
Evaluation of Multiprocessor Memory Systems Using O�-Line

Optimal Behavior

�

William J. Bolosky and Michael L. Scott

Computer Science Department

University of Rochester

Rochester, NY 14627-0226

fbolosky,scottg@cs.rochester.edu

September 1991

�

This work was supported in part by a DARPA/NASA Research Assistantship in Parallel Processing

administered by the Institute for Advanced Computer Studies, University of Maryland, by an IBM summer

student internship, by a Joint Agreement for Loan of Equipment (Number 14520052) between IBM and the

University of Rochester, and by the National Science Foundation under Institutional Infrastructure grant

number CDA-8822724.

1

mls
Tech. Rep. 403

Abstract

In recent years, much e�ort has been devoted to analyzing the performance of distributed

memory systems for multiprocessors. Such systems usually consist of a set of memories or

caches, some device such as a bus or switch to connect the memories and processors, and

a policy for determining when to put which addressable objects in which memories. In

attempting to evaluate such systems, it has generally proven di�cult to separate the per-

formance implications of the hardware architecture from those of the policy that controls

the hardware (whether implemented in software or hardware). In this paper we describe the

use of o�-line optimal analysis to achieve this separation. Using a trace-driven dynamic pro-

gramming algorithm, we compute the policy decisions that would maximize overall memory

system performance for a given program execution. The result allows us to eliminate the ar-

tifacts of any arbitrarily chosen policy when evaluating hardware performance, and provides

a baseline against which to compare the performance of particular, realizable, policies. We

illustrate this technique in the context of software-controlled page migration and replication,

and argue for its applicability to other forms of multiprocessor memory management.

2

1 Introduction

In the study of multiprocessor memory system design, as in many �elds of scienti�c en-

deavor, many factors interact in complex ways to make up the behavior of the system as a

whole. Overall system performance can be evaluated in many ways, including simulation,

analytical modeling, and real implementation, but it is not always easy to isolate the per-

formance e�ects of individual components as they contribute to the whole. Suppose we are

implementing a coherent, global view of memory. If we double the bandwidth of the inter-

connection network, but performance improves by 5%, should we be disappointed? Is the

application unable to make use of the extra bandwidth, or is our coherence protocol simply

inappropriate for the revised machine? Similarly, if we introduce a lock-down mechanism to

reduce ping-ponging of large cache lines with �ne-grain sharing, and performance improves

by 5%, should we be pleased? Have we done as well as could reasonably be expected, or

could some other policy have improved performance by 50%?

In an attempt to answer such questions, we have combined trace-driven simulation

with an optimal, o�-line memory management policy. We begin with a formal model of

application, hardware, and policy performance. We then perform a post-mortem analysis

of the application, using a hardware description and a memory reference trace, to generate

the least cost possible policy decisions for that application running on that hardware. In

comparison to system evaluations that embed a \real-life" policy:

1. O�-line optimal analysis allows us to evaluate hardware design decisions without bi-

asing the results based on the choice of policy (none of which is likely to be optimal

over the entire design space).

2. Performance results obtained with o�-line analysis provide a tight lower bound, for a

given hardware base, on the cost savings that can be achieved by any \real-life" policy.

Rather than tell us how much time is being used by a given policy, they tell us how

much time must be used by any policy. The di�erence between optimal performance

and actual achieved performance is the maximum time that could possibly be saved

through policy improvements.

1

1

This second point is essentially the rationale behind Belady's MIN algorithm for page-out in demand-

paged virtual memory systems. The performance of realizable page-replacement policies can be placed in

context by comparing them to Belady's MIN.

3

It is generally accepted that memory reference traces need to run into millions or even

hundreds of millions of references to capture meaningful behavior. Any algorithm to com-

pute an optimal set of memory management decisions must therefore make a very small

number of passes over the trace|preferably only one. Our strategy has been to use dynamic

programming to keep track of the cost, to that point, of each distinguishable state of the

system, and to use architecture-speci�c knowledge to keep the number of such states within

reason. We provide a concrete example that captures the most important characteristics

of NUMA multiprocessors (those with visibly non-uniform memory access times), and that

can be applied as well to machines with hardware cache coherence.

2

A NUMA multiprocessor is a distributed memory machine in which remote single-word

references are permitted, and in which data placement decisions such as replication and mi-

gration are not performed in hardware. A typical NUMA system consists of some collection

of processors, memories, (non-coherent) caches, interconnections between these memories

(switches or shared busses) and some software policies (in the kernel, run-time libraries,

or application) that decide where to locate data dynamically within the memory system.

When designing NUMA hardware, an optimal NUMA placement policy allows one to eval-

uate architectural alternatives (e.g. di�erent page sizes, or di�erent block transfer speeds)

without worrying about whether a particular NUMA placement policy is making equally

good use of each alternative. The types of actions taken by the optimal policy when running

on the hardware model that is eventually chosen can then be used to guide the design of

the real, on-line policy that will eventually be implemented. The performance of an optimal

policy can be used as a measure against which potential real policies can be compared.

We present a formal model of dynamic multiprocessor data placement in section 2,

and a tractable algorithm for computing an optimal placement in section 3. Section 4

presents experimental results, demonstrating the use of the optimal policy to answer several

questions about NUMA memory management. We include a discussion of techniques used

to establish con�dence in our results despite inherent weaknesses in the formal model. The

paper concludes with section 5, a general discussion of domains in which o�-line optimal

analysis is useful, and a description of our plans for continued work in multiprocessor

memory management.

2

This latter class is generally said to consist of UMA (uniform memory access) machines. Di�erent

memory locations have di�erent access times, but the hardware does its best to conceal this fact.

4

2 A Model Of Memory System Behavior

This section describes a model designed to capture the latency-induced cost of memory

access and data placement in a multiprocessor memory system that embodies a tradeo�

between replication, migration and single-word reference. This model describes most NUMA

machines and many coherently cached machines as well.

3

It does not attempt to capture

any notion of elapsed wall-clock time, nor does it consider contention, either in the memory

or in the interprocessor interconnection. Memories and caches are assumed to be as large

as needed. Instructions are assumed to be local at all times; instruction fetches are ignored.

The basic concepts of the model are a machine, a trace, a placement, a policy, and a

cost function.

2.1 Machines

A machine � is de�ned by a set of processors and memories and some parameters that

represent the speed of the various memory operations. The set of processors is denoted �,

the set of memoriesM = � orM = �[fglobalg, and the parameters r > 1, g > 1, R > 2r,

and G > 2g. Each parameter is measured in units of time equal to that of a single-word

local memory reference. Lower-case r is the amount of time that it takes a processor to

access a word from another processor's memory.

4

Capital R is the amount of time that it

takes for a processor to copy an entire block from another processor's memory. If a machine

has global memory (that is memory that is not associated with any particular processor, but

rather is equidistant from all processors|this could be main memory in a cached machine

or \dance hall" memory in a NUMA) then the amount of time to access a word in global

memory is g, while G is the cost of moving an entire block from global memory to a local

memory. The model requires that if g and G are not in�nite, then r � g and G � R � 2G.

Otherwise, if r < g then it would never make sense to use the global memory; if R > 2G

then one could make a copy from a remote memory by copying �rst to global and then from

3

Throughout this section we use the word \block" for the unit of memory that can be moved from

one location to another; this formalism applies equally well to pages and cache lines; \block" is meant to

represent either, depending on context.

4

\Another processor's memory" could be main memory associated with a particular processor in a NUMA

system, or a cache line in a coherently cached machine or non-coherently cached NUMA; r may be in�nite

if no direct remote access is permitted.

5

there to the destination. The symbol] denotes the number of elements in a �nite set. To

eliminate trivial cases, there be more than one processor, i.e. p =]� > 1.

For the sake of performance in a distributed memory multiprocessor it is necessary that

there will often be more than one copy of a single virtual page. However, the application

programmer wants to think in terms of just one copy, so that when a change is made by any

one processor, that change should be seen immediately by all other processors. To enforce

this restriction, when a write is made to a particular virtual page that page may not be

replicated anywhere in the system. This assumption guarantees that any subsequent read of

the written location will see the new value, because the version of the page that is read must

itself be a copy of the one that was written. We are currently engaged in work that relaxes

this restriction, both to support remote-update schemes that maintain consistency among

copies by multicasting writes, or that permit copies of a page to grow mutually inconsistent,

so long as no processor ever accesses a stale word on a page. Both of these extensions make

it di�cult|perhaps impossible|to design a computationally tractable optimal policy; the

issues involved are beyond the scope of this paper.

Some systems may not have all of the features described above. The BBN Buttery,

for example, has memory at each processor but no caches and no global memory; it can

be modeled by setting G and g to in�nity. In a coherently cached system where it is not

possible to read a single word from a line stored in a di�erent cache, r would be in�nite. If

lines could only be loaded from main memory and not directly from another cache, then R

would be in�nite also.

2.2 Traces

A trace T is a list (T

t

) of references indexed by Time. These references are meant to capture

all the memory activity of all processors, in order, over the lifetime of the program. We make

the important simplifying assumption that a total ordering exists, and that it is invariant,

regardless of hardware model and policy decisions.

The word \Time" (with a capital \T") represents the index of a particular memory

reference within a trace; it is not directly related to the execution time of a program. Cost

is our analogue of execution time. Thus, regardless of the policy or hardware considered

6

in a particular execution, the Time of the trace is the same. The Time set, � , is a set of

integers from 0 to n� 1 where n =]� , the number of references in the trace. A reference is

a triple (a; j;w) where a is the memory address of the word being referenced, j 2 � is the

processor making the reference, and w is either read or write. If � is the set of all possible

references, a trace T 2 �

�

. Trc(�) denotes the set of all traces for machine �.

In practice, a change in policy will alter program timings, leading to a di�erent trace,

which in turn may change the behavior of the policy, and so on. At the very least a

change in policy will change the interleaving of references from di�erent processors; our

approach ignores this. One could adjust the interleaving during trace analysis, based on

per-processor accumulated costs, but this approach would run the risk of introducing inter-

leavings forbidden by synchronization constraints in the program. It would also at best be

a partial solution, since the resolution of race conditions (including \legitimate" races, such

as removing jobs from a shared work queue) in a non-deterministic program could lead to

a di�erent execution altogether. Forbidden interleavings could be avoided by identifying

synchronization operations in a trace, and never moving references across them, but even

this approach fails to address race conditions. On-the-y trace analysis, such as performed

in TRAPEDS [29], could result in better quality results, but only at a signi�cant cost for

maintaining a global notion of time (e.g. synchronizing on every simulated machine cycle).

In our simulation environment we have performed a series of experiments designed to mea-

sure the sensitivity of our results to changes in instruction interleaving; we report on these

experiments in section 4.2.

2.3 Placements and Policies

A trace describes an application without specifying the location(s) within the machine at

which pages reside over Time. These locations are known as a placement; they are chosen

by a policy. As noted above, we assume that memory and cache space is unlimited, that

contention is not a signi�cant contributor to cost, and that the references that make up a

trace are not dependent on the placement chosen for data (more on this later). Placement

decisions made for di�erent pages therefore have no impact on one another, allowing us

to assume that policies treat pages independently. We therefore limit our presentation,

without loss of generality, to the references made to a single page. To obtain the overall

7

cost of an application, sum the costs for its pages.

Formally, a placement P is a Time-indexed list (P

t

) of location sets, where P

t

�M and

]P

t

> 0 and (T

t

.type = write)) (]P

t

= 1). That is, each placement set is non-empty, and

is a singleton whenever the corresponding reference is a write. A policy, P , is a mapping

from traces to placements. Given a machine � the set of all policies for that machine is

denoted Pol(�).

2.4 Cost

The function c maps a trace and a valid placement for that trace into an integer, called the

cost of the placement for the trace. The cost of a placement on a trace is the sum of two

components: the cost due to references and the cost due to page movement. The reference

component c

ref

is de�ned as:

c

ref

(P; T) �

n�1

X

t=0

8

>

>

>

<

>

>

>

:

1 if T

t

.proc 2 P

t

g if global 2 P

t

and T

t

.proc 62 P

t

r otherwise

(1)

That is, each reference to a local page costs 1; g is the cost for each reference to a page

that is global memory, but not in local memory (assuming that global memory exists); r is

the cost for each reference that must be made to a page in some other processor's memory.

The page movement component c

mv

is the cost required to move from one location set to

another.

c

mv

(P; T) �

n�1

X

t=1

8

<

:

G �](P

t

n P

t�1

) if global 2 P

t�1

[P

t

R �](P

t

n P

t�1

) otherwise

(2)

The sum here runs from 1 to n � 1 instead of from 0 to n � 1, because no movement cost

is charged for the initial placement of the page at t = 0. The movement component of the

cost is simply what is required to move the page into any new locations that it assumes.

Finally, then, c(P; T) � c

ref

(P; T) + c

mv

(P; T). The related function c

po

(P ; T) �

c(P(T); T) maps policies and traces to cost. Since c and c

po

are similar in meaning, and

should be easy to tell apart from context, we will drop the \po" and use c for both.

8

2.5 Optimality

Given a machine � and a trace T 2 Trc(�), a placement P 2 Plc(T) is said to be optimal

if 8Q 2 Plc(T) : c(P; T) � c(Q; T). Similarly, a policy P 2 Pol(�) is optimal if 8Q 2

Pol(�); 8T 2 Trc(�) : c(P ; T) � c(Q; T). That is, a placement for a trace is optimal if it

has cost no greater than that of any other placement for that trace; a policy for a machine

is optimal if it generates an optimal placement for any trace on that machine.

A policy P 2 Pol(�) is on-line if 8T; T

0

2 Trc(�); 8i 2 0::n � 1 : (T

0::i

= T

0

0::i

))

(P(T)

0::i

= P(T

0

)

0::i

). In other words, P is on-line if the portion of any placement generated

by P for Time 0 to i depends only on the references made up to and including Time i; i.e.

i� P uses no future knowledge. A policy is o�-line if it is not on-line.

PROPOSITION: Given machine �, any optimal policy O 2 Pol(�) is o�-line.

PROOF: Let machine � with processor set �, memory set M , and parameters r, g,

R and G and optimal policy O 2 Pol(�) be given. Because]� = p > 1, we may choose

distinct processors p

1

; p

2

2 �.

Consider trace T

1

de�ned to be 10R writes by p

1

followed by 1 write by p

2

followed by

10R writes from p

1

. The only optimal placement P

1

for T

1

starts the page at p

1

at the

beginning of the execution and leaves it there for the entire run. Consider now trace T

2

de�ned to be 10R writes by p

1

followed by 10R writes by p

2

. The only optimal placement

P

2

for T

2

starts the page at p

1

and moves it to p

2

at Time 10R. Since O is optimal and

P

1

and P

2

are the unique optimal placements for T

1

and T

2

respectively, O(T

1

) = P

1

and

O(T

2

) = P

2

. Since T

1

and T

2

are identical up to reference 10R + 1, but yet O(T

1

) and

O(T

2

) di�er at Time 10R, we conclude that O is o�-line. 2

THEOREM: Given machine � = (�;M; g; r;G;R), s > 0, trace T and optimal policy

O 2 Pol(�), O(T) is an optimal placement for machine �

0

= (�;M; s(g� 1) + 1; s(r� 1)+

1; sG; sR).

PROOF: Let machine �, trace T , s and O be given and �

0

de�ned as in the hypothesis.

De�ne P to be O(T). Let placement Q for T be given. Because P is optimal on �, c(P; T) �

c(Q; T). De�ne �

P

to be the number of local references made by P , �

P

the number of remote

references,

P

the number of global references, �

P

the number of remote moves and �

P

the number of global moves. De�ne �

Q

, �

Q

,

Q

, �

Q

and �

Q

similarly for placement Q. By

9

de�nition of cost, c(P; T) = r�

P

+g

P

+�

P

+R�

P

+G�

P

� r�

Q

+g

Q

+�

Q

+R�

Q

+G�

Q

=

c(Q; T). Since �

P

+�

P

+

P

=]T = �

Q

+�

Q

+

Q

we may subtract them from both sides of the

inequality, and since s > 0, we may multiply without changing the sense of the inequality,

giving s(r� 1)�

P

+ s(g� 1)

P

+ sR�

P

+ sG�

P

� s(r� 1)�

Q

+ s(g� 1)

Q

+ sR�

Q

+ sG�

Q

.

Adding in the terms equal to]T subtracted above and observing the de�nition of c

0

yields

c

0

(P; T) � c

0

(Q; T). Since placement Q was arbitrary, by de�nition of optimality P is

optimal on �

0

. 2

COROLLARY: Given �; s; �

0

; T and O as in the previous theorem, and given optimal

policy O

0

for �

0

,if n is the length of trace T , c is the cost function for � and c

0

the cost

function of �

0

, then

c

0

(O

0

(T);T)

n

= 1 + s(

c(O(T);T)

n

� 1).

PROOF: De�ne P to be the placement O(T) (for machine �). De�ne �, �, , � and � as

in the previous proof. If c is the cost function for machine �, then c(P; T) = �+r�+g+R�+

G�. Since every reference made in the trace is either local, global or remote, �++� = n.

Therefore, c(P; T) = n+(r�1)�+(g�1)+R�+G� and

c(P;T)

n

= 1+

(r�1)�+(g�1)+R�+G�

n

.

By the previous theorem, P is optimal for T on machine �

0

. Since by hypothesis O

0

is

optimal, c

0

(O

0

(T); T) = c

0

(P; T). By de�nitions of cost and �

0

, c

0

(P; T) = �+(s(r�1)+1)�+

(s(g�1)+1)+sR�+sG� = n+s(r�1)�+s(g�1)+sR�+sG�. Dividing by n, we have

c

0

(P;T)

n

= 1+ s

(r�1)�+s(g�1)+sR�+sG�

n

. Subtracting one from the �nal formula for c(P; T)=n

above and substituting yields

c

0

(O(T);T)

n

=

c

0

(P;T)

n

= 1 + s(

c(P;T)

n

� 1) = 1 + s(

c(O(T);T)

n

� 1).

2

3 Computing Optimal NUMA Placements

A placement can be thought of as a Time-ordered walk through the space of possible page

replication sets. At each point in Time the fundamental question to be answered is whether

to leave a page in remote or global memory, or to migrate or replicate it into global or

remote memory. The global memory option may not exist on a NUMA machine. The

remote reference option may not exist on a cache-coherent UMA machine. In any case,

brute-force exploration of the search space is obviously impractical: the number of possible

placements is on the order of n

2

p

.

For the sake of expository clarity we present two versions of our algorithm, �rst employ-

10

for m 2M cost so far[m] 0

for t 0 to n � 1 /* for all references in trace */

cheap cost cost so far[global]

C G; cheapest global

for m 2 (M n fglobalg)

if cost so far[m] + R < cheap cost + C

cheap cost cost so far[m]

C R; cheapest m

new cost so far[T

t

.proc] MIN (

cost so far[T

t

.proc] + 1, /* use copy already here */

cost so far[cheapest] + C + 1) /* get it now */

new cost so far[global] MIN (

cost so far[global] + g, /* use global copy */

cost so far[cheapest] + G+ g) /* migrate from cheapest */

for m 2 (M n fT

t

:proc [globalg)

new cost so far[m] MIN (

cost so far[m] + r, /* use copy already there */

cost so far[cheapest] + C + r) /* migrate from cheapest */

cost so far new cost so far /* update whole array */

return MIN

m2M

(cost so far[m])

Figure 1: Algorithm for computing optimal cost without replication

ing dynamic programming to make the complexity linear in n, and then making placement

decisions for an entire read-run at the Time of the following write, to make the complexity

linear in p. Both algorithms compute the cost of an optimal placement rather than the

placement itself. Since the computations are constructive it is simple to extend them to

produce the actual placement.

3.1 Computing Optimality Without Replication

We developed the �rst version of the optimal algorithm (Figure 1) by assuming that repli-

cations are prohibited. This algorithm resembles the solution to the full version of the

problem, but is simpler and easier to understand. To �t it into the framework of the cost

metric presented in section 2.4, we pretend that all references are writes.

The algorithm uses dynamic programming to determine, after each reference, the cheap-

est way that the page could wind up in each possible memory location. At Time t, for each

memory, the cheapest way that the page could wind up there is necessarily an extension of

the cheapest way to get it to some (possibly di�erent) location at Time t�1. The principal

11

data structure, then, is an array of costs (integers), \cost so far," indexed on memories

m 2 M . At Time t, cost so far[m] contains the cost of the cheapest placement for the

trace T

0::t

that would end with the page at m. At the end of the algorithm, the cost of

the cheapest overall placement is the minimum over m 2 M of cost so far[m]. The key to

dynamic programming, of course, is that while the algorithm never looks back in the trace

stream, it does not know where the page might be located at the Time that a reference is

made. Only at the end of the trace is the actual placement known.

The algorithm in Figure 1 runs in time O(np). There exists another version that runs

in time O(n). It uses the observation that there is always an optimal placement that never

moves a page to a processor other than the one making the current reference. The faster

algorithm is not included because it is harder to follow and not much more interesting than

the algorithm presented.

3.2 Incorporating Replication

The obvious extension for the general case with replication is simply to enlarge the set M

to include all possible replication states, and to enforce coherence by assuming that the

transitions into non-singleton states are of in�nite cost when the reference is a write. Un-

fortunately, this extension increases the time complexity of the inner loops of the algorithm

from O(p) to O(2

p

) for the cases where the reference is a read. This is a severe penalty even

on the 7-node machine used for experiments in section 4; for large machines it is out of the

question.

Fortunately, it is not necessary to search this large state space. Name the Time interval

between two writes with at least one read and no other writes between them a read-run.

Because of the coherence constraint, at the beginning and end of a read-run the page state

must be a singleton. There is no cost bene�t in removing a copy of the page inside of a

read-run, so we can ignore all such placements. Similarly, if the page will be replicated to a

memory inside of the read-run, there is no cost penalty involved in making the replication on

the �rst reference of the read-run. So, for any given read-run all that needs to be decided is

the set of processors to which to replicate; there exists an optimal placement that replicates

to these processors at the beginning of the read-run and destroys the replicates on the

terminal write, without changing the replication state in between. Furthermore, the set of

12

FUNCTION read run cost (start : location; rep set : set of location;

reads from : associative array [processor] of integer) : integer

running total 0

for each j 2 domain (reads from)

if j 2 rep set

running total + reads made[j]

else

running total + r * reads made[j]

if start 2 rep set

running total + R * (]rep set � 1)

else

running total + R *]rep set

return (cost so far[start] + running total) /* cost so far is global */

Figure 2: Function to compute the cost of a read-run, no global memory

processors to which to replicate during a given read-run depends only on the locations at

the writes before and after the run, and on the number of reads made by each processor

during the run.

Armed with these observations, we may extend the algorithm in Figure 1 to the general

case. The new version appears in Figure 3. The function in Figure 2 computes the cost of a

read-run, given the starting location, the replication set and the number of reads made by

each processor during the run. For the sake of simplicity, this function assumes that there

is no global memory. The modi�cations required to handle it are straightforward.

The new algorithm still uses dynamic programming, but while the state space was

updated on every reference in the old version, it is only updated on writes in the new.

The space that is tracked remains M . In addition, while formerly at each step we had to

consider the possibilities of starting the page at the current location, or in the cheapest

location among the rest of the processors, we must now also consider the possibility that a

processor may e�ectively become the cheapest by virtue of a savings in references during

the preceding read-run, even if these references do not justify replication.

13

refs to pay for repl R=(r � 1)

for j 2 � cost so far[j] 0

reads from empty /* associative array */

for t 0 to n� 1 /* for all references in trace */

if T

t

.type = read

if T

t

.proc 2 domain (reads from)

reads from[T

t

.proc] + 1

else

reads from[T

t

.proc] 1

else /* write */

repl procs fj 2 domain (reads from) j reads from[j] > refs to pay for replg

cheapest j 2M such that cost so far[j] is least

min nonrep proc j 2 (� n repl procs)

such that cost so far[j] �(r � 1) * reads from[j] is least

/* if repl procs = �, pick an arbitrary processor */

for j 2 �

/* We follow one of three possible replication patterns: start where we �nish,

start at the place that was cheapest to begin with, or start at the place that

was cheapest but not in the set of memories for which the number of reads

was enough to o�set the cost of replication by itself. */

new cost so far[j] MIN (

read run cost (j, fjg [repl procs, reads from),

read run cost (cheapest, fcheapest, jg [repl procs, reads from),

read run cost (min nonrep proc, fmin nonrep proc, jg [repl procs, reads from))

if T

t

.proc = j /* write by ending processor */

new cost so far[j] + 1

else /* write by another processor */

new cost so far[j] + r

cost so far new cost so far /* update whole array */

reads from empty

/* The entire trace has been processed. Clean up if we're in a read-run. */

if T

n�1

.type = write

return MIN

j2�

(cost so far[j])

repl procs fj 2 domain (reads from) j reads from[j] > refs to pay for replg

cheapest j 2M such that cost so far[j] is least

min nonrep proc j 2 (� n repl procs)

such that cost so far[j] �(r � 1) * reads from[j] is least

/* if repl procs = �, pick an arbitrary processor */

for j 2 �

new cost so far[j] MIN (

read run cost (j, fjg [repl procs, reads from),

read run cost (cheapest, fcheapest, jg [repl procs, reads from),

read run cost (min nonrep proc, fmin nonrep proc, jg [repl procs, reads from))

return MIN

j2�

(new cost so far[j])

Figure 3: Optimal policy computation, no global memory

14

4 Experimental Results for NUMA Memory Management

The goal of a NUMA placement policy is to devote as little time as possible to accessing

memory and to moving data from one memory to another. Several groups have studied

implementable kernel-level policies that replicate and migrate pages, generally in response

to page faults. Holliday explored migration based on periodic examination of reference

bits [19], and suggested [18] that good dynamic placement of code and data o�ers little

additional bene�t over good initial placement. Black and Sleator devised a dynamic page

placement algorithm with provably optimal worst-case behavior [8], and Black, Gupta and

Weber simulated it on address traces [6], but their approach does not appear to exploit

\typical" program behavior, and requires a daunting amount of hardware assistance. Cox

and Fowler's PLATINUM system [13] for the BBN Buttery freezes pages that move too

often, but adapts to changes in program behavior by un-freezing pages periodically. LaRowe,

Ellis, and Kaplan [26, 21] compared competing policies on the Buttery by implementing

many alternatives in their DUnX version of BBN's operating system. Our work with Bob

Fitzgerald [9] on the IBM ACE multiprocessor workstation con�rmed the value of a good

static placement on machines with comparatively low remote access penalties, and argued

that even very simple kernel-level policies are likely to achieve most of the bene�ts available

without application-speci�c knowledge.

The study of NUMA management via real implementations is attractive in terms of

concreteness: experimental results are of nearly unarguable validity. It is di�cult, how-

ever, to experiment with di�erent multiprocessor architectures, or to consider architectural

features that have not yet been implemented. It is likewise di�cult to construct good im-

plementations of more than a small number of policies in a reasonable period of time. Most

important, it is di�cult to quantify results. In evaluating the ACE system, for example,

we were able to measure performance when all data references were remote and to predict

what performance would be if all data references were local (which of course they cannot

be, because of coherency requirements). We could compare achieved performance to these

extreme bounds, but not to any notion of the best achievable results.

Optimal analysis allows us to address these limitations. We explain our experimental

environment, including the trace collection mechanism and application suite, in section 4.1.

Section 4.2 describes a series of experiments designed to establish con�dence in the valid-

15

ity of our analysis technique. The results in section 4.3 show the dependence of program

performance on two basic NUMA hardware parameters: the relative cost of a block trans-

fer (as compared to a series of individual remote accesses), and the size of a data page.

Section 4.4 compares the performance achieved by several implementable policies with that

of the optimal policy, and demonstrates how the placement decisions made by the optimal

policy can be used to guide the design of an appropriate on-line policy for a given hardware

architecture. Many of the results are drawn from previous work, in which we and some

of our colleagues employed o�-line optimal analysis to explore the extent to which NUMA

policies should be tuned to architectural parameters [10].

4.1 Experimental Tools

4.1.1 Trace Collection

We collected our traces on an IBM ACE multiprocessor workstation [17] running the Mach

operating system [1]. The ACE is an eight processor machine in which one processor is

normally used only for processing Unix system calls and the other seven run application

programs.

We collected traces by single-stepping each processor and decoding the instructions to

be executed, to determine if they accessed data. We did not record instruction fetches. Our

single-step code resides in the kernel's trap handler, resulting in better performance (and

therefore longer traces) than would have been possible with the Mach exception facility [7]

or the Unix ptrace call. Execution slowdown is typically a factor of slightly over 200. Other

tracing techniques range from about an order of magnitude slower [30]

5

to two orders of

magnitude faster [22].

The ACE tracer maintains a single global bu�er of trace data. When that bu�er �lls, the

tracer stops the threads of the traced application and runs a user-level process that empties

the bu�er into a �le. To avoid interference from other processes, we ran our applications in

single-user mode, with no other system or user processes running. Furthermore, all writable

memory was placed in the ACE's global memory, to prevent \gaps" from appearing in the

trace when the kernel decided to move a page.

5

They report \50Mbytes" of trace; we assume that they are using 4 bytes/trace entry.

16

Application References Private Refs

e-fft 10.1 81.1

e-simp 27.8 109

e-hyd 49.8 445

e-nasap 20.9 326

gauss 270 0

chip 412 0

bsort 23.6 0

kmerge 10.9 0

plytrace 15.4 0

sorbyc 105 0

sorbyr 104 0

matmult 4.64 0

mp3d 63.1 0

cholesky 38.7 0

p-gauss 23.7 4.91

p-qsort 21.3 3.19

p-matmult 6.74 .238

p-life 64.8 8.0

Table I: Trace Sizes and Breakdowns (in millions of data references)

4.1.2 Application Suite

We traced a total of eighteen applications, written under three di�erent programming sys-

tems. Each of the three systems encourages a distinctive programming style. Each is

characterized by its memory access patterns and granularity and by its style of thread man-

agement. Table I shows the sizes of our traces in millions of references. The Presto and

EPEX systems have regions of memory that are addressable by only one thread. References

to these explicitly private regions are listed in the column named \Private Refs," and are

not represented under \References."

EPEX [28] is an extension to FORTRAN developed for parallel programming at IBM.

EPEX applications are typically numeric. The programmer explicitly identi�es private and

shared data in the source code and as a result the amount of shared data can be relatively

small [3]. Parallelism arises from the distribution of DO loops to the set of available proces-

sors. The EPEX applications traced were e-fft, a fast Fourier transform; e-simp, a version

of the Simple benchmark [14]; e-hyd, a hydrodynamics code; and e-nasap, a program for

17

computing air ow. The pre�x e- indicates an EPEX application.

Mach C-Threads [12] is a multi-threaded extension to C. Our C-Threads programs were

either written for the ACE, or for PLATINUM or the SPLASH suite [27], and ported to

the ACE. In the �rst two cases, they were written with a NUMA architecture in mind,

and employ a programming style that can be characterized as coarse-grain data parallelism:

a single thread of control is assigned statically to each available processor and data is

partitioned evenly among them. All data is potentially shared, and the pattern of access is

not identi�ed in the program.

The C-Threads programs traced were bsort, a simple merge sort program in which

half of the processors drop out in each phase; kmerge, a merge sort program in which

groups of processors cooperate in each merge step, thus keeping all processors busy to

the end of the computation [2]; matmult, a straightforward matrix multiplier; plytrace,

a scene rendering program [16]; sorbyr and sorbyc, a pair of red-black successive over-

relaxation programs [24] that di�er in the order of their inner loops and thus in their

memory access patterns; and chip, a simulated annealing program for chip placement.

Cholesky and mp3d are applications from the Stanford Parallel Applications for SHared

memory (SPLASH) benchmark suite [27]. Cholesky does a Cholesky factorization, while

mp3d simulates rare�ed airow over a wing particle by particle. In many of the C-Threads

applications two-dimensional numerical matrices are represented as an array of pointers

to rows, as recommended in Numerical Recipes in C [25]. In these programs the unit of

data-sharing is the row, so data sharing patterns exhibit a fairly coarse grain.

Presto [5] is a parallel programming system based on C++. Because Presto was orig-

inally implemented on a Sequent Symmetry, a coherent cache machine, its applications

were written without consideration of NUMA memory issues. The Presto programs we

traced are characterized by �ne-grain data sharing and by a programming style that allo-

cates a large number of threads of control, regardless of the number of physical processors

available. Presto was ported to the ACE and the applications were run unmodi�ed. The

applications traced were: p-qsort, a parallel quicksort; p-gauss, a Gaussian elimination

program; p-matmult, a matrix multiplier; and p-life, an implementation of Conway's cel-

lular automata. The behavior of these programs was studied in a di�erent context in [4].

The pre�x p- indicates a Presto application.

18

4.2 Validation of the Trace Analysis Technique

Our tracer slows down the execution of a program by a factor of 200 or more (depending

on how many of the application's instructions make memory references, how much the

oating accelerator is used, and so on). This will have some e�ect on the order in which

references are made. While all processors are slowed uniformly, the dilation e�ect will

bury any di�erence in execution times of the various machine instructions. On the ACE's

processor, most instructions take only 1 cycle to execute. The notable exceptions are

memory reference instructions and oating point operations, which take somewhat more

time depending on the instruction, on whether the memory is busy, etc. Koldinger et al.

[20] investigated these sorts of e�ect in the related area of coherent cache simulation, and

found the performance di�erences due to dilation to be negligible. Since our optimal policy

guarantees small changes in cost in response to small changes in the trace input (it is, in

some sense, continuous), it is natural to expect its performance to be even less a�ected by

dilation.

As noted in section 2.2, a more fundamental problem with the evaluation of multiproces-

sor memory systems based on static trace interleavings is a failure to capture the inuence

of the simulated system on the references that \should" have occurred. In our system, this

feedback should appear in two forms: �ne-grain changes in instruction interleaving, and

coarse-grain \reference gaps" in the activity of individual processors. Instruction timings

depend on whether the operands of loads and stores are local or remote. If two policies

place a page in a di�erent location at di�erent points in time, then instructions will exe-

cute faster on some processor(s) and slower on others, and the interleaving of instructions

from di�erent processors will change. Similarly, when a policy decides to move a page,

the processor performing the move will stop executing its user program until the move is

complete. Since this could potentially take a long time (particularly in a system with large

pages and/or large interprocessor latencies), other processes might make a large number of

references in the interim. Since the times at which the page moves would occur are not

known when the applications are traced, and in general depend on the parameters of the

simulation later performed on the trace, no such gaps appear in the traces.

To evaluate the impact of changes in �ne-grain instruction interleavings, independent of

the changes in memory cost of the locality decisions that caused those changes, we wrote a

19

�lter program that reorders individual references in a trace, with a probability that is high

for nearby references, and drops o� sharply for larger Time spans. More speci�cally, the

�lter keeps a bu�er of 100 references from the incoming trace stream. Initially, this bu�er

is �lled with the �rst 100 references. The �lter then randomly chooses an entry from the

bu�er, emits the oldest bu�ered reference made by the processor whose entry was selected,

and reads a new reference to replace it. We inserted the �lter in front of our trace analyzer,

and measured the degree to which it changed the cost of the optimal policy. The maximum

di�erence in optimal performance among all of the applications for the ACE machine model

was 0.007%. For the Buttery machine model it was 0.1%.

To evaluate the impact of reference gaps, we wrote a �lter that randomly introduces such

gaps, and again re-ran the optimal policy. The �lter operates by reading the unmodi�ed

trace, and with probability one in 30,000 introduces a \gap" on one processor for 4000

references. A gap is introduced by taking any references made by the chosen processor and

placing them in a queue. Once the gap has ended, as long as there are saved references,

one of them will be emitted instead of a fresh reference with probability 2=3. The values

30,000 and 4000 were selected arbitrarily, but were chosen conservatively in the sense that

a page moves typically do not occur as often as every 30,000 references, and 4000 references

is somewhat large for the amount of time for a page move. The 2=3 frequency is arbitrary.

This �lter induced performance changes up to .06% in the ACE model and 0.34% in the

Buttery model.

Table II displays the di�erences between �ltered and un�ltered results for both �lters

and ACE and Buttery models as a percentage of the total cost. Di�erences are absolute

values; sometimes the �ltered values were smaller, sometimes they were larger. Values less

than 0.001% are reported as 0.

4.3 Evaluating Architectural Options Independent of Policy

4.3.1 Block Transfer Speed

It is often possible on a NUMA machine to construct a hardware-assisted block transfer

operation that moves data through the interconnection network at a much higher band-

width than can be achieved with a software copy loop. If nothing else, the block transfer

20

Application ACE Local By Local ACE Gap By Gap

e-fft .002% .012% 0 .18%

e-simp .001% .001% .001% .039%

e-hyd 0 0 0 .001%

e-nasap .007% .03% .004% .15%

gauss 0 0 .02% .07%

chip 0 0 0 0

bsort 0 0 0 0

kmerge 0 0 0 0

plytrace 0 0 .01% .06%

sorbyc 0 .01% 0 .01%

sorbyr 0 .007% 0 .07%

matmult 0 .03% 0 .25%

mp3d 0 0 0 .002%

cholesky 0 .004% 0 .03%

p-gauss 0 0 0 .24%

p-qsort 0 .01% 0 .24%

p-matmult 0 .01% 0 .04%

p-life 0 .005% .002% .34%

Table II: Percentage optimal performance change due to local and gap perturbations

operation can avoid network transaction set-up costs for each individual word. Cox and

Fowler argue [13] that a fast block transfer is essential for good performance in a NUMA

machine. Working with them [10], we employed o�-line analysis to evaluate this claim on a

machine resembling the Buttery and on a machine resembling the ACE, in which the rel-

atively fast performance of global memory makes aggressive page migration and replication

less essential.

Figures 4 and 5 show how the performance of the optimal policy varies with the cost of

a page move (G or R), for remote and global access times comparable to those of the ACE

and the Buttery, respectively. Results for the Presto applications are not shown, because

they are o� the scale of the graphs; their shape is not signi�cantly di�erent from the other

applications.

The minimum page move time represented on each graph is 200, which is assumed to

be a lower bound on the time required to process a fault and initiate a page move in the

kernel. 200 therefore corresponds to an in�nite bandwidth, zero latency hardware block

21

1

1.05

1.1

1.15

Global Move Cost

200 500 1000 1500 2000

ace

2500

2 2

e-�t

2
2
2
2 2

2 2 2 2
2 2 2 2

� �
e-nasap

�

�

�

�

�

�

�

�

�

�

�

��

�

� �
gauss

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

chip

� � �
� � � � � �

� � �
�

4 4

bsort

4

4

4

4

4

4

4

4

4

4

4

4

4

4 4

kmerge

4

4

4

4

4

4

4

4

4

4

4

4

4

� �

plytrace

�

��

��

��

�

�

�

�

�

�

�

�

�

2 2

sorbyr

2

2

2

2

2

2

2

2

2

2

2

2

2

� �

matmult

�

�

�

�

�

�

�

�

�

�

�

�

��

Figure 4: MCPR vs. G for optimal, g=2, r=5

transfer. The maximum page move times on the graphs are the page size times g or r, plus

a more generous amount of overhead, corresponding to a less tightly coded kernel.

If R is considered to be a real-valued variable, then the cost of the optimal policy on a

trace is a continuous, piecewise linear function of R. Furthermore, its slope is the number of

page moves it makes, which in turn is a monotonically decreasing step function ofR. Similar

functions exist for G, g, and r, except that their slopes represent global page moves, global

references, and remote references respectively. An important implication of continuity is

that, given optimal placement, there is no point at which a small improvement in the speed

of the memory architecture produces a disproportionately large jump in performance.

One can plot MCPR, g (or r), and G (or R) on orthogonal axes to obtain multi-

dimensional surfaces. Figures 4 and 5 show two-dimensional cuts through these surfaces.

They are interesting cuts in the sense that one can imagine spending extra money on a

machine to increase the speed of block transfer relative to �xed memory reference costs.

Moreover, �gures 4 and 5 capture all of the structure of the surfaces, at least in terms of the

relationship between page move cost and memory reference cost. Because of the theorem

and its corollary presented in section 2.5, it is possible to derive the optimal performance

22

1

1.5

2

2.5

3

3.5

Remote Move Cost

200 by 10000 200007000 15000

2 2 e-�t

2

2

2
2
2

2

2
2

2

2

2

2

4 4 e-simp

4

4

4

4

4

4

4

4

4

4

4

4

� � e-nasap

�

�

�

�

��

�

�

�

�

�

�

�

� � gauss

�
�
�

�
�

�

�

�

�

�

�

� � chip

�

�

�

�

�

�

�

�
�

�

�
�

4 4 bsort

4

4

4

4

4

4

4

4

4

4

4

4

4 4 kmerge

4

4

4

4

4

4

4

4

4

4

4

4

� � plytrace

�

�

�

�

�

�

�

�

�

�

�

�

2 2 sorbyr

2
2

2
2

2

2

2

2

2

2

2

2

� � matmult

�

�

�

�

�

�

�

�

�

�

�

�

Figure 5: MCPR vs. R for optimal, no global, r=15

for all pairs of r and R values.

Figure 6 presents, on a logarithmic scale, the mean number of page moves per page as

a function of G for an ACE-like machine. Many of the applications have large jumps in the

number of moves made around 1024 and 512. These are points at which referencing each

word on a page, or half of the words, is su�cient to justify a page move. Some applications

show large jumps at other multiples or fractions of the page size, but large changes at other

values of the page move cost are rare.

When designing a NUMA policy for a given machine, one should take into account

where on our move cost spectrum the architecture lies. Machines to the left of jumps in

the number of moves per page curve bene�t from more aggressive policies, machines to

the right from more conservative policies. A machine that lies near a jump point will run

well with policies of varying aggressiveness. When designing a NUMA machine, the lessons

are less clear. Obviously, faster machines run faster. Also, the marginal bene�t of a small

23

1

10

100

1000

Global Move Cost

200 500 1000 1500 2000

ace

2500

4 4

e-simp

4

4

4

4

4

4

4

4

4

4

4
4

4

� �
e-nasap

�

�

�

�

�

�

�

�

�

�

�

��

�

� �

plytrace

�

��

��

��

�

�

�

�

�

�

�

�

�

2 2

sorbyr

2 2 2

2 2

2

2 2 2

2 2 2 2

� �

matmult

�

�

�

�

�

�

�

�

�

�

� � ��

� �
p-gauss

�

�

�

�

�

�

�

�

�

�

�

�

�

2 2

p-qsort

2

2

2

2

2

2

2

2

2

2

2

2

2

� �

p-life

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 6: Mean Page Moves per Page for optimal, g=2, r=5

speedup increases at faster speeds. However, moving across a jump point will not produce

a corresponding speedup in performance: the jump is in the slope of the cost curve, not in

the cost itself.

4.3.2 Page Size

Another attribute of NUMA hardware that must be evaluated by the architect is the page

size. The tradeo�s for small versus large pages are well known for uniprocessor systems:

increased fragmentation in exchange for reduced overhead. Multiprocessor systems are

complicated by the additional issue of false sharing: coherence operations may be caused

not by sharing of data between processors, but simply by the accidental co-location on

a page of data being used by di�erent processors. Large pages may therefore decrease

performance. Eggers and Jeremaissen [15] describe this e�ect in coherently cached systems;

they report that in some applications it accounts for as much as 40% of all cache misses.

24

2

4

6

Page Size

512 1K 2K 4K

� � e-nasa

�

�

�

�

2 2 e-�t

2

2

2

2

4 4 e-simp

4

4

4

4

2 2 e-hyd2

2

2

2
2

4 4 bsort

4

4

4
4

4 4 kmerge

4

4

4
4

2 2 sorbyr

2
2

2 2

+ + sorbyc

+
+

+

+

� � plytrace

�

�

�

�

2 2 gauss

2 2 2

2

+ + cholesky

+

+

+

+

2 2 mp3d

2

2

2

2

� � matmult

�

�

�

�

2 2 p-qsort

2

2

2

2

+ + p-matmult

+

+

+

+

� � p-life

�

�

�

�

� � p-gauss

�

�

�

�

Figure 7: Optimal MCPR varying with page size for Buttery model

We used optimal analysis to determine the e�ect of changing the page size in two di�erent

NUMA machines. The curves in Figure 7 show the variation in mean cost per reference

(MCPR) of the optimal policy as the page size s varies from 512 bytes to 4K bytes on

a machine resembling the Buttery. Figure 8 shows similar curves (but with a log scale

MCPR axis) for a hypothetical NUMA machine in which the inter-processor latency relative

to local cache speed is much higher than on the Buttery, as is likely for newer designs with

faster processors and local memory/caches. In both models, G and g are set to 1: there is

no global memory. For the Buttery, r and R are 15 and 3s=4 + 200, respectively: remote

references are slow but block transfers are relatively fast. The constant 200 allows for the

overhead of handling a page fault or interrupt, mapping a page into some process's virtual

address space, and possibly removing an out-dated copy of the page. For the high-latency

machine, r is 100 and R is s=2+200+75: the latency for a remote reference is much higher,

and while the bandwidth of the interconnect is better than the buttery (thus the s=2

25

Page Size

256 512 1K 2K 4K 8K

1

2

5

10

20

50

4 4 e-simp

4

4

4

4

4

4

2 2 e-hyd

2

2

2

2

2

2

� � e-nasa

�

�

�

�

�

�

4 4 bsort

4

4

4

4

4

4

� � matmult

�

�

�

�

�

�

+ + cholesky

+

+

+

+

+

+

2 2 mp3d

2

2

2

2

2

2

2 2 gauss

2

22

2

2
2

� � plytrace

�

�

�

�

�

�

2 2 sorbyr

2

222

2

2

+ + sorbyc

+

+

+

+

++

2 2 p-qsort

2

2

2

2

2

2

+ + p-matmult

+

+

+

+

++

� � p-life

�

�

�

�

�

�

Figure 8: Optimal MCPR varying page size for high-latency NUMA model

instead of 3s=4), the time to �nd the location from which to migrate becomes signi�cant.

We assume a directory-based coherence protocol in which two remote references are required:

one to the home node of the data, in order to identify the owner, and one to the owner

itself. These two references contribute 200 to the overhead; the kernel is assumed to be

faster in handling the fault than it was on the Buttery (partially because it can overlap

page table changes with the very expensive remote references), and contributes only 75.

The amount that performance improves with smaller pages varies greatly between these

two architectures. While there is a small e�ect on the Buttery, in general it is insu�cient

to warrant exploiting. On the other hand, in the more modern, higher-latency NUMA,

it has a predominant e�ect on performance. We are currently using optimal analysis to

compare several system models, all with latencies and bandwidths comparable to the non-

Buttery machine presented here, but with varying page sizes, inter-processor latencies,

software overheads, etc. Preliminary results indicate that page size is the most important

26

determinant of performance in these systems.

Without using optimal analysis, it would be di�cult to determine whether any measured

performance di�erences were really due to smaller pages, or simply to some artifact of the

particular on-line policy chosen for the study. As it is, we can safely conclude that our result

about page size is real, and that smaller pages could be very useful when building NUMAs

with interprocessor latencies and bandwidths comparable to those in our non-Buttery

model.

4.4 Evaluating Implementable Policies Against the Optimal Baseline

4.4.1 A Set of On-Line Policies

In addition to the optimal policy, we have evaluated three implementable alternatives. Two

of them have been used in real systems and are described in prior papers: the ACE policy [9]

and the PLATINUM policy [13]. The third policy, Delay, is based on the ACE policy, and

exploits simple hypothetical hardware to reduce the number of pages moved or \frozen"

incorrectly.

The ACE policy can be characterized as a dynamic technique to discover a good static

placement. The ACE policy was designed for a machine that has fast global memory (g = 2)

and no mechanism to move a page faster than a simple copy loop (G = 2 � pagesize+200).

It operates as follows: Pages begin in global memory. When possible, they are replicated

to each processor reading them. If a page is written by a processor that has no local copy,

or if multiple copies exist, then a local copy is made and all others are invalidated. After a

small, �xed number of invalidations, the page is permanently frozen in global memory. We

permit four invalidations per page in the studies in this paper.

The PLATINUM policy was designed for a machine with no global memory, slower re-

mote memory than the ACE (r = 15), and a comparatively fast block transfer (R =

3 � pagesize + 200). Its principal di�erence from the ACE policy is that it continues to

attempt to adapt to changing reference patterns by periodically reconsidering its placement

decisions. PLATINUM replicates and moves pages as the ACE algorithm does, using an

extension of a directory-based coherent cache protocol with selective invalidation [11]. The

extension freezes a page at its current location when it has been invalidated by one proces-

27

sor and then referenced by another within a certain amount of time t

1

. Once every t

2

units

of time, a daemon defrosts all previously frozen pages. On the Buttery, Cox and Fowler

chose t

1

and t

2

to be 10ms and 1s respectively. Since time is unavailable in our simulations,

t

1

and t

2

are represented in terms of numbers of references processed. The speci�c values

are obtained from the mean memory reference rate on an application-by-application basis,

by dividing the number of references into the (wall clock) run time of the program and

multiplying by 10ms and 1s respectively. The PLATINUM algorithm was designed for a

local/remote machine, but could use global memory to hold its frozen pages; we arrange for

it to do so when simulating a machine like the ACE.

Because they are driven by page faults, the ACE and PLATINUM policies must decide

whether to move or freeze a page at the time of its �rst (recent) reference from a new

location. Traces allow us to study the pattern of subsequent references, and con�rm that

the number of references following a page fault sometimes fails to justify the page move or

freeze decision. Bad decisions are common in some traces, and can be quite expensive. An

incorrect page move is costly on a machine (like the ACE) that lacks a fast block transfer.

An incorrect page freeze is likewise costly under the ACE policy, because pages are never

defrosted. Motivated by these observations, we postulate a simple hardware mechanism

that would allow us to accumulate some reasonable number of (recent) references from a

new location before making a placement decision.

The Delay policy is based on this mechanism: a counter in each of the TLB entries

on each processor, that is decremented on each access, and that produces a fault when it

reaches zero. When �rst accessed from a new location, a page would be mapped remotely,

and its counter initialized to c. A page placement decision would be made only in the case

of a subsequent zero-counter fault. This counter is similar to the one proposed by Black

and Sleator [8] for handling read-only pages, but unlike their proposal for handling writable

pages, it never needs to be inspected or modi�ed remotely, and requires only a few bits

per page table entry. We set c = 100 for the simulations described in this paper. Our

observations are that a delay of 100 is more than is normally needed, but the marginal

cost of a few remote references as compared to the bene�t of preventing unnecessary moves

seems to justify it.

28

-0 1 2

e-�t

e-simp

e-hyd

e-nasap

gauss

chip

bsort

kmerge

plytrace

sorbyc

sorbyr

matmult

cholesky

mp3d

p-gauss

p-qsort

p-matmult

p-life

Optimal

ACE

Delay

PLATINUM

Figure 9: MCPR for ACE Hardware Parameters

4.4.2 Comparative Policy Performance

The performance of each of our policies on each of our applications, expressed as Mean

Cost Per Reference (MCPR), appears in Figures 9 and 10{11, for architectures resembling

the ACE and the Buttery, respectively. Each application has a group of four bars, which

represent the performance of the Optimal, ACE, Delay and PLATINUM policies, from top

to bottom. To place the sizes of the bars in context, recall that an MCPR of 1 would result

if every memory reference were local. For ACE hardware parameters, an MCPR of 2 is

trivially achievable by placing all shared data in global memory; any policy that does worse

than this is wasting time on page moves or remote references

Both the ACE and Delay policies do well on the ACE. The MCPR for Delay is within

15% of optimal on all applications other than plytrace. The ACE policy similarly performs

well for applications other than plytrace, bsort and kmerge. These programs all display

modest performance improvements when some of their pages migrate periodically, and the

29

-0 2 4 6 8

e-�t

e-simp

e-hyd2

e-nasap

gauss

chip

bsort

kmerge

plytrace

sorbyc

sorbyr

matmult

mp3d

cholesky

Optimal

ACE

Delay

PLATINUM

Figure 10: MCPR for Buttery Hardware Parameters

-0 5 10

p-gauss

p-qsort

p-matmult

p-life

Figure 11: MCPR for Buttery Hardware Parameters, PRESTO applications

ACE and Delay policies severely limit the extent to which this migration takes place. The

di�erence between the ACE and Delay policies displays a bimodal distribution. In most

cases the di�erence is small, but in a few cases (bsort and kmerge) the di�erence is quite

large. In essence, the additional hardware required by Delay serves to prevent mistakes.

All of the policies keep the MCPR below 4 for the non-Presto applications on the Butter-

y, with the exception of ACE on bsort, and that case could be corrected by increasing the

number of invalidations allowed before freezing. For all applications other than plytrace,

PLATINUM stays near or below 2.5. This is quite good, considering that a random static

placement would yield a number close to 15.

Applications such as e-fft and e-hyd, which have only private and �ne-grained shared

data, will perform well with a reasonable static data placement, but this strategy will

30

not work well in other cases. Many programs require data to migrate, particularly when

remote references are costly. Examples include matrix rows lying at the boundaries between

processor bands in sorbyr, and dynamically-allocated scene information in plytrace. This

is demonstrated by the number of page moves performed by the optimal policy, presented

in Figure 6. It explains why the PLATINUM policy (which is more aggressive about moving

pages) generally does better than the ACE or Delay policies on a machine such as the

Buttery, in which a page move can be justi�ed to avoid a relatively small number of

remote references.

Even on a machine like the ACE, in which frozen pages are only twice as expensive to

access as local pages, there is a large bene�t in correctly placing pages. For all but the Presto

applications, an optimal placement results in an MCPR below 1.23 on the ACE (as compared

to 2 for static global placement) and 2.35 on the Buttery (as compared to 14{15 for random

placement). In [9] we estimate that programs running on the ACE spend from 25%{60%

of their time referencing memory. Newer, more aggressive processor architectures will only

increase this percentage, as processor improvements outstrip improvements in memory. For

a program that spends 50% of its time accessing data memory, even our poorest MCPR

values translate to a 26% improvement in running time on the ACE, and a 56% improvement

on the Buttery, in comparison to naive placement, assuming no contention.

The Presto applications have much higher MCPRs for both architectures, in both the

on-line and optimal policies. This disappointing performance reects the fact that these

programs were not designed to work well on a NUMA machine. They have private memory

but do not make much use of it, and their shared memory shows little processor locality.

The shared pages in the EPEX e-fft and e-hyd programs similarly show little processor

locality, but because these programs make more use of private memory, they still perform

quite well.

The programs that were written with NUMA architectures in mind do much better.

Compared to the Presto programs they increase the processor locality of memory usage,

are careful about which objects are co-located on pages with which other objects, and limit

the number of threads to the number of processors available. It is not yet clear what fraction

of problems can be coded in a \NUMAticized" style.

31

4.4.3 Learning from Optimal Behavior

From the discussions above it is clear that the di�erence in architecture between the ACE

and Buttery machines mandates a di�erence in NUMA policy. It pays to be aggressive

about page moves on the Buttery. Aggressiveness buys a lot for applications such as

plytrace and e-simp, which need to move some pages dynamically, and doesn't cost much

for applications such as e-fft, which do not. At the same time, aggressiveness is a bad

idea on the ACE, as witnessed by the poor performance of the PLATINUM policy on many

applications (sorbyc, e-simp, matmult, e-fft, p-gauss).

To illustrate what is happening to the optimal placement as we vary page move speed,

we examined one of the successive over-relaxation (SOR) applications, sorbyr, in some

depth. Sorbyr is an algorithm for computing the steady-state temperature of the interior

points of a rectangular object given the temperature of the edge points. It represents the

object with a two-dimensional array, and lets each processor compute values in a contiguous

band of rows. Most pages are therefore used by only one processor. The shared pages are

used alternately by two processors; one processor only reads the page, while the other makes

both reads and writes, for a total of four times as many references.

Almost all of sorbyr's references are to memory that is used by only one processor.

Thus, the MCPR values are all close to 1. However, this case study concentrates on the

portion of references that are to memory that is shared. The e�ects of management of this

memory are still clearly visible in the results presented, and are fairly typical of shared

memory in other NUMA applications.

The optimal placement behavior for a shared page depends on the relative costs of page

moves to local, global and remote references. This behavior is illustrated in Figure 12 as a

function of page move cost. In this graph the cost of the optimal policy is broken down into

components for page moves, remote references, global references and local references. Since

most pages are used by only one processor, the major cost component is local references;

in this �gure, however, the local section is clipped for readability.

At a G or R of 0, page moves would be free. The optimal strategy would move all

pages on any non-local reference. This means that for a G or R of 0 the optimal MCPR

of any application must be 1, regardless of the values of g and r. Since the optimal cost

32

1.05e+08

1.1e+08

Global Move Cost

200 500 1000 1500 2000

ace

2500

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Move

Remote

Global

Local (extends down to 0)

PLATINUM

ACE

DELAY

Optimal

Figure 12: sorbyr Placement Cost vs. Page Move Cost w/ Optimal Breakdown, g=2, r=5

is continuous, the curve for every application must fall o� as G or R approaches 0. This

means that all the curves in Figures 4 and 5 go smoothly to 1 below their left ends. For

applications such as e-fft that don't show much bene�t from G and R down to 200, this

drop is very steep. As page move cost decreases, remote references are traded for copies

and global references, and then for more copies and local references. This can be seen

in Figure 12 at points near G = 1200 and G = 400 respectively. While the behavioral

cost breakdown of the optimal policy undergoes large sudden changes, the cost itself as a

function of behavior changes smoothly with G.

Any given policy will be oblivious to the speed of memory operations. Its curve will

therefore be a straight line on a graph like Figure 4 or Figure 12, and will lie on or above

the optimal curve at all points. Because the optimal curve is concave down, no straight

line can follow it closely across its entire range. This means that no single real policy will

perform well over the whole range of architectures. We illustrate this point in Figure 12 by

including lines for on-line policies. The PLATINUM policy works best for small G, but at

the cost of doing poorly for large G. Conversely, the ACE and Delay policies do well for

large G, but poorly for small G. To obtain best performance over a range of page move

speeds in Figures 4 and 5 (at least for the applications in which the optimal line curves

33

sharply), one must change the real policies accordingly.

5 Discussion

The technique of o�-line optimal analysis allows evaluation of a relatively large range of

shared memory multiprocessor architectures without biasing the results by selecting a par-

ticular data-movement policy. Conversely, it provides a baseline against which to compare

real policy behavior. Reasoning in a formal model forces exposure of assumptions, and

allows proof of theorems within that framework. All of these things provide a degree of

rigor di�cult to achieve in the real world. Using these methods, we have learned a number

of things about NUMA systems and policies, which are summarized in this section.

From a functional point of view, NUMA machines closely resemble UMA machines with

hardware cache coherence; the principal di�erence is that NUMA policies generally permit

remote references, whereas cache coherence policies force a line to move on a cache miss or, in

the case of non-cacheable data, access it only in global memory. NUMA machines implement

data placement decisions in software, of course; cache-coherent machines implement them

in hardware or �rmware. Cache coherence policies are also likely to move data more often

than NUMA policies, mainly because of the lack of remote references, but also because

the comparatively small size of a cache line and the low start-up overhead of a hardware-

initiated move make movement more attractive. Because they move data more, cache-

coherent multiprocessors are likely to su�er more from interconnect contention.

Distributed virtual memory systems for NORMA (NO Remote Memory Access) ma-

chines also resemble hardware-based coherent caching at a functional level [23]. Since most

distributed virtual memory systems don't permit remote access (they would have to im-

plement it in the page fault handler), they may actually resemble hardware-based coherent

caching more than NUMA systems do. All three kinds of systems may or may not support

the remote update of multiple copies (that is, broadcasting a single word write to multiple

remote copies); this is an orthogonal issue.

Our model of memory management cost can be used to describe data placement policies

for UMA, NUMA, and NORMA machines, provided that contention is not a major factor in

performance. Our algorithm for computing an optimal placement provides a performance

34

baseline for these policies, and allows us to evaluate the hardware on which they run,

provided that we accept the coherence constraints, insisting that all copies of a page be

up-to-date at all times, and insisting that only one copy exist at the time of a write. We are

currently experimenting with heuristic o�-line algorithms which, while not optimal, may

arguably be used as a performance baseline for systems in which the coherence constraints

are not enforced. We are particularly interested in the extent to which a policy might obtain

improved performance by exploiting knowledge of false sharing in applications, allowing

copies of pages written by more than one processor in a given time period, but containing

no data objects used by more than processor during that same period, to grow temporarily

inconsistent. We are also gathering data for a direct comparison of memory management

costs on UMA, NUMA, and NORMAmachines for a common set of applications. We expect

hardware cache coherence to outperform software schemes in most (though not all) cases,

but it appears likely that the di�erences will in many cases be small enough to cast doubt

on the cost e�ectiveness of the hardware-intensive approach. If hardware placement policies

indeed produce larger amounts of interconnect tra�c than software placement policies, then

a comparison that ignores contention is likely to be biased in favor of the hardware approach.

We hypothesize that o�-line optimal analysis could fruitfully be employed in problem

domains other than multiprocessor memory management. One might, for example, create

a tractable algorithm for optimizing allocation of variables to registers in a compiler, given

the references to the variables that are eventually made by a particular program (that is,

a trace). It would then be possible not only to measure the performance of a compiler's

register allocator, but also to determine the performance inherent in di�erent register set

designs (di�erent numbers of registers, di�erent registers for oating point, addresses and

integers vs. general purpose registers, di�erent sizes of register windows, etc.) without

having to worry that e�ects are due to a particular compiler, and without having to worry

about implementing register allocation schemes for all of the hardware variants.

For NUMA machines, o�-line optimal analysis has allowed us to quantify the utility of

a fast block transfer, assess the signi�cance of varying page sizes, characterize the sorts of

placement decisions that a good policy ought to be making on various sorts of machines, and

estimate the extent to which policy improvements (presumably incorporating application-

speci�c knowledge) might increase the performance of software data placement.

35

6 Acknowledgments

Bob Fitzgerald was the principal force behind the ACE Mach port, and has provided valu-

able feedback on our ideas. Rob Fowler and Alan Cox helped with application ports and

tracing, and also provided good feedback. Most of our applications were provided by oth-

ers: in addition to the PLATINUM C-Threads applications from Rob and Alan, the Presto

applications came from the Munin group at Rice University; the SPLASH applications from

the DASH group at Stanford University; the EPEX applications from Dan Bernstein, Kim-

ming So, and Frederica Darema-Rogers at IBM; and plytrace from Armando Garcia. Our

thanks to Armando and to Colin Harrison and IBM for providing the ACE machines on

which the traces were made.

References

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young.

Mach: A New Kernel Foundation for UNIX Development. In Proc. Summer 1986

USENIX, July 1986.

[2] R. J. Anderson. An Experimental Study of Parallel Merge Sort. Technical Report

88-05-01, Univ. of Washington Dept. of Comp. Sci., May 1988.

[3] S. J. Baylor and B. D. Rathi. An Evaluation of Memory Reference Behavior of En-

gineering/Scienti�c Applications in Parallel Systems. Tech Report 14287, IBM, June

1989.

[4] J. K. Bennett, J. B. Carter, andW. Zwaenepoel. Adaptive Software Cache Management

for Distributed Shared Memory Arichtectures. In Proc. 17th Intl. Symp. on Comp.

Arch., pages 125{134, 1990.

[5] B. N. Bershad, E. D. Lazowska, and H. M. Levy. PRESTO: A System for Object-

Oriented Parallel Programming. Software: Practice and Experience, 18(8):713{732,

August 1988.

[6] D. Black, A. Gupta, andW.-D.Weber. CompetitiveManagement of Distributed Shared

Memory. In Proc. Spring COMPCON, pages 184{190, February 1989.

36

[7] D. L. Black, D. B. Golub, K. Hauth, A. Tevanian, and R. Sanzi. The Mach Excep-

tion Handling Facility. In Proc., SIGPLAN/SIGOPS Workshop on Par. and Dist.

Debugging, pages 45{56, May 1988. SIGPLAN Notices 24(1),1/89.

[8] D. L. Black and D. D. Sleator. Competitive Algorithms for Replication and Migration

Problems. Technical report, Carnegie-Mellon University, Computer Science Depart-

ment, November 1989. CMU-CS-89-201.

[9] W. J. Bolosky, R. P. Fitzgerald, and M. L. Scott. Simple But E�ective Techniques

for NUMA Memory Management. In Proc. 12th ACM Symp. on Operating Systems

Principles, pages 19{31, December 1989.

[10] W. J. Bolosky, M. L. Scott, R. P. Fitzgerald, R. J. Fowler, and A. L. Cox. NUMA

Policies and Their Relation to Memory Architecture. In Proc. 4th Intl. Conf. on Arch.

Sup. for Prog. Lang. and Operating Sys., pages 212{221, 1991.

[11] L. M. Censier and P. Feautrier. A New Solution to Coherence Problems in Multicache

Systems. IEEE Trans. on Computers, 27(12):1112{1118, December 1978.

[12] E. Cooper and R. Draves. C Threads. Technical report, Carnegie-Mellon University,

Computer Science Department, March 1987.

[13] A. L. Cox and R. J. Fowler. The Implementation of a Coherent Memory Abstraction

on a NUMA Multiprocessor: Experiences with PLATINUM. In Proc. 12th ACM Symp.

on Operating Systems Principles, pages 32{44, December 1989.

[14] W. P. Crowley, C. P. Hendrickson, and T. E. Rudy. The SIMPLE code. Technical

report, Lawrence Livermore Laboratory, 1978. UCID-17715.

[15] S. J. Eggers and T. E. Jeremiassen. Eliminating False Sharing. Technical Report

90-12-01, University of Washington, 1990.

[16] A. Garcia. E�cient Rendering of Synthetic Images. PhD thesis, Massachusetts Insti-

tute of Technology, February 1988.

[17] A. Garcia, D. Foster, and R. Freitas. The Advanced Computing Environment Multi-

processor Workstation. Research Report RC-14419, IBM T.J. Watson Research Center,

March 1989.

37

[18] M. A. Holliday. On the E�ectiveness of Dynamic Page Placement. Technical report,

Department of Computer Science, Duke University, September 1989. CS-1989-19.

[19] M. A. Holliday. Reference History, Page Size, and Migration Daemons in Local/Remote

Architectures. In 3rd Intl. Conf. on Architectural Support Support for Prog. Lang. and

Oper. Sys., April 1989.

[20] E. J. Koldinger, S. J. Eggers, and H. M. Levy. On the Validity of Trace-Driven

Simulations for Multiprocessors. In Proc. 18th Intl. Symp. on Comp. Arch., pages

244{253, 1991.

[21] R. P. LaRowe and C. S. Ellis. Experimental Comparison of Memory Management Poli-

cies for NUMA Multiprocessors. ACM Transactions on Computer Systems, 9(4):319{

363, November 1991.

[22] J. R. Larus. Abstract Execution: A Technique for E�ciently Tracing Programs. Soft-

ware: Practice and Experience, 20(12):1241{1258, December 1990.

[23] B. Nitzberg and V. Lo. Distributed Shared Memory: A Survey of Issues and Algo-

rithms. IEEE Computer, 24(8):52{60, August 1991.

[24] J. M. Ortega and R. G. Voigt. Solution of Partial Di�erential Equations on Vector

and Parallel Computers. SIAM Review, 27(2):149{240, June 1985.

[25] W. A. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes

in C. Cambridge University Press, Cambridge, U.K., 1988.

[26] J. R. P. LaRowe, C. S. Ellis, and L. S. Kaplan. The Robustness of NUMA Memory

Management. In Proc., 13th ACM Symposium on Operating Systems Principles, pages

137{151, 1991.

[27] J. P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford Parallel Applications for

Shared-Memory. Available by anonymous FTP, April 1991.

[28] J. Stone and A. Norton. The VM/EPEX FORTRAN Preprocessor Reference. IBM,

1985. Research Report RC11408.

38

[29] C. B. Stunkel and W. K. Fuchs. TRAPEDS: Producing Traces for Multicomputers Via

Execution Driven Simulation. In Performance Evaluation Review, 17(1), pages 70{78,

May 1989.

[30] W. Weber and A. Gupta. Analysis of Cache Invalidation Patterns in Multiprocessors.

In 3rd Intl. Conf. on Architectural Support Support for Prog. Lang. and Oper. Sys.,

April 1989.

39

	1991_TR403 39
	1991_TR403 38
	1991_TR403 37
	1991_TR403 36
	1991_TR403 35
	1991_TR403 34
	1991_TR403 33
	1991_TR403 32
	1991_TR403 31
	1991_TR403 30
	1991_TR403 29
	1991_TR403 28
	1991_TR403 27
	1991_TR403 26
	1991_TR403 25
	1991_TR403 24
	1991_TR403 23
	1991_TR403 22
	1991_TR403 21
	1991_TR403 20
	1991_TR403 19
	1991_TR403 18
	1991_TR403 17
	1991_TR403 16
	1991_TR403 15
	1991_TR403 14
	1991_TR403 13
	1991_TR403 12
	1991_TR403 11
	1991_TR403 10
	1991_TR403 09
	1991_TR403 08
	1991_TR403 07
	1991_TR403 06
	1991_TR403 05
	1991_TR403 04
	1991_TR403 03
	1991_TR403 02
	1991_TR403 01

