
ings7 leading to a different trace, which in turn may sum of two components: the cost due to references and
change the behavior of the PO'~'Y, and '0 on. At the very the cost due to page movement. ~h~ reference compo.
least a change in policy will change the interleaving of nent is defined as
references from different processors; our approach ig-
nores this. One could adjust the interleaving during trace 1 if T,.proc â P,
analysis, based on per-processor accumulated costs, but
this approach would run the risk of introducing interleav- cres(P,T) = g if global â P, and T,.proc Â P,
ings forbidden by synchronization constraints in the pro- 1-0

r otherwise.
gram. It would also at best be a partial solution, since the
resolution of race conditions (including "legitimate" (1)

OFF-LINE OPTIMAL MEMORY BEHAVIOR 385

That is, each reference to a local page costs 1; g is the
cost for each reference to a page that is in global memory,
but not in local memory (assuming that global memory
exists); r is the cost for each reference that must be made
to a page in some other processor's memory. The page
movement component cmv is the cost required to move
from one location set to another:

G f(Pt\Pt-1) if global â P , I U Pt
cmv(P, T) =

(=I R . otherwise. "I
The sum here runs from 1 to n - 1, instead of from 0 to
n - 1, because no movement cost is charged for the
initial placement of the page at t = 0. The movement
component of the cost is simply what is required to move
the page into any new locations that it assumes. When
global memory is included in the new or old replication
set, we assume that the global copy will be made first and
used as the source of all of the rest of the copies, at a cost
per copy of G. In keeping with our relatively abstract
notion of memory cost, we do not worry about the chro-
nological sequencing and/or the overlap of page moves.
In actual memory systems, replications tend to occur on
demand, and are spread out over time.

Finally, then,

The related function cpo(9, T) = c(9(T) ,T) maps policies
and traces to cost. Since c and cpo are similar in meaning,
and should be easy to tell apart from context, we will
drop the "no" and use c for both.

2.5. Optimality

Given a machine p and a trace T â Trc(p), a place-
ment P â Plc(T) is said to be optimal if VQ â Plc(T) :
c(P,T) s c(Q,T). Similarly, a policy 9 â Pol(p) is opti-
mal if V9 â Polfp), VT â Trc(p) : c(9,T) 5 c(9,T). That
is, a placement for a trace is optimal if it has cost no
greater than that of any other placement for that trace; a
policy for a machine is optimal if it generates an optimal
placement for any trace on that machine.

A policy 9 â Pol(p) is on-line if VT,T' â Trc(p), Vi â
0 n - 1 : TO.,.^ = + (~ (T) o ... i = W)O ...[I. In
other words, 9 is on-line if the portion of any placement
generated by 9 for Time 0 to i depends only on the refer-
ences made up to and including Time i; i.e., iff 9 uses no
future knowledge. A policy is off-line if it is not on-line.

PROPOSITION. Given machine p, any optimal policy
6' â Pol(p) is off-line.

Proof. Let machine p with processor set 11, memory
set M, and parameters r , g, R, and G, and optimal policy

0 â Pol(p) be given. Because n i l = p > 1, we may choose
distinct processors p i , p2 â n.

Consider trace TI defined to be 10R writes by p i fol-
lowed by 1 write by p2 followed by 10R writes from pi.
The only optimal placement Pi for T1 starts the page at p i
at the beginning of the execution and leaves it there for
the entire run. Consider now trace T-, defined to be 10R
writes by p l followed by 10R writes by pi. The only opti-
mal placement P-, for T2 starts the page at pi and moves it
top2 at Time 10R. Since 0 is optimal and Pi and P2 are the
unique optimal placements for Ti and T2, respectively,
C(Tl) = Pl and 0(T2) = P2. Since TI and T-, are identical
up to reference 10R + 1, but yet 6'(Tl) and C(T2) differ at
Time \OR, we conclude that 6' is off-line.

One can also prove that the behavior of the optimal
algorithm on a given trace is completely determined by
the ratios of r - 1, R, g - 1, and G. An implication of this
theorem is that changing the ratio of local memory speed
to remote speed (i.e., speeding up the local cache cycle)
on a cache coherent or NUMA machine does not change
the preferred behavior for a particular trace. As a corol-
lary, one can show that scaling r - 1, R, g - 1, and G by
the same multiplicative factor s changes the optimal cost
C according to Cnew = 1 + s(Coid - 1). Details can be
found in the technical report version of this paper [81.

3. COMPUTING OPTIMAL NUMA PLACEMENTS

A placement can be thought of as a Time-ordered walk
through the space of possible page replication sets. At
each point in Time the fundamental question to be an-
swered is whether to leave a page in remote or global
memory, or to migrate or replicate it into global or re-
mote memory. The global memory option may not exist
on a NUMA machine. The remote reference option may
not exist on a cache-coherent UMA machine. In any
case, brute-force exploration of the search space is obvi-
ously impractical: the number of possible placements is
on the order of n2".

For the sake of expository clarity we present two ver-
sions of our algorithm, first employing dynamic program-
ming to make the complexity linear in n, and then making
placement decisions for an entire read-run at the Time of
the following write, to make the complexity linear in p.
Both algorithms compute the cost of an optimal place-
ment rather than the placement itself. Since the computa-
tions are constructive it is simple to extend them to pro-
duce the actual placement.

3.1. Computing Optimality without Replication

We developed the first version of the optimal algorithm
(Fig. 1) by assuming that replications are prohibited. This
algorithm resembles the solution to the full version of the
problem, but is simpler and easier to understand. To fit it

BOLOSKY AND SCOTT

for m ? M costso-far[m] + 0

f o r t + 0 t o n - 1 /* for all references in trace */
cheap-cost + cost so_far[global]
C +- G; cheapest +- globa l
for m ? (M \ {global})

if costso-farim] + R < cheap-cost + C
cheap-cost + cost s o l a r [m]
C <Ã R; cheapest + m

new_cos t~~o- fa r [T~ .proc] + MIN (cost-soJar[Tt.proc] + 1, costso-far[cheapest] + C + 1)
/* use copy already here, or get i t here now */

new_cost~o-far[global] + MIN (cost-so-far[global] + g, cost-so-far[cheapest] + G + g)
/* use global copy, or migrate from cheapest */

for m G (M \ {Tt.proc U global})
new_cost-so-far[m] +- MIN (cost-so_far[m] + r , costso-far[cheapest] + C + r)

/* use copy already there, or migrate from cheapest */
cost-so-far + new-cost-so-far /* update whole array */

return MINmeM (costso-farfm])

FIG. 1. Algorithm for computing optimal cost without replication.

into the framework of the cost metric presented in Sec-
tion 2.4, we pretend that all references are writes.

The algorithm uses dynamic programming to deter-
mine, after each reference, the cheapest way that the
page could wind up in each possible memory location. At
Time t , for each memory, the cheapest way that the page
could wind up there is necessarily an extension of the
cheapest way to get it to some (possibly different) loca-
tion at Time t - l . The principal data structure, then, is
an array of cost (integers), "cost-so-far," indexed on
memories m â M. At Time t , cost-sojar[m] contains the
cost of the cheapest placement for the trace TO... , that
would end with the page at m. At the end of the algo-
rithm, the cost of the cheapest overall placement is the
minimum over rn â M of cost-so-far[m]. The key to dy-
namic programming, of course, is that while the algo-
rithm never looks back in the trace stream, it does not
know where the page might be located at the Time that a
reference is made. Only at the end of the trace is the
actual placement known.

The algorithm in Fig. 1 runs in time O(np). There ex-
ists another version that runs in time O(n). It uses the
observation that there is always an optimal placement
that never moves a page to a processor other than the one
making the current reference. The faster algorithm is not
included because it is harder to follow and not much
more interesting than the version presented here.

3.2. Incorporating Replication

The obvious extension for the general case with repli-
cation is simply to enlarge the set M to include all possi-

ble replication states and to enforce coherence by assum-
ing that the transitions into non-singleton states are of
infinite cost when the reference is a write. Unfortunately,
this extension increases the time complexity of the inner
loops of the algorithm from 0 (p) to O(2p) for the cases
where the reference is a read. This is a severe penalty
even on the seven-node machine used for experiments in
Section 4; for large machines it is out of the question.

Fortunately, it is not necessary to search this large
state space. Name the Time interval between two writes
with at least one read and no other writes between them a
read-run. Because of the coherence constraint, at the
beginning and end of a read-run the page state must be a
singleton. There is no cost saving in removing a copy of
the page inside of a read-run, so we can ignore all such
placements. Similarly, if the page will be replicated to a
memory inside of the read-run, there is no cost penalty
involved in making the replication on the first reference
of the read-run. So, for any given read-run all that needs
to be decided is the set of processors to which to repli-
cate; there exists an optimal placement that replicates to
these processors at the beginning of the read-run and
destroys the replicates on the terminal write, without
changing the replication state in between. Furthermore,
the set of processors to which to replicate during a given
read-run depends only on the locations at the writes be-
fore and after the run and on the number of reads made
by each processor during the run.

Armed with these observations, we may extend the
algorithm in Fig. 1 to the general case. The new version
appears in Fig. 3. The function in Fig. 2 computes the
cost of a read-run, given the starting location, the replica-

OFF-LINE OPTIMAL MEMORY BEHAVIOR 387

FUNCTION read-run-cost (start : location; rep-set : set of location;
reads-from : associative array [processor] of integer) : integer

running-total Ã‡ 0

for each j ? domain (reads-from)
if j C rep-set

running-total + +- reads-from[j]
else

running-total + t T * reads-fromb]
if start ? rep-set

running-total + + R * ((rep-set - 1)
else

running-total t + R * (rep-set

return (cost-so-far[start] + running-total) /* cost-so-far is global * /

FIG. 2. Function to compute the cost of a read-run, no global mem-
ory.

tion set, and the number of reads made by each processor
during the run. For the sake of simplicity, this function
assumes that there is no global memory. The modifica-
tions required to handle it are straightforward.

The new algorithm still uses dynamic programming,
but while the state space was updated on every reference
in the old version, it is only updated on writes in the new.
The space that is tracked remains M. In addition, while
formerly at each step we had to consider the possibilities
of starting the page at the current location or in the
cheapest location among the rest of the processors, we
must now also consider the possibility that a processor
may effectively become the cheapest by virtue of a sav-
ings in references during the preceding read-run, even if
these references do not justify replication.

4. EXPERIMENTAL RESULTS FOR NUMA MEMORY
MANAGEMENT

The goal of a NUMA placement policy is to devote as
little time as possible to accessing memory and to moving
data from one memory to another. Several groups have
studied implementable kernel-level policies that replicate
and migrate pages, generally in response to page faults.
Holliday explored migration based on periodic examina-
tion of reference bits [16], and suggested [15] that good
dynamic placement of code and data offers little addi-
tional benefit over good initial placement. Black and
Sleator devised a dynamic page placement algorithm with
provably optimal worst-case behavior [6], and Black,
Gupta, and Weber stimulated it on address traces [5], but
their approach does not appear to exploit "typical" pro-
gram behavior, and requires a daunting amount of hard-
ware assistance. Cox and Fowler's PLATINUM system
[12] for the BBN Butterfly freezes pages that move too
often, but adapts to changes in program behavior by un-
freezing pages periodically. LaRowe, Ellis, and Kaplan
[IS, 191 compared competing policies on the Butterfly by
implementing many alternatives in their DUnX version of

BBN's operating system. Our work with Bob Fitzgerald
[71 on the IBM ACE multiprocessor workstation con-
firmed the value of a good static placement on machines
with comparatively low remote-access penalties, and ar-
gued that even very simple kernel-level policies are likely
to achieve most of the benefits available without applica-
tion-specific knowledge.

The study of NUMA management via real implementa-
tions is attractive in terms of concreteness: none of the
details are abstracted away, so the results have a certain
intrinsic soundness. It is difficult, however, to experi-
ment with different multiprocessor architectures, or to
consider architectural features that have not yet been
implemented. It is likewise difficult to construct good
implementations of more than a small number of policies
in a reasonable period of time. Most important, it is diffi-
cult to isolate effects. In evaluating the ACE system, for
example, we were able to measure performance when all
data references were remote and to predict what perfor-
mance would be if all data references were local (which,
of course, they cannot be, because of coherency require-
ments). We could compare achieved performance to
these extreme bounds, but not to any notion of the best
achievable results.

Optimal analysis allows us to address these limitations.
We explain our experimental environment, including the
trace collection mechanism and application suite, in Sec-
tion 4.1. Section 4.2 describes a series of experiments
designed to establish confidence in the validity of our
analysis technique. The results in Section 4.3 use off-line
analysis to show the dependence of program perfor-
mance on two basic NUMA hardware parameters: the
relative cost of a block transfer (as compared to a series
of individual remote accesses) and the size of a data page.
Section 4.4 compares the performance achieved by sev-
eral implementable policies with that of the optimal pol-
icy, and demonstrates how the placement decisions made
by the optimal policy can be used to guide the design of
an appropriate on-line policy for a given hardware archi-
tecture. Many of the results are drawn from previous
work, in which we and some of our colleagues employed
off-line optimal analysis to explore the extent to which
NUMA policies should be tuned to architectural parame-
ters [9].

4.1. Experimental Tools

4.1 .l. Trace Collection

We collected our traces on an IBM ACE multiproces-
sor workstation [14] running the Mach operating system
[I]. The ACE is an eight-processor machine in which one
processor is normally used only for processing Unix sys-
tem calls and the other seven run application programs.

We collected traces by single-stepping each processor

BOLOSKY AND SCOTT

refs-to-pay-for-repl t R/(r - 1)
for j ? 11 cost-so-farfj] Ã‡ 0
reads-from +- empty /* associative array */
f o r t + O t o n Ã ‘ /* for all references in trace */

if Tt . type = read
if Tt.proc 6 domain (reads-from)

reads-from[Tt.proc] + Ã‡ 1
else

reads-from[Tt .proc] *Ã 1
else /* write */

repl-procs + {j G domain (readsjrom) 1 reads-fromfj] > refs-to-pay-for-repl}
cheapest +- j ? M such that cost-so-far[j] is least
minnonrep-proc Ã‡ j 6 (11 \ repl-procs)

such that cost-so-farfj] -(r - 1) * reads-fromfj] is least
/* if repl-procs = 11, pick an arbitrary processor */

for j ? II
/* We follow one of three possible replication patterns: start where we finish,

start at the place that was cheapest to begin with, or start at the place that
was cheapest but not in the set of memories for which the number of reads
was enough to offset the cost of replication by itself. */

new-costso-farfj] + MIN (
read-run-cost (j, {j} U repl-procs, reads-from),
read-run-cost (cheapest, {cheapest, j} U repl-procs, reads-from),
read-run-cost (minnonrep-proc, {minnonrep-proc, j} U repl-procs, reads-from))

if Tt .proc = j /* write by ending processor */
new-cost-so-farfj] + + 1

else /* write by another processor */
new-cost-so-farfj] + t r

cost-so-far + new-cost-so-far /* update whole array */
reads-from <Ã empty

/* The entire trace has been processed. Clean up if we're in a read-run. */
if Tn-\ .type = write

return MINjgn (cost-so-farfj])
repl-procs +- {j 6 domain (reads-from) 1 reads-fromfj] > refs-to-pay-for-repl}
cheapest t j 6 M such that costso-farfj] is least
min-nonrep-proc +- j 6 (11 \ repl-procs)

such that cost-so-farfj] - (r - 1) * reads-fromfj] is least
/* if repl-procs = 11, pick an arbitrary processor */

for j 6 11
new-costso-farfj] +- MIN (

read-run-cost (j, {j} U repl-procs, reads-from),
read-run-cost (cheapest, {cheapest, j} U repl-procs, reads-from),
read-mn-cost (minnonrep-proc, {minnonrep-proc, j} U repl-procs, reads-from))

return MINjgn (new-cost-so-farfj])

FIG. 3. Optimal policy computation, no global memory.

OFF-LINE OPTIMAL MEMORY BEHAVIOR 389

and decoding the instructions to be executed, to deter-
mine if they accessed data. We did not record instruction
fetches. Our single-step code resides in the kernel's trap
handler, resulting in better performance (and therefore,
longer traces) than would have been possible with the
Mach exception facility or the Unix ptrace call.

The ACE tracer maintains a single global buffer of
trace data. When that buffer fills, the tracer stops the
threads of the traced application and runs a user-level
process that empties the buffer into a file. To avoid inter-
ference from other processes, we ran our applications in
single-user mode, with no other system or user processes
running. Furthermore, all writable memory was placed in
the ACE'S global memory, to prevent "gaps" from ap-
pearing in the trace when the kernel decided to move a
page

4.1.2. Application Suite

We traced a total of 18 applications, written under
three different programming systems. Each of the three
systems encourages a distinctive programming style.
Each is characterized by its memory access patterns and
granularity and by its style of thread management. Table
I shows the sizes of our traces in millions of references.
The Presto and EPEX systems have regions of memory
that are addressable by only one thread. References to
these explicitly private regions are listed in the column
named "Private Refs," and are not represented under
"References ."

EPEX [22] is an extension to FORTRAN developed
for parallel programming at IBM. EPEX applications are
typically numeric. The programmer explicitly identifies
private and shared data in the source code and as a result
the amount of shared data can be relatively small [2].
Parallelism arises from the distribution of DO loops to the
set of available processors. The EPEX applications
traced were e - f f t , a fast Fourier transform; e - simp, a
version of the Simple benchmark; e-hyd, a hydrody-
namics code; and e -nasap , a program for computing air
flow. The prefix e-indicates an EPEX application.

Mach C-Threads [l l] is a multithreaded extension to
C. Our C-Threads programs were written for either the
ACE, PLATINUM, or the SPLASH suite [21], and were
ported to the ACE. In the first two cases, they were
written with a NUMA architecture in mind, and employ a
programming style that can be characterized as coarse-
grain data parallelism: a single thread of control is as-
signed statically to each available processor and data are
partitioned evenly among them. All data is potentially
shared, and the pattern of access is not identified in the
program.

The C-Threads programs traced were gaus s , a well-
optimized program for Gaussian elimination; c h i p , a

TABLE I
Trace Sizes and Breakdowns

Application References Private refs.

e-f f t
e-simp
e-hyd
e-nasap

gauss
c h i p
b s o r t
kmerge
p l y t r a c e
sorbyc
so rby r
matmult
mp3d
cholesky

p-gauss
p - q s o r t
p-matmul t
p - l i f e

-

Note. Terms are given in millions of data references.

simulated annealing program for chip placement; b s o r t ,
a simple merge sort program in which half of the proces-
sors drop out in each phase; kmerge, a merge sort pro-
gram in which groups of processors cooperate in each
merge step, thus keeping all processors busy to the end of
the computation; plytrace, a scene rendering program;
s o r b y c and s o r b y r a pair of red-black successive
over-relaxation programs that differ in the order of their
inner loops and thus in their memory access patterns; and
matmul t , a straightforward matrix multiplier. The final
two applications are from the Stanford Parallel Applica-
tions for SHared memory (SPLASH) benchmark suite
[21]. Cholesky does a Cholesky factorization, while
mp3d simulates rarefied airflow over a wing particle by
particle.

Presto [4] is a parallel programming system based on
C+ +. Because Presto was originally implemented on a
Sequent Symmetry, a coherent cache machine, its appli-
cations were written without consideration of NUMA
memory issues. The Presto programs we traced are char-
acterized by fine-grain data sharing and by a program-
ming style that allocates a large number of threads of
control, regardless of the number of physical processors
available. Presto was ported to the ACE and the applica-
tions were run unmodified. The applications traced were
p - gaus s , another Gaussian elimination program; p -
q s o r t, a parallel quicksort; p-matmul t , another matrix
multiplier; and p - 1 i f e , an implementation of Conway's
cellular automata. The behavior of these programs was
studied in a different context in [3]. The prefix p- indi-
cates a Presto application.

390 B O L O S K Y AND SCOTT

4.2. Validation of the Trace Analysis Technique

Our tracer slows down the execution of a program by a
factor of 200 or more (depending on how many of the
application's instructions make memory references, how
much the floating point accelerator is used, and so on).
This can affect the order in which references are made.
While all processors are slowed uniformly, the dilation
effect buries any difference in execution times of the vari-
ous machine instructions. On the ACE'S processor, most
instructions take only one cycle to execute. The notable
exceptions are memory reference instructions and float-
ing point operations, which take somewhat more time
depending on the instruction, on whether the memory is
busy, etc. Koldinger et al. [I71 investigated dilation in the
related area of coherent cache simulation, and found its
impact on performance differences to be negligible. Since
our optimal policy guarantees small changes in cost in
response to small changes in the trace input (it is, in some
sense, continuous), it is natural to expect its performance
to be even less affected by dilation.

As noted in Section 2.2, a more fundamental problem
with the evaluation of multiprocessor memory systems
based on static trace interleavings is a failure to capture
the influence of the simulated system on the references
that "should" have occurred. In our system, this feed-
back should appear in two forms: fine-grain changes in
instruction interleaving and coarse-grain "reference
gaps" in the activity of individual processors. Instruction
timings depend on whether the operands of loads and
stores are local or remote. If two policies place a page in
a different location at different points in time, then in-
structions will execute faster on some processor(s) and
slower on others, and the interleaving of instructions
from different processors will change. Similarly, when a
policy decides to move a page, the processor performing
the move will stop executing its user program until the
move is complete. Since this could potentially take a long
time (particularly in a system with large pages and/or
large interprocessor latencies), other processes might
make a large number of references in the interim. Since
the times at which the page moves would occur are not
known when the applications are traced, and in general
depend on the parameters of the simulation later per-
formed on the trace, no such gaps appear in the traces.

To evaluate the impact of changes in fine-grain instruc-
tion interleavings, independent of the changes in memory
cost of the locality decisions that caused those changes,
we wrote a filter program that reorders individual refer-
ences in a trace, with a probability that is high for nearby
references, and drops off sharply for larger Time spans.
More specifically, the filter keeps a buffer of 100 refer-
ences from the incoming trace steam. Initially, this buffer
is filled with the first 100 references. The filter then ran-
domly chooses an entry from the buffer, emits the oldest

TABLE I1
Percentage Optimal Performance Change Due to Local and Gap

Perturbations

Application ACE local Bfly local ACE gap Bfly gap

e-fft
e-simp
e-hyd
e-nasap

gauss
chip
bsort
kmerge
plytrace
sorbyc
sorbyr
matmult
mp3d
cholesky

p-gauss
p-qsort
p-matmult
p-life

buffered reference made by the processor whose entry
was selected, and reads a new reference to replace it. We
inserted the filter in front of our trace analyzer, and mea-
sured the degree to which it changed the cost of the opti-
mal policy. The maximum difference in optimal perfor-
mance among all the applications for a machine model
resembling the ACE was 0.007%. For a machine resem-
bling the Butterfly it was 0.03%.

To evaluate the impact of reference gaps, we wrote a
filter than randomly introduced such gaps, and again re-
ran the optimal policy. The filter operates by reading the
unmodified trace, and with probability 1 in 30,000 intro-
duces a "gap" on one processor for 4000 references. A
gap is introduced by taking any references made by the
chosen processor and placing them in a queue. Once the
gap has ended, as long as there are saved references, one
of them will be emitted instead of a fresh reference with
probability 213. The values 30,000 and 4000 were chosen
conservatively in the sense that page moves typically do
not occur as often as every 30,000 references, and 4000
references is somewhat large for the amount of time for a
page move. The 213 frequency is arbitrary. This filter-
induced performance changes up to 0.02% in the ACE
model and 0.34% in the Butterfly model.

Table I1 displays the differences between filtered and
unfiltered results for both filters and ACE and Butterfly
models as a percentage of the total cost. Differences are
absolute values; sometimes the filtered values were
smaller, sometimes they were larger. Values less than
0.001% are reported as 0.

OFF-LINE OPTIMAL MEMORY BEHAVIOR

4.3. Evaluating Architectural Options Independent of
Policy

4.3.1. Block Transfer Speed

It is often possible on a NUMA machine to construct a
hardware-assisted block transfer operation that moves
data through the interconnection network at a much
higher bandwidth than can be achieved with a software
copy loop. If nothing else, the block transfer operation
can avoid network transaction set-up costs for each indi-
vidual word. Cox and Fowler argue [12] that a fast block
transfer is essential for good performance in a NUMA
machine. Working with them [9], we employed off-line
analysis to evaluate this claim on a machine resembling
the Butterfly and on a machine resembling the ACE, in
which the relatively fast performance of global memory
makes aggressive page migration and replication less es-
sential.

Optimal analysis is crucial for our evaluation. While
any reasonable on-line policy will be designed with hard-
ware parameters in mind, its decisions are only guesses
about what placement is likely to work well, and are
made solely on the basis of reference patterns, not on
direct evaluation of costs. Once set, an on-line policy will
make fixed decisions for a given trace prefix, and cannot
be used to evaluate hardware changes. The optimal algo-
rithm, by contrast, bases its decisions directly on the cost
of placement alternatives, and will change its behavior as
hardware parameters change. Its behavior can in fact be
used to guide the design of on-line policies, as discussed
in Section 4.4.3.

...... 1 . 8 1 r] e-fft + - - + sorbyc
A- - - a e-simp sorbyr
U e-hvd - - matmult . . .
x .. x e-nasap - p-gauss
Q - - gauss [. .. [. p-qson - chip - p-matmult - bsort x - - u p-life
A A kmerge + + cholesky
....... plytrace 1--4 m p 3 $ _ . - - - - - - *

....................... l,.... .̂: 1 - - - - - - " / - -
..' . -

1 - - - ---..---- + - - - - - - - - - - - - - - - - 4
, ̂.9.*'

- I I I l l

200 500 1000 1500 2000 ace 2500
Global Move Cost

FIG. 4. MCPR vs G for optimal policy, g = 2, r = 5 .

I I I I I I
200 bfly 7000 10000 15000 20000

Remote Move Cost

10-

-

FIG. 5. MCPR vs R for optimal policy, no global, r = 15.

Q.....E~ e-fft QÃ‘Ã‘ sorbyr
A- - - a e-simp .- - - -. matmult
IÃ‘Ã e-hyd XÃ‘Ã p-gauss
x x e-nasa I....... [. p-qson
Q - - a gauss Â¥]Ã‘Ã‘ p-matmult - chip x - - -x p-life
b s o r t + + cholesky
& A kmerge 1 - - 4 mp3d [. [.

- - - - - - - - - X . plytrace + - - + sorbyc - - - - - - - - - -
.....

Figures 4 and 5 show how the performance of the opti-
mal policy varies with the cost of a page move (G or R) ,
for remote and global access times comparable to those
of the ACE and the Butterfly, respectively. "Perfor-
mance" in these and other graphs is represented as Mean
Cost Per Reference (MCPR): the total cost [as defined in
Eq. (3)] divided by the length of the trace.

The minimum page move time represented on each
graph is 200, which is assumed to be a lower bound on the
time required to process a fault and initiate a page move
in the kernel. A Time of 200 therefore corresponds to an
infinite bandwidth, zero latency hardware block transfer.
The maximum page move times on the graphs are the
page size times g or r, plus a more generous amount of
overhead, corresponding to a less tightly coded kernel.

If R is considered to be a real-valued variable, then the
cost of the optimal policy on a trace is a continuous,
piecewise linear function of R . Furthermore, its slope is
the number of page moves it makes, which in turn is a
monotonically nonincreasing step function of R. Similar
functions exist for G, g, and r , except that their slopes
represent global page moves, global references, and re-
mote references, respectively. An important implication
of continuity is that, given optimal placement, there is no
point at which a small improvement in the speed of the
memory architecture produces a disproportionately large
jump in performance.

One can plot MCPR, g (or r) , and G (or R) on orthogo-
nal axes to obtain multidimensional surfaces. Figures 4
and 5 show two-dimensional cuts through these surfaces.

..... L. .-------- <- - -+ .

c
P

4 -

392 BOLOSKY AND SCOTT

They are interesting cuts in the sense that one can imag-
ine spending extra money on a machine to increase the
speed of block transfer relative to fixed memory refer-
ence costs. Moreover, Figs. 4 and 5 capture all of the
structure of the surfaces, at least in terms of the relation-
ship between page move cost and memory reference
cost. Because of the theorem and its corollary alluded to
in Section 2.5, it is possible to derive the optimal perfor-
mance for all pairs of r and R values.

When designing a NUMA policy for a given machine,
one should take into account where on the move-cost
spectrum the architecture lies. Machines to the left of
articulation points in the MCPR curve benefit from more
aggressive policies, machines to the right from more con-
servative policies. A machine that lies near an articula-
tion point will run well with policies of varying aggres-
siveness. When designing a NUMA machine, the lessons
are less clear. Obviously, faster machines run faster.
Also, the marginal benefit of a small speedup increases at
faster speeds. However, moving across an articulation
point will not produce a corresponding speedup in perfor-
mance: the jump is in the slope of the cost curve, not in
the cost itself.

4.3.2. Page Size

Another attribute of NUMA hardware that must be
evaluated by the architect is the page size. The tradeoffs
for small versus large pages are well known for unipro-
cessor systems: increased fragmentation in exchange for
reduced overhead. Multiprocessor systems are compli-
cated by the additional issue of false sharing: coherence
operations may be caused not by sharing of data between
processors, but simply by the accidental colocation on a
page of data being used by different processors. Large
pages may therefore decrease performance. Eggers and
Jeremaissen [13] describe this effect in coherently cached
systems; they report that in some applications it accounts
for as much as 40% of all cache misses.

We used optimal analysis to determine the effect of
changing the page size in two different NUMA machine
models. The first model resembles the Butterfly. The sec-
ond is meant to capture a more modern NUMA machine,
in which the interprocessor latency relative to local cache
speed is much higher than on the Butterfly, as is likely for
newer designs with faster processors and local memory1
caches. In both models, G and g are set to ? there is no
global memory. For the Butterfly, rand R are 15 and 3sI4
+ 200, respectively, where s is the size of a page: remote
references are slow but block transfers are relatively fast.
The constant 200 allows for the overhead of handling a
page fault or interrupt, mapping a page into some pro-
cess's virtual address space, and possibly invalidating an
outdated copy of the page. For the high-latency machine,
r is 100 and R is sll + 200 + 75: the latency for a remote

I
I I I I I

256 512 1K 2K 4K 8K
Page Size

FIG. 6. MCPR vs page size for optimal policy, high-latency NUMA
model.

reference is much higher, and while the bandwidth of the
interconnect is better than on the Butterfly (thus the sl2
instead of 3sl4), the time to find the location from which
to migrate becomes significant. We assume a directory-
based coherence protocol in which two remote refer-
ences are required: one to the home node of the data, in
order to identify the owner, and one to the owner itself.
These two references contribute 200 to the overhead; the
kernel is assumed to be faster in handling the fault than it
was on the Butterfly (partially because it can overlap
page table changes with the very expensive remote refer-
ences), and contributes only 75.

The amount that performance improves with smaller
pages varies greatly between these two architectures. As
page size increases from 512 bytes to 4 Klbytes, all but
two applications on the Butterfly display performance
changes of less than 20%. On the modern machine, the
effect of page size is much larger. Figure 6 illustrates this
effect with a log-scale MCPR axis and a wider range of
page sizes. Several applications display a two- or even
threefold increase in MCPR as page size increases from
256 bytes to 8 kbytes. We are currently using optimal
analysis to compare several system models, all with la-
tencies and bandwidths comparable to the non-Butterfly
machine presented here, but with varying page sizes, in-
terprocessor latencies, software overheads, etc. Prelimi-
nary results indicate that page size is the most important
determinant of performance in these systems.

As with block transfer speed, investigation of the im-
pact of size depends critically on the use of optimal anal-

OFF-LINE OPTIMAL MEMORY BEHAVIOR 393

ysis. Three on-line policies are described in Section
4.4.1. Others appear in the literature (see, for example,
[18]). All are based on heuristics which, while reflecting
the designer's understanding of hardware parameters,
are oblivious to those parameters once set in operation.
Since it is difficult to determine appropriate heuristics
a priori, an optimal off-line policy based on the actual
costs of references and page moves can be expected to
produce much more reliable results. In the context of the
current study, we can safely conclude that the correlation
between page size and performance is real, and that
smaller pages could be very useful when building NUMA
machines with interprocessor latencies and bandwidths
comparable to those in our non-Butterfly model. The
worse performance at larger page sizes is intrinsic in the
application and architecture, and not a result of policy or
policy-parameter choices that favored the smaller page
sizes.

4.4. Evaluating Implementable Policies against the
Optimal Baseline

4.4.1. A Set of On-Line Policies

In addition to the optimal policy, we have evaluated
three implementable alternatives. Two of them have been
used in real systems and are described in prior papers:
the ACE policy [7] and the PLATINUM policy [12]. The
third policy, Delay, is based on the ACE policy, and
exploits simple hypothetical hardware to reduce the num-
ber of pages moved or "frozen" incorrectly.

The ACE policy can be characterized as a dynamic
technique for discovering a good static placement. The
ACE policy was designed for a machine that has fast
global memory (g = 2) and no mechanism for moving a
page faster than a simple copy loop (G = 2 * pagesize +
200). It operates as follows. Pages begin in global mem-
ory. When possible, they are replicated to each processor
reading them. If a page is written by a processor that has
no local copy, or if multiple copies exist, then a local
copy is made and all others are invalidated. After a small,
fixed number of invalidations, the page is permanently
frozen in global memory. We permit four invalidations
per page in the studies in this paper.

The PLATINUM policy was designed for a machine
with no global memory, slower remote memory than the
ACE (r = 15), and a comparatively fast block transfer
(R = 3 * pagesize + 200). Its principal difference from
the ACE policy is that it attempts to adapt to changing
reference patterns by periodically reconsidering its place-
ment decisions. PLATINUM replicates and moves pages
as the ACE algorithm does, using an extension of a direc-
tory-based coherent cache protocol with selective invali-
dation [lo]. The extension freezes a page at its current
location when it has been invalidated by one processor

and then referenced by another within a certain amount
of time t l . Once every t-, units of time, a daemon defrosts
all previously frozen pages. On the Butterfly, Cox and
Fowler chose t l and t-, to be 10 ms and 1 s respectively.
Since time is unavailable in our simulations, t l and t-, are
represented in terms of numbers of references processed.
The specific values are obtained from the mean memory
reference rate on an application-by-application basis by
dividing the number of references into the (wall clock)
run time of the program and multiplying by 10 ms and 1 s,
respectively. The PLATINUM algorithm was designed for
a local/remote machine, but could use global memory to
hold its frozen pages; we arrange for it to do so when
simulating a machine like the ACE.

Because they are driven by page faults, the ACE and
PLATINUM policies must decide whether to move or
freeze a page at the time of its first (recent) reference
from a new location. Traces allow us to study the pattern
of subsequent references, and confirm that the number of
references following a page fault sometimes fail to justify
the page move or freeze decision. Bad decisions are com-
mon in some traces, and can be quite expensive. An in-
correct page move is costly on a machine (like the ACE)
that lacks a fast block transfer. An incorrect page freeze
is likewise costly under the ACE policy, because pages
are never defrosted. Motivated by these observations, we
postulate a simple hardware mechanism that would allow
us to accumulate some reasonable number of (recent)
references from a new location before making a place-
ment decision.

The Delay policy is based on this mechanism: a
counter in each of the TLB entries on each processor,
which is decremented on each access, and which pro-
duces a fault when it reaches zero. When first accessed
from a new location, a page would be mapped remotely,
and its counter initialized to c. A page placement decision
would be made only in the case of a subsequent zero-
counter fault. This counter is similar to the one proposed
by Black and Sleator [6] for handling read-only pages, but
unlike their proposal for handling writable pages, it never
needs to be inspected or modified remotely, and requires
only a few bits per page table entry. We set c = 100 for
the simulations described in this paper. Our observations
are that a delay of 100 is more than is normally needed,
but the marginal cost of a few remote references in com-
parison to the benefit of preventing unnecessary moves
seems to justify it.

4.4.2. Comparative Policy Performance

The performance of each of our policies on each of our
applications, expressed as Mean Cost Per Reference
(MCPR), appears in Fig. 7 and Figs. 8 and 9 for architec-
tures resembling the ACE and the Butterfly, respec-
tively. Each application has a group of four bars, which

394

e-fft
e-simp
e-hyd

e-nasap
gauss
chip
bsort

kmerge
plytrace

sorbyc
sorb yr

matmult
cholesky

mp3d
p-gauss
p-qsort

p-matmult
p-life

BOLOSKY AND SCOTT

FIG. 7. MCPR for ACE hardware parameters.

represent the performance of the Optimal, ACE, Delay,
and PLATINUM policies, from top to bottom. To place
the sizes of the bars in context, recall that an MCPR of 1
would result if every memory reference were local. For
ACE hardware parameters, an MCPR of 2 is trivially
achievable by placing all shared data in global memory;

e-fft yb
e-simp --i

e-hyd2 1-1 ,
e-nasap -=(

gauss
El

chip 7 1
bsort --

kmerge --
plytrace 77,
sorbyc -1
sorbyr 7)

matmult
mp3d 1 1 '

cholesky 1 ,

any policy that does worse than this is wasting time on
page moves or remote references.

Both the ACE and Delay policies do well on the ACE.
The MCPR for Delay is within 15% of optimal on all
applications other than p 1 y tr ac e. The ACE policy sim-
ilarly performs well for applications other than p ly-
t r a c e , b s o r t , and kmerge. These programs all display
modest performance improvements when some of their
pages migrate periodically, and the ACE and Delay poli-
cies severely limit the extent to which this migration
takes place. The difference between the ACE and Delay
policies displays a bimodal distribution. In most cases the
difference is small, but in a few cases (bsor t and
kmerge) the difference is quite large. In essence, the
additional hardware required by Delay serves to prevent
mistakes.

All of the policies keep the MCPR below 4 for the non-
Presto, non-SPLASH applications on the Butterfly with
the exception of ACE on b s o r t , and that case could be
corrected by increasing the number of invalidations al-
lowed before freezing. For all applications other than
p l y t r a c e , PLATINUM stays near or below 2.5. This is
quite good, considering that a random static placement
would yield a number close to 15.

Applications such as e-f f t and e-hyd, which have
only private and fine-grained shared data, will perform
well with a reasonable static data placement, but this
strategy will not work well in other cases. Many pro-
grams require data to migrate, particularly when remote
references are costly. Examples include matrix rows ly-
ing at the boundaries between processor bands in so r -
byr and dynamically allocated scene information in
p l y t r a c e . This explains why the PLATINUM policy
(which is more aggressive about moving pages) generally
does better than the ACE or Delay policies on a machine
such as the Butterfly, in which a page move can be justi-
fied to avoid a relatively small number of remote refer-
ences.

Even on a machine like the ACE, in which frozen
pages are only twice as expensive to access as local
pages, there is a large benefit in correctly placing pages.
For all but the Presto applications and mp3d, an optimal
placement results in an MCPR below 1.23 on the ACE (as

p-gauss 7-
p-qsort 1

p-matmult

p-life 1 I

FIG. 9. MCPR for Butterfly hardware parameters, Presto applica-
tions. FIG. 8. MCPR for Butterfly hardware parameters.

OFF-LINE OPTIMAL MEMORY BEHAVIOR 395

compared to 2 for static global placement) and 2.35 on the
Butterfly (as compared to 14-15 for random placement).
In [7] we estimate that programs running on the ACE
spend from 25 to 60% of their time referencing data mem-
ory. Newer, more aggressive processor architectures will
only increase this percentage, as processor improve-
ments outstrip improvements in memory. For a program
that spends 50% of its time accessing data memory, even
our poorest MCPR values translate to a 26% improve-
ment in running time on the ACE and a 56% improve-
ment on the Butterfly, in comparison to naive placement,
assuming no contention.

The Presto applications have much higher MCPRs for
both architectures, in both the on-line and optimal poli-
cies. This disappointing performance reflects the fact that
these programs were not designed to work well on a
NUMA machine. They have private memory but do not
make much use of it, and their shared memory shows
little processor locality. The shared pages in the EPEX
e-f f t and e-hyd programs similarly show little proces-
sor locality, but because these programs make more use
of private memory, they still perform quite well.

The programs that were written with NUMA architec-
tures in mind do much better. Compared to the Presto
programs they increase the processor locality of memory
usage, are careful about which objects are colocated on
pages with which other objects, and limit the number of
threads to the number of processors available. It is not
yet clear what fraction of problems can be coded in a
"NUMAticized" style.

4.4.3. Learning from Optimal Behavior

From the discussions above it is clear that the differ-
ence in architecture between the ACE and Butterfly ma-
chines mandates a difference in NUMA policy. It pays to
be aggressive about page moves on the Butterfly. Aggres-
siveness buys a lot for applications such as p l y t r a c e
and e-s imp, which need to move some pages dynami-
cally, and does not cost much for applications such as
e - f f t , which do not. At the same time, aggressiveness
is a bad idea on the ACE, as witnessed by the poor per-
formance of the PLATINUM policy on many applications
(sorbyc , e-s imp, matmult , e - f f t , p-gauss).

To illustrate what is happening to the optimal place-
ment as we vary page move speed, we examined one of
the successive over-relaxation (SOR) applications,
s o r b y r , in some depth. So rby r is an algorithm for com-
puting the steady-state temperature of the interior points
of a rectangular object given the temperature of the edge
points. It represents the object with a two-dimensional
array, and lets each processor compute values in a con-
tiguous band of rows. Most pages are therefore used by
only one processor. The shared pages are used alter-

nately by two processors; one processor only reads the
page, while the other makes both reads and writes, for a
total of four times as many references.

Almost all of s o r b y r ' s references are to memory that
is used by only one processor. Thus, the MCPR values
are all close to 1. However, this case study concentrates
on the portion of references that are to shared memory.
The effects of management of this memory are still
clearly visible in the results presented, and are typical of
shared memory in other NUMA applications.

The optimal placement behavior for a shared page de-
pends on the relative costs of page moves to local, global,
and remote references. This behavior is illustrated in Fig.
10 as a function of page move cost. In this graph the cost
of the optimal policy is broken down into components for
page moves, remote references, global references, and
local references. Since most pages are used by only one
processor, the major cost component is local references;
in this figure, however, the local section is clipped for
readability.

At a G or R of 0, page moves would be free. The
optimal strategy would move all pages on any nonlocal
reference. This means that for a G or R of 0 the optimal
MCPR of any application must be 1, regardless of the
values of g and r. Since the optimal cost is continuous,
the curve for every application must fall off as G or R
approaches 0. This means that all the curves in Figs. 4
and 5 go smoothly to 1 below their left ends. For applica-
tions such as e - f f t that don't show much benefit from G
and R down to 200, this drop is very steep. As page move
cost decreases, remote references are traded for copies
and global references, and then for more copies and local
references. This can be seen in Fig. 10 at points near G =

1200 and G = 400, respectively. While the behavioral
cost breakdown of the optimal policy undergoes large
sudden changes, the cost itself as a function of behavior
changes smoothly with G.

Local (extends down to 0)

I I I 1 I I I
200 500 1000 1500 2000 ace 2500

Global Move Cost

FIG. 10. so rbyr placement cost vs G with optimal breakdown, g = 2,
r = 5 .

396 BOLOSKY AND SCOTT

Any given policy will be oblivious to the speed of mem-
ory operations. Its curve will therefore be a straight line
on a graph like Fig. 4 or Fig. 10, and will lie on or above
the optimal curve at all points. Because the optimal curve
is concave down, no straight line can follow it closely
across its entire range. This means that no single real
policy will perform well over the whole range of architec-
tures. We illustrate this point in Fig. 10 by including lines
for on-line policies. The PLATINUM policy works best
for small G, but at the cost of doing poorly for large G.
Conversely, the ACE and Delay policies do well for large
G, but poorly for small G. To obtain the best performance
over a range of page move speeds in Figs. 4 and 5 (at least
for the applications in which the optimal line curves
sharply), one must change the real policies accordingly.

5 . DISCUSSION

The technique of optimal analysis allows the compari-
son of architectural features without the fear of policy-
influenced bias. That is, it factors out one major source of
possible inaccuracy. When designing a policy to run on a
particular machine, optimal performance can also be
used as a baseline for the evaluation of implementable,
on-line policies.

Optimal analysis may be used to investigate many dif-
ferent memory architectures. The execution and cost
model provided in this paper is already sufficiently gen-
eral to describe a wide range of machines. For example,
coherently cached machines in which the processors
have caches that are backed by a single memory look like
local/global/remote machines: an access directly to the
main memory is simply a global access. Modeling a ma-
chine with even more levels of memory (e.g., local cache,
local (shared) memory, and remote memory in a cluster-
based multiprocessor) would require changes to the cost
model and code presented here, but those changes would
be straightforward; the basic concepts would remain the
same, and the optimal algorithm would remain tractable.

From a functional point of view, NUMA machines
closely resemble UMA machines with hardware cache
coherence; the principal difference is that NUMA poli-
cies generally permit remote references, whereas cache
coherence policies force a line to move on a cache miss
or, in the case of noncachable data, access it only in
global memory. NUMA machines implement data place-
ment decisions in software, of course; cache-coherent
machines implement them in hardware or firmware.
Cache coherence policies are also likely to move data
more often than NUMA policies, mainly because of the
lack of remote references, but also because the compara-
tively small size of a cache line and the low start-up
overhead of a hardware-initiated move make movement

more attractive. Because they move data more, cache-
coherent multiprocessors are likely to suffer more from
interconnect contention.

Distributed virtual memory systems for NORMA (no
remote memory access) machines also resemble hard-
ware-based coherent caching at a functional level [20].
Since most distributed virtual memory systems do not
permit remote access (they would have to implement it in
the page fault handler), they may actually resemble hard-
ware-based coherent caching more than NUMA systems
do. All three kinds of systems may or may not support
the remote update of multiple copies (that is, broadcast-
ing a single word write to multiple remote copies); this is
an orthogonal issue.

Our model of memory management cost can be used to
describe data placement policies for UMA, NUMA, and
NORMA machines, provided that contention is not a ma-
jor factor in performance. Our algorithm for computing
an optimal placement provides a performance baseline
for these policies, and allows evaluation of the hardware
on which they run, provided that we accept the coher-
ence constraints, which insist that all copies of a page be
up-to-date at all times and that only one copy exist at the
time of a write. We are currently experimenting with heu-
ristic off-line algorithms which, while not optimal, may
arguably be used as a performance baseline for systems
in which the coherence constraints are not enforced. We
are particularly interested in the extent to which a policy
might obtain improved performance by exploiting knowl-
edge of false sharing in applications, allowing copies of
pages written by more than one processor in a given time
period, but containing no data objects used by more than
processor during that same period, to grow temporarily
inconsistent. We are also gathering data for a direct com-
parison of memory management costs on UMA, NUMA,
and NORMA machines for a common set of applications.
We expect hardware cache coherence to outperform soft-
ware schemes in most (though not all) cases, but it ap-
pears likely that the differences will in many cases be
small enough to cast doubt on the cost effectiveness of
the hardware-intensive approach. If hardware placement
policies indeed produce larger amounts of interconnect
traffic than software placement policies, then a compari-
son that ignores contention is likely to be biased in favor
of the hardware approach.

We hypothesize that off-line optimal analysis could
fruitfully be employed in problem domains other than
multiprocessor memory management. One might, for ex-
ample, create a tractable algorithm for optimizing alloca-
tion of variables to registers in a compiler, given the ref-
erences to the variables that are eventually made by a
particular program (that is, a trace). It would then be
possible not only to measure the performance of a com-
piler's register allocator, but also to determine the perfor-

OFF-LINE OPTIMAL MEMORY BEHAVIOR 397

mance inherent in different register set designs (different
numbers of registers, different registers for floating point,
addresses, and integers vs general purpose registers, dif-
ferent sizes of register windows, etc.) without having to
worry that observed effects are due to a particular com-
piler, and without having to worry about implementing
register allocation schemes for all of the hardware vari-
ants.

For NUMA machines, off-line analysis has allowed us
to quantify the utility of a fast block transfer, assess the
significance of varying page sizes, characterize the sorts
of placement decisions that a good policy ought to be
making on various sorts of machines, and estimate the
extent to which policy improvements (presumably incor-
porating application-specific knowledge) might increase
the performance of software data placement.

ACKNOWLEDGMENTS

Bob Fitzgerald was the principal force behind the ACE Mach port,
and has provided valuable feedback on our ideas. Rob Fowler and Alan
Cox helped with application ports and tracing, and also provided good
feedback. Comments by the anonymous JPDC referees (referee "C" in
particular) led to many improvements in the paper.

Most of our applications were provided by others: in addition to the
PLATINUM C-Threads applications from Rob and Alan, the Presto ap-
plications came from the Munin group at Rice University; the SPLASH
applications from the DASH group at Stanford University; the EPEX
applications from Dan Bernstein, Kimming So, and Frederica Darema-
Rogers at IBM; and p ly t race from Armando Garcia. Our thanks to
Armando and to Colin Harrison and IBM for providing the ACE ma-
chines on which the traces were made.

REFERENCES

Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Teva-
nian, A, , and Young, M. Mach: A new kernel foundation for UNIX
development. Proc. Summer 1986 USENIX, July 1986.

Baylor, S., and Rathi, B. An evaluation of memory reference be-
havior of engineeringlscientific applications in parallel systems.
IBM Tech. Rep. 14287, IBM T. J. Watson Research Center,
Yorktown Heights, NY, June 1989.
Bennett, J., Carter, J., and Zwaenepoel, W. Adaptive software
cache management for distributed shared memory architectures.
Proc. 17th International Symposium on Computer Architecture,
1990, pp. 125-134.

Bershad, B., Lazowska, E., and Levy, H. PRESTO: A system for
object-oriented parallel programming. Software: Practice Experi-
ence 18, 8 (August 1988), 713-732.
Black, D., Gupta, A, , and Weber, W.-D. Competitive management
of distributed shared memory. Proc. Spring COMPCON, Feb.
1989, pp. 184-190.

Black, D., and Sleator, D. Competitive algorithms for replication
and migration problems. Carnegie-Mellon University Computer
Science Department Tech. Rep. CMU-CS-89-201, Carnegie-Mel-
Ion University, Computer Science Department, Pittsburgh, PA,
Nov. 1989.

Bolosky, W., Fitzgerald, R., and Scott, M. Simple but effective
techniques for NUMA memory management. Proc. 12th ACM

Symposium on Operating Systems Principles, Dec. 1989, pp. 19-
31.

8. Bolosky, W., and Scott, M. Evaluation of multiprocessor memory
systems using off-line optimal behavior. University of Rochester
Computer Science Department Tech. Rep. 403, University of
Rochester Computer Science Department, Rochester, NY, Dec.
1991.

9. Bolosky, W., Scott, M., Fitzgerald, R., Fowler, R., and Cox, A.
NUMA policies and their relation to memory architecture. Proc.
4th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, 1991, pp. 212-221.

10. Censier, L., and Feautrier, P. A new solution to coherence prob-
lems in multicache systems. IEEE Trans. Comput. 27, 12 (Dec.
1978), 1112-1118.

11. Cooper, E., and Draves, R. C-Threads. Tech. Rep., Carnegie-
Mellon University, Computer Science Department, Pittsburgh, PA,
Mar. 1987.

12. Cox, A , , and Fowler, R. The implementation of a coherent memory
abstraction on a NUMA multiprocessor: Experiences with PLATI-
NUM. Proc. 12th ACM Symposium on Operating Systems Princi-
pies, Dec. 1989, pp. 32-44.

13. Eggers, S., and Jeremiassen, T. Eliminating false sharing. Tech.
Rep. 90-12-01, University of Washington, 1990.

14. Garcia, A,, Foster, D., and Freitas, R. The advanced computing
environment multiprocessor workstation. Res. Rep. RC-14419,
IBM T. J. Watson Research Center, Yorktown Heights, NY, Mar.
1989.

15. Holliday, M. On the effectiveness of dynamic page placement.
Tech. Rep. CS-1989-19, Department of Computer Science, Duke
University, Sep. 1989.

16. Holliday, M. Reference history, page size, and migration daemons
in locallremote architectures. 3rd International Conference on Ar-
chitectural Support Support/or Programming Languages and Op-
erating Systems, Apr. 1989.

17. Koldinger, E., Eggers, S., and Levy, H. On the validity of trace-
driven simulations for multiprocessors. In Proc. 18th International
Symposium on Computer Architecture 1991, pp. 244-253.

18. LaRowe, R., and Ellis, C. Experimental comparison of memory
management policies for NUMA multiprocessors. ACM Tran.
Comput. Systems 9, 4 (Nov. 1991), 319-363.

19. LaRowe, R. J., Ellis, C., and Kaplan, L. The robustness of NUMA
memory management. Proc. 13th ACM Symposium on Operating
Systems Principles, 1991, pp. 137-151.

20. Nitzberg, B., and Lo, V. Distributed shared memory: A survey of
issues and algorithms. IEEE Comput. 24, 8 (Aug. 1991), 52-60.

21. Singh, J., Weber, W.-D., and Gupta, A. SPLASH: Stanford paral-
lel applications for shared-memory. Available by anonymous FTP,
Apr. 1991.

22. Stone, J., and Norton, A. The VMIEPEX FORTRAN preprocessor
reference. IBM Res. Rep. RC11408, IBM T. J. Watson Research
Center, Yorktown Heights, NY, 1985.

23. Stunkel, C., and Fuchs, W. K. TRAPEDS: Producing traces for
multicomputers via execution driven simulation. Performance
Evaluation Rev. 17 1 (May 1989), pp. 70-78.

WILLIAM J. BOLOSKY expects to receive his Ph.D. in Computer
Science from the University of Rochester in May of 1992. He was
awarded a M.S. in Computer Science from Rochester in May of 1989,
and a B.S. in Mathematics from Carnegie-Mellon University in June of
1986. His research interests include the design and implementation of

398 BOLOSKY AND SCOTT

multiprocessor memory and operating systems. He has been awarded Ph.D. in Computer Sciences from the University of Wisconsin-Madi-
the Sproull Fellowship and a DARPAINASA Fellowship in Parallel son in 1985. His research focuses on programming languages, operating
Processing. systems, and program development tools for parallel and distributed

computing. He is coleader of Rochester's Psyche parallel operating
MICHAEL L. SCOTT is an Associate Professor in the Department system project, and is the recipient of a 1986 IBM Faculty Development

of Computer Science at the University of Rochester. He received his Award.

Received September 6, 1991; revised February 28, 1992; accepted April
17, 1992

